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KYBERNETIKA — VOLUME 10 (1974), NUMBER 1

A Generalization of the Propositional
Calculus for Purposes of the Theory
of Logical Nets with Probabilistic Elements

ToMAS HAVRANEK

The definition of logical nets with probabilistic elements is given in the following paper.
To describe these nets, the logical—probabilistic expressions, as a probabilistic extension
of propositional calculus, are introduced. Some fundamental properties of these logical-prob-
abilistic expressions are investigated.

This paper is an attemp to fill a certain gap in the structural theory of finite auto-
mata. The theory of logical nets connected with the theory of deterministic automata
is well known. This paper is concerned with the theory of logical nets generalized
in such a way that the new theory will deal with logical nets in which probabilistic
elements can occur. Propositional calculus is widely used for the description of
deterministic logical nets. For our purposes it was necessary to extend propositional
calculus in a probabilistic way and to develop the description of nets with prob-
abilistic elements. In this extended propositional calculus, certain theorems which
can also be considered as theorems dealing with nets, are formulated. The whole
theory can be understood in a more general way as a probabilistic extension of
propopositional calculus, without relating it to logical nets, and it can also be applied
in a different way.

In the first part of this paper, certain important notions — in particular, the
notion of the logical-probabilistic expression — will be defined, and certain assertions
will be made about these notions.

We will also add an interpretation to the theory of logical nets (it will be necessary
to define the logical-probabilistic nets). The second part will contain proofs of these
theorems and certain other theorems necessary for various calculations and for the
proofs of the theorems from the first part.

I. DEFINITIONS AND THEOREMS

For reasons of intuitive intelligibility the account will proceed from the definitions
concerning the nets to the definition of the corresponding logical or logical-prob-
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abilistic expressions. We shall see that the definitions and properties of the logical-
probabilistic expressions do not depend upon the concept of a net and so we could
limit ourselves in our account to them alone. However, for the sake of clearness
of the presentation, it is convenient to bear in mind the applications of the defined
notions to nets.

Definition 1, Let us consider the following two kinds of elements. The first one
(see Fig. 1a) will be called a primitive element of the first kind, the second one
(see Fig. lb) will be called a primitive element of the second kind. We call a, or
a,, a; the inputs of an element, A, or A, the nucleus of an element, and b, and b,

the outputs of an element.
a) q, + b1

Fig. 1.

We define a net as follows:

1) A primitive element of the first or second kind is a net with input a; or a,, a;
and output b, or b,.

2) Let N, be a net with output by and inputs ay, ..., a;,

a) given a primitive element of the first kind with the input a, and output b,
(not contained in the net N,) then by connecting b, with a,, we obtain a net with
inputs a, ..., 4, and output b;;

b) if we connect two different inputs a;, a; of the net N, we obtain a net with
the same output and inputs @y, ..., @, <. @15 Gjr1s Ajpzs -oos Gy

3) Let N, and N, be two distinct nets with outputs b,, b, and inputs al, ..., a;
ai, ..., a; respectively. Given a primitive element of the second kind with the inputs
ay, a, and output b, (which is not contained in the nets Ny, N,), then connectig b
with a, and b, with a, (or a; with b, only) we obtain a net with inputs a}, ..., ag,
al,...,a} (or a}, ..., ai, a,) and output b,. '

A net defined in this way consists, therefore, of two kinds of elements. Through
the net there can propagate 0—1 pulses which are treated by elements in a different
way. The elements of the second kind can have a different function and must,
therefore, be differently denoted. So we shall have two things: a net with differently
described elements and the function of this net determined by the function of indi-
vidual elements.



Definition 2. A net N (with inputs ay, ..., a, and output b) will be called a labeled 15
net iff:

1) every primitive element of the first kind is denoted by the symbol A or ~,
2) every primitive element of the second kind is denoted by one and only one
of the symbols o, ..., &,

3) the input a; is denoted by x; (for i = 1,..., k) (moreover we can denote the
output b by y).

Definition 3. 1) For every primitive element of the first kind denoted by A we
define the associated function A* (A* : {0, 1} — {0, 1}) by the table

vy | AW
o | 0
1 1

2) For every primitive element denoted by ~ we define the associated function ~*
(~*:{0,1} > {0, 1}) by the table

y |~
0 1
1 0

3) For every primitive element denoted by «; we define the associated function a;‘
(aF : {0, 1} - {0, 1}) by the table (j = 0, ..., 15):

“7()’1; J’z)

Y1 ¥z | j=01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 a00000O0OO0OT1T1¢! 1 1 1 1 1 1
0 1 6000111100 0 0 1 1 1 1
1 0 0011001100 1 1 0 0 1 I';
11 ‘ 6101010101 0 t 0 1 0 1

4) For every labeled net N we define, following the inductive definition of a net,
a mapping funcy (funcy : {0, 1}* —» {0, 1}. where k is the number of inputs of
the net N): )

a) If a net N has the structure of Fig. 2a, then we define funcy(x, ..., X)) =
= A*(funcy,(x1, ..., %);

b) if a net N has the structure of Fig. 2b, then we define funcy (xy, ..., %) =
= ~*(funcy, (X, ..., X0))5

¢) if a net N has the structure of Fig. 2c, then we define

funcy (x4, ..., %) = o&f(funcy, (x4, ..., ), funey, (x5 .., )5 (5 =0,..., 15);

d) if a net N has the structure of Fig. 2d, then we define

Suncy (Xg, oo Xgy ooy Xjo 1y Xjugs oony X)) = funey, (x50 ..o %)



16 We then call a logical net (L-net) the pair
[N, funey] .

Note. This definition does not admit nets of the type from Fig. 3. In our later
account we shall see the necessity of this limitation.

We can consider a net as an oriented tree. For this purposes it is useful to treat
every pair of inputs, connected as in point 2. b) of Def. 1, as two different inputs.

%
a) XZ
%
b)
c)
d
e
Fig. 2.

Then the inputs of the net are termi-
nal nodes of the tree, the primitive
elements are nodes, and the output is
aroot of this tree. If the net is labeled
then the tree is called a labeled tree.

Fig. 3.

Let N be some net, treated as a tree, then we can call a subnet of N every branch
N’ of N having one or more nodes (shortly N < N). Inputs of this subnet are terminal
nodes of N and the output is an edge connecting the first node of the branch with
the tree N (with the rest of tree N).

A logical expression can be associated with a denoted net in the following way.

Definition 4. Let us consider symbols x;, X,,... (individual variables}, ~ (negation),

tg, ..., &5 (binary logical connectives), (,),..

Let F, Fy, F,, ... be names of finite sequences of these symbols. We define the
logical form (L-form) as follows:

1) x;fori = 1,2,...is an L-form;

2) if Fy is an L-form, then ~F, is an L-form;

3) if F,, F, are L-forms, then a,(F;, F2), for i = 0, ..., 15, is an L-form.



For an L-form we can defins the mapping funcy as the usual evaluation function
of L-forms, i.e. following the steps of Def. 3.
We shall call the pair [F, func] a logical expression (L-expression).

Note. It is possible to introduce the symbol A — an empty symbol. Then we can
use following rule:

4) if F, is an L-form, then AF, is an L-form. F,, AF,, and A(F,) are the same
L-forms.

There exists a one to one correspondence between the L-nets and L-expressions.

If the L-net [N, funcy] has n distinct inputs denoted by x;, ..., x,, then we take
Xy, ..., X, as variables of the corresponding expression, and we construct the cor-
responding L-expression [F, func,] by induction:

Let N, be a subnet of N, let ~N, be a subnet of N, and let F; correspond to Ny;
then ~F, corresponds to ~N,. Either F; or AF; correspond to AN, (see Def. 4,
point 4); we do not distinquish between L-forms AF; and Fl). We proced with the
connectives ay, ..., oy 5 analogically. The relation between L-nets and L-expression
is described in detail in other writings; see [5]

It is evident that for an L-net [N, funcy] and the corresponding L-expression
[F, func;] we have func, = funcy.

