Kybernetika

Jindfich Spal
Algebraic approach of the root-loci method

Kybernetika, Vol. 6 (1970), No. 5, (363)--381

Persistent URL: http://dml.cz/dmlcz/125753

Terms of use:

© Institute of Information Theory and Automation AS CR, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz


http://dml.cz/dmlcz/125753
http://project.dml.cz

Algebraic Approach of the Root-Loci Method

JINDRICH SPAL

The correlation of the variations of coefficients and of the induced changes of root values in
algebraic equations are studied. The results are aimed to the synthesis of linear feedback systems.

I. INTRODUCTION

The root-locus method, introduced by Evans [1; 2] and applied and developped
by other authors (compare [3, 4, 5] and others) is a powerful tool in the synthesis
of linear control circuits. Nevertheless its application remains relatively limited.

It seems to be two main reasons for it:

1. In its present form, the root-locus theory is based mainly on geometrical
considerations, whereas the modern control theory prefers algebraic methods, espe-
cially those allowing numerical realization by iterative procedures, suitable for the
solution on digital computers

2. The method remains limited to the root-loci derived from the alteration of
a single parameter, influencing the coefficients of the characteristic equation. There-
fore, it is not immediately applicable for the synthesis of linear control circuits with
a more complex structure of feedback.

Further, an attempt is made to overcome these shortcomings. The solution is
based on algebraic properties of the characteristic equation and allows the examination
of the root trajectories for a linear transfer differential equation even under more

hcomplex variations of the parameters.

II. SYNTHESIS OF LINEAR FEEDBACK CONTROL CIRCUITS

Let us formulate, from this point of view, the problem of the synthesis of a PID
feedback for the control of a linear system.
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Let us assume, the system to be described by a linear differential equation with
constant coefficients of the form

) k ;0 ax . v(1) =k§0b,, (),

u(f) being the input signal, v(f) the output signal, both expressed as functions of the
time variable ¢.

Let us further introduce a feedback, the effect of which is defined by the integral
setting r;, the proportional setting r, and the derivative setting r,.

The transfer differential equation of the system with feedback control has the form:

(2 . a0 + Y brg . v* ) + oy 0 O + rL 0 ®() =
k=0

k=0
m
=Y by w0
k=0

The problem of the synthesis consists in the determination of the operational
settings r;, 7, 1y, 50 as to fulfil the requirements of the dynamics of the feedback
controlled sysiem. From the equation (2), it may be seen that any of the setting coef-
ficients varies the ensemble of (m + 1) coefficients on the left-hand side.

The corresponding characteristic equation of the initial differential equation (1)

3 i’ak =0

is altered by the introduction of the feedback to the form

n+1

“@ Yai.pf=0
k=0
with the coefficients:
(5) ay = bo. 1y,
ai =ay+by .1, +by.r,,
al =a; +by. 7 +by.r,+bo.ry,

*
Qi1 =+ by ri+ by ry + by 1g,

* =
Apyy = Gy .

The synthesis, i.e. the choice of the operational setting of the feedback, is usually
done with respect to the dominant roots of the characteristic equation, most exposed



to the right-hand side of the complex