Example I. Let N be the labelled net from Fig. 4, then the corresponding L-form is
(~x; & x,;) v x5 and we obtain the following values of functions:

Xy X3 X3 | Suncg = funcy

0o 0 O 0

o 0 1 1 .
0o 1t 0 1

o 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0
111 1

We can make the following generalization of the concept of L-net:
We add a primitive element of the first kind, denoted by ¢, to the net as in Fig. 5.
This element can then have the associated function ¢*(y, w), ¢*:{0,1} x Q@ —
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— {0, 1}, where Q is some non-empty set of random events. Let ¢*(0, w) = ¢*(1, w)
for every e Q. So we can write p*(w) for ¢*(y, w). Let Py, P, be two distribution
of probabilities on [Q, A] (4 is some o-field of subsets of Q). Let P(w) be the prob-
ability of random event o if the value i (1‘ =0, 1) is on the input of element ¢. For
our purposes, of course, only the events w, = (¢*)~* (0), w, = (¢*)7* (1) and the
probabilities p, = Py(w,) and p, = P,(w,) are important (weL w; = Q).

So we have now the probabilistic element ¢ in the net. The values on the output
of this element do not depend on the input values; the probabilities of the output
values are dependent on the input values only (the word “dependence” is here to be
understood as functional dependence).

For instance for p, = 1, p, = 0-05 this element can simulate the unreliability
of the conductor. By means of these elements and the elements having the function
of logical connectives we can describe even unreliable elements which realize logical
operations as we shall see later.

Now we shall give an exact definition of the logical-probabilistic net (LP-net).

Definition 5. Let us consider a logical net [N’, funcy.]. Let us denote some of the
elements of the first kind (denoted so far by A) by one (and only one) of the symbols
@1, @3, ... (the new net will be called N) obeying the following two conditions:

1) no symbol from {@;, @, ...} can occur in the net N more than once,

2) if we assume that an element of N denoted by ¢; is connected to the output
of a subnet N of N and that N, contains an element denoted by ¢;, then j < i.

Let the L-net [N', funcy.] have n distinet inputs and Jet there be m probabilistic
elements in the new net N; let us denote X = {0, 1}" and Qy = {0, 1}™, & clements
from X and o = (oy, ..., ®,) elements from Qy.

Now we define a mapping funcy N' from X x Qy to {O, l} for each subnet N’
of N by induction in the following way: (x,, ..., x, will be denoted by x)

a) the value g, is on the input x; for the value (o, @);

b) for a subnet N’ having the structure of Fig. 2a we define funcy N'(e, w) =
= funcy N (o, 0);

c) for a subnet N’ having the structure of Fig. 2b we define funcy N'(o, @) =
=1 — funcy N(o, »);

d) for a subnet N’ having the structure of Fig. 2c we define

Suncy N'(o, 0) = af(funcy Ni(o, o), funcy N,(o, 0),

where o is the associated function from point 3) of Def. 3;

e) for a subnet N’ having the structure of Fig. 6 we define Sfuncy N’(g, w) = w;,

where i is the rank of the ¢; in the vector (@;,, ..., ®;,) ranked with respect to the
increasing indices;



f) for the net N' with connected inputs x;, X; (i # j) we define

funcy N'(6, ©) = funcy Ny(G4, ..., O, -+ Tj=15 0y Gjats -5 Oy o).

F—={N y

Fig. 6.
For any 7 = (71, .., 7m) € {0, 1}™ let Py(yys - a3 -) be a mapping from Qy
to <0, 1) for which:
3) stﬂ,, PN(Y? w) = 1;
4) for every weQy, k< m, yef0,1}", v €{0,1}" for every (i} =
< {j1, - jm} and for every o* € (0, 1)* if ¥;,. = Vj,s - Vjur = V> then
Y winireony=an PRI @) = Vlaiws s r=0n Pyy’; ).

We define a system of functions

Py = {Px(1; Vhyero,1ym -

For a given value of inputs let y; = funcy Ni(o, @), where N} is the subnet, the
output of which is connected to the input of the clement denoted by ¢;; j is the
rank of @, (i = 1,..., m).

Then we shall call any such triplet [N, Qy, Zy] a logical-probabilistic net (LP-net).

The numbers p, pi, where
Pf; = Z(m;m,-:l) PN(an cens Vi=1s 0, Vittseeos Vms ‘U) s
P{ = Z{m;m,-=|) PN('Vn o Vi1 O Vit ts s Vs w) s
will be called the probabilistic parameters of the element ¢, , in LP-net [N, Qy, 2y].

Note. An important property of LP-net is that the value of y; is dependent only
on w; fori < j. :

Given a LP-net A" = [N, Qy, #5] we say: 1) that a LP-net corresponding to the
labeled subnet N,, output of which is connected with the input of element ¢,, is the
interior of probabilistic element ¢; in the LP-net /4";2) that an element ¢; is stoch-
astically independent of his interior in the LP-net A4 iff

Z(m;m“’,..,,w/k’=n)‘,w1=1)PN(Yl)“':ym;w) =
= Yo irrerop =00 P15 o Y ©) DI,

where j is the rank of ¢;, and j, ..., j; are ranks of probabilistic elements from N.
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In this case we can interpret the probabilistic parametres of the elements ¢; as

pb = P(funcy o(N,) (o, ©) = 1[funcy Ny(o, w) = 1),
pi = P(funcy ¢,(N,) (o, ®) = 1/funcy N,(s, ®) = 0).

It is necessary for further considerations to define a LP-subnet.

Definition 6. Let 4 = [N, Qy, #5] be an LP-net, let N, be a subnet of the net N,
let Qy = @, x ... x Q, = XL, Q;. Let N contain probabilistic elements denoted
bY @k,» -.-» @i, Let i be the rank of @, in (¢, ..., ¢;,) and j' the rank of @y, in
(P> - 04,)- We denote @y, = X}._, Q) = X/, @, (2} =Q;), o' €@y, and
for every ¥’ € {0, 1}}, y}. = y; we define _

PN.()”; w’) = Z(w;(m.‘l..“,w”):m') PN(?i (") .
Then we can denote
Py, = {PN,(?'§ »)}-,'ew,n'
and we shall call the triplet 4™ = [Ny, Qy,, Px,] a LP-subnet of the LP-net A4".
We shall write /7 < A"
The consistency of the previous definition is guaranteed by the condition 4) from

Def. 5.

Now we shall give a definition which is very important for the aplications in
papers [11], [12].

Definition 7. We say that a LP-net is stochastically independent if for every
ye{o, 1}"
PN(‘I; ‘D) = H’i"=1 P.‘(Vi? CU;) . v

For further considerations the following convention will be useful.

Convention 1. We shall assume in all cases, supposing it could not cause confusion,
that the rank and the index of every probabilistic element in the given LP-net are
equal.

The usual logical nets will be described by logical expressions. These logical
expressions are, however, not sufficient for the decription of LP-nets. This is the
reason for extending also the notion of logical expression in a corresponding way,
and defining the logical-probabilistic expressions (LP-expressions). It is necessary
to point out that these expressions can be defined, quite independently of the notion
of the net, as a certain probabilistic extension of the propositional calculus. In our
later account we shall deal with these expressions without stressing their net inter-
pretation. We shall investigate the question of equivalence of these expressions



to certain normal forms and consider to what extent the laws of propositional 21
calculus are conservated (see also [11]). As a notion corresponding to the prob-
abilistic elements we shall introduce a new kind of an unary logical connective
(more exactly a whole class of unary connectives).

Note. 1) A particular case of the definition of the LP-expression (stochastical
independence) was published by the author in [9], 2) The notion of a subform
is defined in accordance to the notion of a subnet (labeled); i.e., in the usual way.
3) The notion of the interior of a probabilistic connective corresponds to the notion
of interior of a probabilistic element. We shall write F, = int (¢, F), if F, is the
interior of probabilistic connective ¢;.

Definition 8. Let us consider a logical expression [F’, funcp]. Let us substitute
into F’ some of the symbols ¢,, ¢@,, ... in place of some symbols A.

The new form will be denoted by F.

Let the following conditions be satisfied:

1) any symbol from {¢,, ¢,, ...} cannot occur in F more than once, 2) the symbols
@y, @2, ... are used in such a way, that for every ¢; no ¢;, i < j, can occur in the
interjor of ¢; in F.

The symbols ¢, @,, ... will be called probabilistic connectives.

Let the form F contain n different variables, let in F occur m probabilistic con-
nectives, and let Qy, Z, w, 6 be the same as in Def. 5 and Q; = Qy.

Then we define a mapping funcy Fy from Z x Qg to €0, 1) for each subform F,
by induction in the following way:

a) funcg x(o, ®) = o3

b) funcg A Fy(o, ®) = funcg Fi(o, o);

¢) funcy ~ Fi(6, w) = 1 ~ func; F(o, ®);

d) funcy a)(Fy, F,) (6, @) = of(funcg Fi(o, ®), funcg Fy(s, o)),
where o is the associated function from the poin d) of Def. 3;

e) funcg ¢(F,) (0, ®) = w; (jis the rank of ¢,);

f) if x; = x; then

fu”CFFl(Uh o3 Opy s 01505415 005 Oy "-') =
= funcg Fy(01, s iy v0s G515 Ois G 15 40 Oy @) 5

g) funcg (o, @) = funcy F(a, o).
Let us now define P, 2, in the same way as Py and £y in Definition 5.

We shall call any such triplet & = [F, Qp, #;] a logical-probabilistic expression
(LP-expression).

The notion of probabilistic parametres of probabilistic connectives and the notion
of stochastical independence are the same as in the case of LP-net. It is possible
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to give a direct definition of LP-expression (without defining first LP-nets and
L-expressions) but for intuitive reasons it seems better to give the definition in the
above form. The direct definition was used in [9] and [10]. Now it is possible to
consider the correspondence between LP-nets and LP-expressions.

Theorem 1. For every LP-net A/ = [N, Qy, 9’,\,] there exists a unique LP-expression
& = {F, Qp, P¢] so that

Qy = Qp, funcy = funcy and Pp = Py.

Note. The converse of this theorem is also true.

Proof. The proof is based on the fact that for every L-net we can construct
(in a unique way) a corresponding LP-expression. Let us consider an LP-net 4.
When constructing a corresponding LP-expression we proceed in the following way:

1) We substitute A for all symbols @, @,, ... describing the probabilistic elements
of the denoted net N. However, we distiquish symbols A by the same indices as ¢;
(i.e., A: = @,); all A; have the same function as A.

2) For the obtained L-net we find the corresponding L-expression (which describes
the structure of L-net);

3) in this L-expression we carry out the substitution ¢; = A;; the obtained form
can be denoted by F.

4) We put Qp = Qy and for F we construct funcy according to Def. 8, points
a) to g). With regards to the construction of funcy is funcy = funcy.

5) We put 2, = Py. O

In further considerations we shall restrict ourselves only to LP-expressions:
Occasionally, however, the corresponding LP-net will also be given for purposes
of illustration. Given an LP-net /" we call the expression produced by the algorithm
roughly described in the proof of the previous theorem the corresponding LP-expres-
sion (to ). This expression (as well as the net) is distinctly determined.

Example 2. Let N be the labeled net from Fig, 7, 2y = {0,1}7, £ = {0, 1}, let the probabilistic

parametres be p} = 0-1, p} = 09 for j= 1,..., 7, and let this LP-net be stochastically inde-
pendent, i.e.

1 Py @) = [Ti1 Pdys 1), '

where

)] P(0;0) =09, P[0;1) =01,

P(1;0) = 01, P(1;1) =09,

fori=1,...,7.



Then the system of probabilities 2, is determined by the probabilistic parametres (with the
help of formulas (1) and (2)). However, we do not know anything about the output probabilities
of this net. The corresponding LP-form is

o1((@s(~x1 v x5 v 0i(~x3)) & x5) v
v @o(x1 & @ ~x3) & @3(x1)) & 9(x3)) v @u(x; & x3).
Let us now summarize the foregoing considerationes:

Every LP-net [N, Qy #y] corresponds to the LP-expression [F(N), Qy, #y],
where F(N) is the LP-form decribing the labeled net N. Then we can interpret every
theorem concerning LP-expressions as a theorem concerning LP-nets.

Fig. 7.

Note. If we have an LP-net we can call the LP-expression [F(N), Qy, Zy] the
canonical expression of the LP-net(see[5] by N. E. Kobrinskij and B. A.Trachtenbrot).
In some works (e.g., in [6] by V. I. Levin) logical nets with elements corresponding
to A, &, ~ are considered, where these elements work with errors. Later we shall
show that we can replace these nets by our LP-nets.

Now we shall formulate a theorem.

Theorem 2. Let & = [F, Q5 #;] be a LP-expression.

1) Let F contain only variables contained in an LP-form corresponding to
int (g, F) for a probabilistic connective ¢, from F. Then there exist two sets 2, &,

23
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for which: a) @ = QU 2,, Qo N Q; = @; b) funcy(o,0) = 1 if @eQ,, and
there exists an unique system of probabilities Z; = {P,(.)}, on Q* = {Q,, Q,},
for which c¢) P(funcg (s, @) = 1) = P,(Q,).

2) Let x;,, ..., x;, be variables which occur in F and which are not contained
in any LP-form corresponding to int (¢;, F) for any ¢, from F. Let 2 = {0, 1}*
be the space of values of these variables. Let us denote 2 = X’ x Qp. Then there
exist two sets Qq, @, for which: a) @} = QU @y, Qo N 2, = 0,b) func (6, @) = 1
iff (o', w) € Q,, where ¢’ = (g},, ..., 0, ), and a unique system of probabilities #} =
={P,()}, on Q* = {Q,,Q,} for which: ¢) P(func; (6, ®) = 1) = P,(2,) and
d) for o € {0, 1}", for which (a’, w) ¢ Q, for every w € Q, is P,(2,) = 0.

Note. The proof is given in Part II of this paper. As a consequence of this theorem
we can describe the probabilistic properties of LP-expressions by the vector

Po = (Po ,,,,, 0(91), Po,.“,o,l(gl)’ cens Pl,.“,l(ﬂl)) .

This vector will be called the characteristic vector of the given LP-expression.
A general method of calculation of pg will be explained in the part II. Computation
of these characteristic vectors in particular cases will be discussed in [11].

Example 3. This example is a continuation of Example 2. For the LP-expression (LP-net)
decribed in Example 2 we obtain:

i L4 Po ¢
1 000 0-2514 0
2 001 02514 0
3 010 0-7744 1
4 011 0-8872 1
5 100 0-2000 0
6 101 03117 0
7 110 0-3304 0 Y
8 111 0-8872 1

where ¢ are values of usual evaluation of LP-expression (/\ substituted for q)j).

A convenient method for computation of pg in this case (stochastical independence) will
be described in [11].

The connection of the LP-expressions (and LP-nets) to the probabilistic operators
(automata) is very important. We define the probabilistic operator in accordance
with definition of the probabilistic operator given by Rabin in [8].

A triplet [4, #,, B], where A = {a,, ..., a,} is the input alphabet, B = {b, b,}
is the output alphabet and #, is a system of probabilities on B, #4 = {P.},4,
is called a probabilistic operator with binary output.

We denote p; = P,(b,) and we call p = (p,,..., p,) the characteristic vector
of a probabilistic operator with binary output. Let us define |2,| = i. Now if we



define 4 = (ay, ..., az...), where a; = o, if g, is the binary form of the number i — 1,
and if B = (|Q, |2,]), then ¢ = [F, @, 2] will determine a probabilistic operator
with binary output.

For further considerations we must define two kinds of equivalence between LP-
expressions.

Definition 9. Let 17, = [4,, ?,,, B,]| and II, = [A,, #,,, B,] be two prob-
abilistic operators with binary outputs. If we can find such a one-to-one mapping y
of 4, onto A, for which P,(b]) = P, (b}) orevery ae A,, we say that /I, and 1,
are equivalent.

If &, and @, are two LP-expressions and if py, = py, we say that they are prob-
abilistically equivalent (¢, =, @,).

Let us note that the problem of the construction of a probabilistic operator
(or automaton) is the same as of finding to a given probabilistic operator an equivalent
operator with a given structure, that is in particular a probabilistically equivalent
LP-expression with a given LP-form. For the problem of construction of stochastical
automata see, €.g., R. Knast [4]. The author intends to deal with the construction
of these automata jn [12].

Before formulating the next lemma we must define some auxiliary concepts:
1) We shall call a logical form to which probabilistic connective could be substituted
(sce Def. 8, point 1), 2)) a LP-form. 2) Two LP-forms F,, F, will be called equivalent
(shortly F, = FZ) iff they differ in subscript of probabilistic connectives only.
3) Let T be a transformation of LP-form F, let the following steps be used con-
sequently in this transformation: a) changing the names of variables (differcm
variables must have different names), b) using the commutativity of some logical
connectives and c) thé associativity of some logical connectives (associativity and
commutativity are the same as that used in L-expressions), d) ommiting brackets
(we can write F, v F, v F; for Fy v (F, v F;)). Two LP-forms F, and F, will
be called slightly equivalent (shortly F, = Fz) iff there is a transformation for
which T(F,) = F,.

Lemma 1. Let & = [F, Qp, #¢] and &' = [F', Qp, P;.] be two LP-expressions,
let F =, F', let for every y e {0, 1}™, Px(y, ®) = Pp(y, ), and let the probabilistic
connectives in F have such indices so that T(F) = F'. Then ¢ =, 9"

Proof. The lemma is a consequence of the proof of Theorem 2 (cf. Part II).

Note. If we have two probability spaces [Q,, P{], [@,, P,] we shall call every
probability on @, x @, for whicha) ), P(w,, ®,) = Py(w,)and b) ¥, P(w;, w,) =
= P,(w,), as a probability associated to P,, P,.

Now we define the second kind of equivalence.

25



26

Definition 10. Let ®,, ¢, be two LP-expressions, let 2* = {P5} be a system of
probabilities on Q} x Q3 associated to P, Z¢,. We say that ¢, and &, are func-
tionally equivalent with respect to #° (shortly &, =, &,) iff for every o€ {0, 1}
(we assume equal numbers of variables)

Pi(Qf, Q3) = 6, PA(Q})

(ilen Yiw  PA(QL QN =0, Y, P20}, QF) = 1, Q} e Qf, Q} e Q).

Let ¢ = [F, Qp, #;] be a LP-expression, let &, @, be its two subexpressions,
and let ®,, &, have no common subexpression. We will call these subexpressions
functionally equivalent, if for every y’, o’

, Lk * Lk * .
P (‘r", O, Wy, Wy, ‘D) = 6lm;'|,|a\z‘| ZMZ- P'(?", G, @y, Wy, ® ) s

where {iy, .., i} ={l,...n} = 1,2, o =(wi,-. @), ¥ = (Yiys -0 ¥5)s if Fy
and F, contains probabilistic connectives @, i €I, ,, and o}, 03, P(¥, 6; 0}, 3, @)
have the same meaning for @,, &, as w* e Q* nad P, for the LP-expression @
(for more details see the method of calculation in Part II).

The LP-subexpression of an LP-expression is defined in accordance with the
definition of an LP-subnet of an LP-net (Def. 6). Every subform of the LP-form
determines then an LP-subexpression. If we write F; < F we mean that the LP-
subexpression determined by F; is an LP-subexpression of the LP-expression
[F, Qr, 2]

Before formulating the next lemma we must mention, in addition, a further type
of equivalence of LP-forms. We say that two LP-forms F, and F, are strongly
equivalent (shortly F| ~ F,)if there exists a transformation T'such that T(F,) = F,.
In the previous lemma we do not need F; ~ F,, we need only the corresponding
ranking of probabilistic connectives in T(F;) and F,.

Lemma 2. Let & = [F, Qp, 2] be a LP-expression with subexpressions &, and &@,,
determined by subforms F; and F, of F respectively, let F contain probabilistic
connectives with indices {iy, ..., i} = I and F, with indices {jy,...,j,} = J, and:
1) let F be a one-to-one mapping from I onto J such that F, ~ F}, where F} is
obtained from F, by the substitution of ¢, -1, for @;,j = 1,..., 1, 2) let P(y, w) = 0
if @; % Wy and y; =y, for some iel. Then @, =, P,.

Proof. The lemma is a consequence of the method of ca]culaiion of
Py, o; o}, 0}, &) (see Part II, calculation od pg).

Now we shall define two kinds of normal forms of LP-expressions.

Definition 11. We say that a LP-expression ¢ = [F, Qp, #,] is in probabilistic

disjunctive normal form (PDNF) if its LP-form is expressed as follows: for every
¢{F)<F is F~F, v ..V F, where F;=2¢F, &. .. &gF;, (i=1,..,k)



where F;; is either a variable or an LP-subform of the type ¢ (F”), and ¢; is either ~

or A.

We can now formulate an interesting theorem about the PDNF.

Theorem 3. Let & = [F, 5, #;] be a LP-expression containing probabilistic
connectives @y, ..., ¢,. We can construct a LP-expression @ in the PDNF containing
probabilistic connectives @y, ..., @n, @115 -.0s @rays -+ o> Ppy, such that

Q)
Py mr) _ {PF(W 0)if Oj=0= . = Ol O = Wy = Wy = ... = W,

0 otherwise ,

and which is functionally equivalent to @ with respect to the system of probabilities
associated with 25, 2. and defined by the system (1).

The proof together with some other theorems is included in the second part of this
paper.

Note. It is important that the PDNF can be constructed without knowledge of po.

It is useful to define the degree of a probabilistic connective in the given LP-
expression. Let [F, Qp, 25| be an LP-expression. We say that a probabilistic con-
nective ¢ occuring in F has degree 0 if no other probabilistic connectives occur
in int (¢, F). We say that ¢ has the degree n (d(p) = nor d(e, F) = n)ifin int (¢, F)
a probabilistic connective of d(¢p, F) = n — 1 occurs, but no probabilistic connective
occurs with a higher degree.

Let {¢;,, ..., p;} be probabilistic connectives occuring in F. Let us denote r(¢;)
the rank of ¢; in (;,,..., @,). Then it holds that: 1) r{¢;) < r(e,) iff d(¢;) <
< d(ey), 2) o)) < r(e.) implies d(@,) < d(@;), 3) if d(¢;) = d(e;), then for every
Te & such that r(@;) < #(9,) < r(@;) is d(e,) = d(g).

Note. When keeping the notation from Theorem 3, it holds that:

d(p, F) =A@y, F) = ... = d(¢,,, F) = d(e, F) (i=1,...,n).

Thus we can say that a transformation to the PDNF preserves the position of the
probabilistic connectives in this manner: 1) it preserves the degree of a connective,
2) the interior of every probabilistic connective in @’ (as an LP-subexpression)
is functionally equivalent to the interior of the probabilistic connective in @. This
fact is very important in view of the aplication to nets with probabilistic elmeents.
It makes it possible for us to concern ourselves, in structural considerations, with
LP-expression in the PDNF only. Other applications of the Theorem 3 are useful
in the case of computation of characteristic vectors. We can make the transformation
without considering the probabilistic characteristic. Thus we can again concern
ourselves, in computation characteristic vectors, with this special case making
possible a considerable simplifications, especially in the case of stochastical inde-
pendence.
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Now, there is a problem. Let us consider a stochastically independent LP-expres-
sion @ and the corresponding LP-expression in the PDNF &'. As we shall see in the
proof of Theorem 3, &' does not need to be stochastically independent. ¢’ can
contain stochastically independent groups of functionally equivalent connectives, i.e.

1 —_ .
Prdy's w) = P(¥5, 115 o0 Vings @1 Q115 -5 601«\) x
X oo X P(Pas Vs o 05 Vs D Dps 05 O,

n+En;

for every v € {0, 1}
The class of stochastically independent LP-expressions is not closed to the trans-
formation to LP-expressions in PDNF. This problem as well as the problem of the
computation of p, and the problems connected with the usage of elements of the
fork-junction in nets shall be pursued in greather detail in another papers [11]
and [12].
It is possible to define another kind of normal form.

Definition 12. We say that a LP-expression @ = [F, Q, #;] is in simple prob-
abilistic disjunctive normal form (SPDNF) if its LP-form

FoeVi (e FL&...& e,-k‘_(Ft-k‘_) ,
where each F; is either a variable or of the form ¢,(x,) for some 1, 5, and
PF(Y; ‘”) = ]_‘[’i;l Pi(?’i? wi)

for every y e {0, 1}".
The following theorem holds.

Theorem 4. To every LP-expression @ we can construct a probabilistically equivalent
LP-expression @', which is in the SPDNF.

I

Proof. Let the characteristic vector of @ be pg = (py, ..., pom) let
o x; if =1, (i=1,..,m).
~x; if =0,
We can denote &; = (&}, ..., ¢},) the binary form of the number i ~ 1. Let &' =

= [F', Qp., P.] be a LP-expression for which :

F/(Xgs v %) = VI (x5) & x5 & ... & x5
and
Pe{y's ‘9,) = H.z;nt Pi()’t; (Ui)
for every ye {0, 1}™ and let P,(0; 1) = 0, P,(1;1) = p; (i = 1,..., 2").
This LP-expression is in the SPDNF and py. = po. ]



For the construction of SPDNF, in contrast with the PDNF, we need to know
the characteristic vector of LP-expression. Then we have the advantage of a con-
siderably simplified form. This normal form is useful in the application to the realiza-
tion of the probabilistic operators with binary output, where the characteristic
vector is known and we need the form of the resulting expression (and of correspond-
ing nct) to be as simple as possible. By the resulting expression we mean an LP-
expression having the same characteristic vector as the given probabilistic operator.
The realization of LP-net corresponding to SPDNF may be simplified, using elements
of the fork-junction. Realization of probabilistic operators with multiple output
can also be based on SPDNF, but the whole realization is much more complicated.
The author will pursue this problem, and the problem of minimization, in a special
paper [12]. Probabilistic operators with multiple output are connected with vectors
of LP-expressions, which we will now define.

Definition 13. Let us consider F = [F,, ..., F,] the k-tuple of LP-forms. This
k-tuple will be called the vector of LP-forms if the following condition holds:

Let {¢;,,..., 9, } be the probabilistic connectives occuring in F, let r(¢;) denote
the rank of ¢; in (¢@;,, ..., @), and let ¢, occur in F,and ¢; in F,. Then r < s implies
(@) < rley).

Note. It follows that for no r, s = 1, ..., k, r + s, there exist ¢; which occurs
in F, and in F.

Definition 14. Let us consider a vector of LP-forms F = [F,, ..., F,]; for every F;
let Qp, be as in Def. 8. We define Qr = X}, Qp, (we assume that r{¢;, Fy) < r(¢p;. F)
implies r(¢;) < r(e;)). For the pair [F, Q] we define a mapping funcg from £ x Qf
to {0, 1}¥ (where X = {0, 1}™ if F contains, at most, the variables x,, ..., x,,) in this
way: )
funeg (6, @) = (funcg, (6, 0y, ... @), ...

Suncg, (U, Wlztni+1s -0 wz{:w,), e

Junc, (6, @t srs - 07)
Let F be a vector of LP-forms, let ¢ be a system of probabilities satisfying conditions
3) and 4) from Def. 5. Then the triplet [F, @, #¢] will be called a vector of LP-

expressions.
It is possible to formulate a theorem analogical to Theorem 2.

Theorem 5. Let ¢ = [F, Qp, P¢] be a vector of LP-expressions. 1) Let F contain
only variables contained in an LP-form corresponding to int ((p,-) for some ¢; from F.
Then there exist the sets Qy, ..., @, for which: a) @y, ..., @, are disjoint, Q; =
Qe (E=1,..,2%, U = Qp; b) funcg (0, ) = & iff (w € Q, where € is a binary
form of the number ¢ — 1, and a system of probabilities 2 = {P,(.)}, on Q* =
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= {0y, ..., Q) for which: ¢) P(funcg (6, ) = &) = P,(2:) (¢ = 1,...,2%). 2) Let
Xj;» .-+ X;, be variables occuring in the vector of LP-forms F and not contained
in any form corresponding to int (¢;) for any ¢, from F. Let Qf = X, Z;, x Qp
Then there exist the sets @, ..., Q; for which: a) Q,, ..., Q,x are disjoint, 2; © Q,
U = Q¢ (£ =1,...,2%; b) funcg (0, 0) = & iff (0, @) € Q; (07 = (7;,, ..., 0;,),
and a system of propabilities 2 = {P,(.)}, on Q* = {Q,, ..., Q,} for which:
¢} P(funcg (6, 0) = &) = P,(Q).

Note. We can definc a probabilistic operator as a triplet IT = [4, #,, B], where
A4 =(ay, ..., a,) is an input alphabet, B = (b,, ..., b,) is an output alpbabet and
P4 = {P,}aca is a system of probabilities on B. As in the case of Theorem 2 we can
define |Q,{ = & and then a vector of LP-expressions determines a probabilistic
operator with the output alphabet B = (|2,], ..., |2,]).

II. PROOFS

In this part we will present proofs of Theorems 2, 3 and 5 from Part I. Also two
auxiliary theorems (6 and 7) will be formulated and proved. These theorems have
an importance of their own for the computation of the characteristic vectors of
LP-expressions and for proving assertions concerning the functional and prob-
abilistic equivalence of some actual LP-expressions. First we will prove Theorem 2.

Proof of Theorem 2: 1) Using the definition of the mapping func, we obtain
funcg (o, ®) = funcg (¢, ®) for every o, ¢’ eZ. Then we can define a mapping
funcy (from 2 to {0, 1}): funck (o) = funcy (6, @) (for some o € ). Then Q, =
= (func})™* (0) and @, = (funcy)™* (1), where (funcy)™" (&) is the inverse image
of & This mapping preserves all set operations and so @, N Q; = Pand Q, U Q, =
= Q.

Let @p4 1, .--» @, De probabilistic connectives contained in int((pj) for no other
probabilistic connective. We denote o, = (@y, ..., w1), ] = (w41,..., ,) and
define Qp = T(Qp) = {oj; 0e @), 2 =T(Q) ={o;0eQ}, Q =T(Q) =
= {oy; @€ Qo). Then funck (o}, w;) = funck (0, ;) holds for every o), wfe
e {0, 1}* (it follows from Def. 5, point ¢)). From Def. 5 we know that y; = funcp .
.int (@;, F) (0, @) for i = 1,..., n. So we have a mapping f(=y) from X x Q*to T,
where Q = {w,; e Q;} and I = {0, 1}". The value of the mapping f, can be
written as (e, @,) = (fs(6, &), ..., f,(a, ®,)). By the Def. 5 we can see that a given f;
depends on (o, @;_,) only. It follows that

f(a, wk) = (fx(ﬂ)sfz('f: 0’1), --~,fn(°'» wn‘l)) .

Now we can define

(1) P;(Ql) = ka’sﬂn‘ Zw; e Zh P(f(”’ mk); ﬂ))
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Po(Q0) = Yonreto Lo -+ Lo P(f0: 0); @) .

We must show that for a given o, P,(.) is a probability on Q*. It is clear that P,(.)
is a non negative and additive function. We try to show that P,(Q;) = 1. We have

o) P(Qr) = P(Q) =
= Lo Lo+ Lo P(f(0, 00); @) =
= Zmn sz Zwk ka' P(f(d’ wk); w) .

By the definition 5, point 4), we see that .. P((f1, .., fio fiw1s .- /n); @) does
not depend on f, 1, ..., f, and we obtain

3 (2) = Yo - T P((fi(0)s - s filo, 00— 1))s @)

From the same condition it follows that

P”(f1y~~-afk; wk—l) = ka Pl(fl) [ w».) = P'(f, "',fk—hwk—l)a

and so
(3) = Zvn Zwkfl P"(fl’ v fr-1 mk—l) = ... = Zun P(")(f(a'); w1) =1.

The uniquenes follows clearly from (1).
2) Applying Def. 5, point ¢), once more, we obtain that

funeg (0, @) = funcg (¢', )
for
0,6°€3, (0)0;) = (0} 0})

and the second assertion is a consequence of analogical considerations as the first
assertion. 0

Now we try to explain a general method of computation of characteristic vectors
of LP-expressions, i.e., a method of computation of output probabilities for some
LP-net, conditioned by its input values. The given metod has two advantages:
1) we do not need to find 2, Q,, func, and £, 2) we can find probabilities like P,
(output probabilities) for every LP-subexpression of the given LP-expression.

Method. The computation is carried out by recursion on the degree of prob-
abilistic connectives. Let & be a given LP-expression. Let [ be a given degree, let
Py, ..., P, be a sequence of subexpressions, the LP-forms of which are the maximal
subforms containing no probabilistic connectives with d(@, F) = I. Let ¢, o' be
parameters and events of probabilistic connectives with d((p, F) = I. Then if o} are
sets determining the value of funcy F; we calculate probabilities

P(s,7; 0f, ..., 0}, ©).
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1) Let us define Q; = 2 x @, and denote ¢ = (0, ..., Om)s 7= (Vs -oos a)s
&= (&, ..., &), @ = (@), ..., »,). We consider X in the form ¥ = X; X;. We intro-
duce on Q a system of probabilities

Py ={P(3,0,& 0)}1.0»
Py, 038 @) = [Ty Po (&) P(vi @),

where

. I if o,=2¢&;,
Pai(‘;i) = . ‘
0 if o;%¢;.

2) Now we proceed, as in the first step, with the calculation of probabilities on the
maximal subforins (subexpressions) containing no probabilistic connective. The
calculation must be proceeded by recursion on the length of subforms F' < F;
where F; is some maximal subform.

a) Let x, be a variable. We define Q] = Y, x € and denote & = (&, ..., &)
Now we have QF = {{1} x @, {0} x ©;} and we obtain the induced system
of probabilities

Pla,y: &1, ¢ @) = Plla, 3 01, ', o)
for of = {&,} x Q.

Analogically, we define Q) and Q) for the variables x,, ..., x,, and succesively
we obtain the system of probabilities {P(a, 7; 0, ..., 0, @)}, ,0on QF x ... x QF x
x Qp.

b) Let us consider subforms F,, ..., F,, F; < F’, corresponding spaces QF, ..., QF
and, on QF x ... x QF x Q, the system of probabilities

{P(e,y; 0F, ..., 0f, 0},
To simplify the matter we shall assume that the following step will be carried out
with F, or F, F,. '
There are two cases:
case ba) The LP-form is of the form ~F; then we substitute Q} for Qf in QF
(ie, Q] = Q) and we have
P(o,7; Q1. 0}, ..., 0f, @) = P(e,y; 9}, 0f, .., of, w).

case bb) The LP-form is of the form o,(F,, F,): Let x;,, ..., x;, be variables occuring
in F; or Fy, then Qp, ¢, = Xiuy Zj, X Qp. Let us define [o]| = 1if o} = Q} and =0
if of =0]. Then Q'={(0,,....0;) x Qp; (64, 0)e0}, (6, 0)cw} and
23t [o%) = 1} and

Lol ¥ * _ . *
Pa,y; Q' 0},.., 0, 0) = Z(m.*,mzt;‘,j«(‘w,-l,mz'nz1) Plo,7; 0f, ... 0}, @)

No other case can occure.



In this way we proceed till F, ..., F, are the maximal subforms containing no ¢,.
Then we obtain a system of probabilities on QF x ... x QF x Qp namely

P'(o, y; 0}, ..., 0}, ©) = [[i=1 P(o.. f) P(y; 0),
where 6; = (0;,, ..., ;) if variables x;,, ..., x;, occur in F; and

Plo,0f) =1 if 0, x Q < o},

= 0 in other cases.

3) To make the second part of the first step of recursion on the degree of prob-
abilistic connectives, we proceed in the calculation of probabilities on the subexpres-
sions having the form of the type ¢,(F;), where ¢, is a probabilistic connective with

d{¢;, F) = 0.
Let us consider a subexpression corresponding to subform ¢,(F;) and let us

denote 3" = (y2, ..., ¥a)> @ = (w, ..., »,). Then there is
Q' = {1} x X1_, 0, Q°={0} x XI_, &
and
Plo,y; 0}, ..., 0f, Q' o) =
= Hf:2 P(a',, w:") [P(al, Q{) P(I, v, w') + P(oy, Q?) P(O, 71, m’)] .
We proceed in this operation for all connectives of degree 0 step by step. (Note. If we
denote a variable for events Q° Q' corresponding to ¢,(F,) as o™, we obtain

P(o,7; 0}, ..., of, of*, ') = [[i=, P(o;, }) P'(ay,9; 0}*, o).

(Then for @,(F,) we obtain
Pla, v 0}, ..., 0f, 0", QY, &) = [P(ey, Q) P'(0y, 1, v"; 0F*, 1, 0") +
+ P62, Q3) P01, 0,7"; 0}*, 1, )] [[i=5 Plos, oF)

where 0" = (@3, ..., @,), ¥" = (y3, ..., 7,) etc.)

Let ¢, ..., @, be the probabilistic connectives with d(¢) = 0. We denote y' =
= (Yp41s---» ¥a)- Then we have F, ..., F, the subforms of the type ¢(Fj) and
F,y1, ..., Fgsubforms which contains no probabilistic connectives. We have Q; = Q.
(i=1,...ryand Q = X;Z, x @ (i =1,...,r). We obtain a system of prob-
abilities on X., QFf x Xi_,,, 2, namely

(]) P(a’ ’y;‘w:{! b Q):, w,) = Hf:ri—l. Pi(ali w?‘) P(a' 7l; wfv s w:’ w,) .

We can see that if # # 0 then r & 0 and then the dimension of o' is smaller than
then dimensjon of @.

4) Let us have performed the calculation of probabilities on maximal subexpres-
sions not contanting any probabilistic connective of degree k and for subexpressions
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of the form ¢,(F’), where ¢, is a probabilistic connective of degree k. Now we try
to make the (k + 2)-th step of recursion. We are trying to find the maximal sub-
expressions (probabilities on subexpressions) not containing any probabilistic
connective of degree k + 1. We proceed by recursion on the length of subforms.
(It is important to note that we are performing two kinds of recursion: the first
on the degree of probabilistic connectives and the second — for every step of the
first one — on the length of subforms.) Let us assume that we have the following
groups of subforms: a) {F,Z1L Iy <ves Fs} — subforms containing no probabilistic con-
nectives, b) {F,l FETRN F,z} — maximal subforms containing probabilistic connectives
with d(¢) < k and some subforms containing probabilistic connectives with d(¢p) = k
and in which variables not contained in some inf (¢, F) occur, ¢) {Fy, ..., F,} —
the other subforms (i.e., subforms in which no variable occurs outside inf((p);
some of these subforms can contain a probabilistic connective of degree k and need
not be in form of the type ¢ (F").

We have QF = {Q7, Q}}, where @, Q} < X; x Q; for i =r; +1,...,s and
Q, Q=@ for i=1,..,r; I =Xi_, X, il variables x,,,...,x; occur in
Fyis1s - Fo. If @y, ..., @, are connectives with d(¢) < k then we consider a system
of probabilities {P(s,7); 0}, ..., 0F, 0)},, on Xi_, QF x X{_,,, @, where
¥ = (Fesrs oo Va)s @ = (0,41, ..., @,). Let us assume that P(o, ¥'; o, ..., 0f, o) =
=0if 6, X Qp » @} = @ for some

(3) i=ry+1,...,s

(resp. Qr N} =0 forsomei=s, ... r,) and

4) Plo,y;0f,..,0f,0)=1 if 6, x Q < of

foreveryi =r, +1,...,s and of = Q. forevery i = 1,...,r,.
In the calculation, we proceed in this way:

There are two cases: .

Case a) The LP-form is of the type ~ F;. Then we substitute Q] for Q] analogically
asin 2), case ba). If F; is from the group a), is ~ F; from the same group, analogically
for other groups. With regards to

Lk * 1 * . 0
P,(G,V’,(Dla---,wi—lgiv~--,ws,w'):P("s'}"awia---,gnu-,w')

the properties (3) and (4) are preserved.
Case b) The LP-form is of the type o(F;, F )- Then we can distinguish three
subcases:
Subcase ba) F; and F; are from the group a) or b). We define
25 = {01 0); (01, 0) € 0f, (g, @) € ], af(|o}] [0]]) =},

where a;; = (0}, ..., 0;,) if the variables x;,, ..., x;, occur in F; or F;.



Subcase bb) If F; is from the group ¢), F; from a) or b), we define 35
0} = {(0;, 0); w e 0F, (0, 0) € 0}, af(|0}], |0F]) = 1} .

Subcase bc) F; and F; are both from c). We define

1 . * * * * *
Q; = {o; v e 0}, we o}, G}(|o]], |0}]) = 1} .
In all the subcases ba), bb) and bc) we obtain
, fo ok * 1 * * * *
P (0,')’ 3 OTs e W1, Qify @i g5 ey D gy Dfg s ooy O, “’) =
L% *
= Liomommetiorcslosn=-u P(E 1 05, ., of, o).

The properties (3) and (4) are then preserved.

Clearly no other subcases can occur. The properties (3) and (4) are required so that
the second assertion of Theorem 2 holds.

5) Assume that the calculation of probabilities for the maximal subexpressions
not containing any probabilistic connectives of degree k + 1 has been performed.
To complete the (k + 2)-th step of recursion, we can calculate probabilities on
subexpressions of the form ¢@(F;), where d(¢;, F) =k + 1. We define Q] =
= {@; »; = 1} and we have

Lok 1 * _
P(G', Vrttr oo Yimts Pik1s ooes Vus @ eves &y ooy O, Wpigy ony Wymgy Dpygyveny wn) =

Lk a *
Zaz(o,nP(G’; Vottrcoes Vie1s % Vi 1s ooos Yas @ o0 @5 o0y OO,

Opg o0 Dimpy 1, w.’+1s-~-~wn)-

6) Clearly, because the LP-form F is of the finite length (and so the number
of probabilistic connectives is finite), the recursion must be finite. If max d(o, F) =k
then we need k + 1 steps. Each step has a finite number of substeps. The number
of y;in P(o, v'; of, ..., o, @') is decreasing. After the k + 1 step we obtain a system
of probabilities P(a; l, ..., m:‘) If s = 1, then the calculation is finished. If s > 1,
we must proceed in our calculation in the same way as in the point 4). There is now
only one maximal subform and it is F. So we obtain P"(s, co*) again. If we compare
our calculation and the definition of the mapping funcy, we can see that Qf = Q]
and Q = Qf, where Q] and Qg are the possible values of w*. Following the calcul-
ation from the point 5) and the uniquenes of P,(€;) (from Theorem 2), we can see that

PL(Q,) = P'(0,2)) and PLQ,) = P'(a, @5) .
.

Note. The probabilities P(s, 7'; o}, ..., ®) and the condition 4) from Definition 5
make it possible to find

P(a, in) = Z((mj‘,...,m,‘),w;‘:ﬂ.’) z«)’ P(o', ;0% ‘U')



36 for every subexpression @,. 2) Theorem 2 will hold if, instead of condition 4) from

Definition 5, we give the following condition: for every

Fig. 8.

7€{0, 13", Yooy P17 00, 0)

does not depend on " (y' = (71, - W) ¥ = (Pacw1s -+ T)) -

Example 4. Let N be a labeled net from the Fig. 8. Then F(N) = ¢3(0,(x; V x;) & ~ ¢,(x3)).
There are three probabilistic connectives, then 2 = {0,1}3. The values of probabilities from

the system Z; are given in the following table:

~. @
\\\ l 000 001 010 011 100 101 110
1
000 09 0-1 0 0 0 0 0
001 01 09 [4] 0 0 0 0
010 0-09 0-01 0-81 0-09 0 0 0
011 0-01 0-09 0-09 0-81 0 0 0
100 0-09 0-01 0 0 0-81 0-09 0
101 0-01 0-09 0 0 0-09 0-81 0
110 0-09 0-01 [ 0 0 0 0-81
11 0-09 0 0 0 0 0-09

001 «

¥

coo0ooO0oC

0-09
0-81

The reader can see that this system of probabilities fulfils the condition 4) from Def. 5. Now
we will proceed in the calculation of the characteristic vectors following the previously described

method:

D Qp={01}?x {01}, m=3, n=

P(y, 058 ) = JT}-, P, (&) P(y; @) ;

2a) @F = {{o, o}, {1,0}} for i=1,2,3

and we obtain a system of probabilities given in the following matrix:

P(o, y; oF, 3, 03, 0))a yyserey =



where P is the matrix from the previous table. The usual lexicografical order has been used.
Now we proceed following the point 2b): The first maximal subform if F; = x; V x,, the second
F, = x4 we obtain system of probabilities

P'(e, y; 0f, 0}, 0) = [}y P(o;, of) P(y; ),

where the values of [ 1% ; P(o;, @) are given in the following table:

~

[

o, o}

—~ 00 ol 10 11
000 1 0 0 0
001 0 1 0 0
010 0 0 1 0
o11 0 0 0 1
100 1 0 0 0
101 0 1 0 0
110 0 0 1 0
111 0 o 0 1

Now we complete the first step of recursion following the point 3): We have two subforms F; =
= ¢;(x; V x;) and F, = g,(x;).

We obtain

in the form

Plo,y; w3, Q', o)

P(o,, 03) [P0y, Q1) P(1, v 1, &) + P(ay, Q) P(1, 7' 1, )] .

For example for ¢ = 101 is

Ploy, 03) =0 if o)

and

Po,, 0f) =0 if of

0
QZ;

0
Q,

if o} = Q)

if of =0l

and then P"(a, y"; wT*, ') have the values given in the following table:

T ol e
, e 000 001 010 011 100 101 110 111
y T
00 009 0-01 0 0 0-81 0-09 0 0
01 0-01 0-09 4] 0 009 0-81 ] 0
10 0-09 0-01 0 0 0 0 0-81 0-09
11 0-01 0-09 0 0 0 0 0-09 0-81
In the next step we obtain (for ¢3(x3)) the values of P'(e, 7'; oF, 0¥, ©) (for @ = 101):
e ¥, w;, ’
, I 000 001 010 o011 100 101 110 111
14 T
(¥3] 0 0-09 0-01 0 0 0 0 0-81 0-09
1 0-01 0-09 0 0 0 0 0-09 0-81
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Now we must proceed in our calculation for the maximal subform contained in ¢5. This subform
is @1(x; V x3) & ~g,(x3) = F; & ~F,. For ~F, we obtain values of P'(s,7’; wT, w;, )
by permutation of columns in (2): 000 010, 001 — 011, 100— 110, 101 — 111.

Now for F| & ~F, we obtain

T~ ot o |

. T 00 o1 10 1
4 ‘\;\\ SR

0 09 01 0 0

1 0t 09 0 0

and according to_point 5) we obtain
Po= P(6,0;0,1) + P(a, 1; 1, 1) = 0,1 .
To prove Theorem 3 from Part 1 we must formulate and prove two assertions.

Note. Let Fi, ..., F, are subforms of some LP-form F (& = [F, Qp, #;]). Let
F = G(F,, ..., F;). By substitution x,,, for F, we obtain LP-form G(X,+, - - » Xm+s)-
Let G(Xp4s» -+ Xm+i) CONtain probabilistic connectives ¢;,, ..., @;, . Let variables
X1, eem X occur in B IF {j4, o dioe} = {1, ..,n} — {Ji ..o} then we can
denote " = (w;,, ..., 0}, _,,), analog. ¥, o = (w;,, ..., w,,,), analog. 7".

Now we can define a matrix

P = (pu.C)a,C >
where

Pag = Yo Pla,v; Q8. .., QF, o).

Clearly G(Xps15 ---» Xmer) determines a LP-expression [G, Qq, 2], where Q; =
= X', Q;, and 2; = {P(y'; &)}; pg is the characteristic vector of this LP-ex-
pression.

"

Theorem 6. Let & = [F, Q, #,] be a LP-expression, let F = G(F,,..., F}).
Let P(y; o) = PX(y"; o") Py(y'; ) for every y € {0, 1}". Then p; = P. pg.

Proof. It is true that
Pla, i O, . O, ) = P(o3 05,0, 05) P )
where P%(g; .) was obtained by recursion from P2(y"; ). With given values of &
we compute P({; 4) from P'(y’; ') following the previously described method, i.e.:
1) If the LP-subform is of the type a;(F,, F) then
P¥(0; 21, 99, ... Q) P(Y; @) =
= Y tercom=n (6 Q1L ., Q) P ) =
= Yoo P03 Q8 o Q) Ties vareran-1 PV ) PL(E) PE(E) s



where P7(&) = 1if {; = &, = 0 in other cases, analogically Pf,(¢,) and 39

Yiertammigsen =1 P, @) PL(E1) PE(&5)
corresponds to the first induction step for the computation of Pg((, Qg).

2) If the LP-subform is of the type ~F, then
Po; @, Q% ..., OF) PY(y; o) =
= Yo P(05 Q8 Q) PI(y5 0) =
= Yo P(6: 9%, . @) Ligriei-0 P 0) (1 = PE(&))

and again ¥ ¢, ¢, =0y P'(y'; @) (1 — P,(£,)) corresponds to the first step of recursion
for Pg(g, Q).

3) For a subform of the type ¢;(F,), the assertion is evident.

Thus the probability (following the method of computation) can be expressed
as follows

P(o; Q) = ¥, P¥(0; Y, ..., QF) P(L, Q) - O

The above theorem is important for the computation of the characteristic vectors
in special cases and enables us to prove Theorem 7.

Note. To formulate the following theorem, we must explain some useful notions.
For the following considerations let ¢ = [F, Qp, P be a LP-expression, in which
F ~ G(Fy, ..., F,), where F,, ..., F, are subforms in which the variables xy, ..., X,
oceur. Let G(X,4 1, .., Xppsy) be @ LP-form, and let [G, Qg, 2] be the same expres-
sion as in the above theorem.

1) We shall consider a LP-form G’ in which variables X4 1> ..., Xpsg OCCUT.
2) Let n; + 1 be the number of occurences of the i-th variable in G’. Let us consider
the subexpressions (their subforms)

Fiis oo Frnps oo Fypr o Fon
containing different probabilistic connectives, for which:

. * .
Ple,v; 0}, ..., 0f, o) if
Lok * % * * .
Po,y; 07, .., 0f, @f 1.0y W @) =00} = 0f; = ... =0}, for i=1..,k,

0 in other cases

(thus subexpressions corresponding to Fi,..., F;, are functionally equivalent
to subexpression corresponding to F;). Then we denote F' the LP-form obtained
from G’ by substitution F; into the first occurence of x,; F;; into the second
occurence of x,,, ;

3) Then F' and ' = {P'(s,7'; .)} determine a LP-expression. We denote it &".

and so on.
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Theorem 7. Let @ and &’ be the LP-expressions described in the above note. If
1) [G, Q6, Z5] =, 1[G, Q, #¢] and 2a) the condition (1) from Theorem 6 holds
for [G, Qg, P¢] in @ and for [G', Qg., Pg-] in @ or 2b) G and G’ do not contain
any probabilistic connective, then ¢ =, ¢".

If the condition 2b) holds, then moreover, @ =, &' with respect to the system
of the probabilities on Q*! x Q*2 induced by the system {P'(s; 0}, ..., wg,)}-

Proof. Let us denote { = ({y,..., ) €40, 1}, &' =l Cio Linsooor Chn) €
€ {0, 1}¥*%; ¢ corresponds to values of variables X, 41, ... Xmess ¢ cOrresponds
to values of variables x,,_;, ..., Xpig X 1s - - - Xgn, Of the LP-form G” which is obtained
from G’ in such a way that every time a new variable is substituted for the second
and further occurence of the variable x,,,;, i = 1, ..., k. In the matrix

P = (Pog)ag = (Pos Q8 s Qo

are whole columns corresponding to ¢’, in which for some i and some j (j =1,..,n)
is £; # {;;, are equal to 0. We complete the vector pg- to pg = P({’, Q¢.), which
is the characteristic vector of G”.

The elements corresponding to (' in which {; ={(; = ... ={,, i=1,..,k
are equal to p, from pg and then
pr = P'p; = Ppg. = Pps = pr.
2) Let L-funcg and L-funcg. be the usual evaluating functions of logical expres-
SIONS G(Xpmi g5 +vvs Xppa) AN G (Xps 1y s Xk X115 - o5 Xime)-
We have
1 * £3
Q; = UL—funcc(lwl‘] ..... Jow*=i @1 N e N Wy
2
Q5 = UL funce ..., lw*k"kn—vi‘“’\k N0 o,
and thus x
- 0! . % *
P(a; Q) = ZL—fquw,q ..... Jonr)y=i Plo; o}, ..., 0F),
C02Y _ . *
P(a; 03) = ZL—!unCct(lm.‘l,‘..,Im‘,‘,.k])=j Po; 0, ..., 0, -
If we define
P'¥(s; Q}, 2) = P'(0; 2} 0 Q)
then
P(; 01, Q3) =
= v . ¥ *
ZL~Iuncc(Im|‘| ,,,,, [mk‘])ziZL—funcur(Im,‘l ,,,,, ]m‘k,,kl)=jp(dr [P wknk) =

= Lo oy
ZL—funchw,.],_A_,,wk.|)=,< i funcarlore] P(o; of, ..., wg) =

=0, P(e: Q}) - e



Note. 1) Now we can show in what sense the assertions of propositional calculus
are preserved. For example let ¢, &, be two LP-expressions, let G ~ y; & y, and
G, > ~(~y, v ~y,). From the propositional calculus it is known that ps, = pg,
and by Theorem 6 we sce that ¢, =, @,

(&, = [G‘(Fl, F,), Qp, X Qp,, Pp, X :7/",,1] s
P, = [GZ(FI, F,), Qp, X Qp,, Pr, % :?Fz]).
In the same way for G, >~ y, = y,and G, >~ ~y, v y,itis &, =, &,.
2) Let us consider two LP-expressions
Py = [~o(x). Q. 2., P, = [o(~x). 2, 2,],
let P} = P§, Py = P}, then &, =, &, (in particular for Py = | — P{and 2, = 2,).

Proof. We can denote P(0; 29) = p,, P*0; Q%) = py, P(1; Q) = p, and
P*(1; Q}) = p}, and we obtain

» )_( Pos 1—po)<l>_< Po )

~e(x) — = 5

’ I T AN 1= p
(o)) 1))
pw(~x)_ . = N .
1,0 Pi L= p, L—p

3) Certain nets with probabilistic elements were considered by other authors
(e.g. [6] by V. L Levin) for the purposes of reliability theory. These nets are usual
logical nets with unreliable elements ~, v, &. These elements work with errors
of the following two kinds:

error: correct incorrect  probability:
output: output:
first kind {1 — 0) 1 0 P2
second kind (0 - 1) 0 1 P

We shall show that these elements can be replaced by standart logical elements
together with our probabilistic elements:

a) For unreliable disjunction x, v, x, the vector (p,, L — p;, | — p5, 1 — p,)
15 the characteristic vector. If we have a connective ¢ with the characteristic vector
(P;, 1 — p,) then @(x, v x,) has the same characteristic vector as x; V , X,:

\ / Py \
Py - L= p,
L —p, I —p,

, 0

Pp, =

coo =

1
1
1 1 —p;

41
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b) For unreliable conjunction, if ¢ is a probabilistic connective with the charac-
teristic vector (py, 1 —~ p,) then for ¢(x; & x,) is

Lo
_ 1,0 Py _ P
PP‘P_ 1,0 (1_112)“ Py
0, |

and so o(x; & x,) =, x; &, x,.

c) By the same method we can see, that if ~, is an unreliable negation and if ¢
is a probabilistic connective with the characteristic vector (py, 1 — p,), then
P(x) =, ~,x

Now we prove Theorem 3.

The construction of the equivalent expression is performed by induction in this
way:

]) We transform, in a usual way, every maximal subform which contains no
probabilistic connective to a logically equivalent disjunctive normal form F; (see [3])
and substitute F} instead of F; into F. The obtained form will be denoted F°.

2) For every subform of the type ¢,(F;), where ¢, is of degree 0, we substitute
again @(F;) into F° (i.e., we do not make any change).

3) Assume that the transformation has been done for all interiors of probabilistic
connectives up to degree n (we denote the corresponding form as F*). So the interior
of every ¢; having degree n + 1 has the form G(Fy, ..., F,), where Fy, ..., F, are
either variables or forms of the type ¢ (F}) where d(¢;) < n, and G is a L-expression.
We transform G(yy, ..., ;) to a disjunctive normal form G'(y,, ..., y,)- Let us
consider the groups of functionally equivalent connectives

@ = ((01, P11 -0y fPln,)s

@y = ((Pz, Pr1s -0 (Pznz),

(for the functional equivalence of connectives cf. assumption 2) from Lemma 2
or the note before Theorem 7). We proceed now according to Theorem 7 and we
substitute functionally equivalent subexpressions into the first and others occurences
of a variable y; in G': if we need a subexpression F;; functionally equivalent to F;,
we substitute the connectives from the same group in place of the given probabilistic
connectives in F; (i.c., if there is somewhere in F; a connective ¢, then some con-
nective @, ;, will be in F)).

In accordance with the second assertion of Theorem 7, we obtain a LP-expression
functionally equivalent to the original one.



4) Let n, be the greatest degree of a probabilistic connective in F. If F™ is of the
type @(F') the procedure is finished. If it is not in this form we must repeat the point
3) once more. O

The proof of Theorem 5 is clearly analogical to the proof of Theorem 2.

(Received December 6, 1971.)
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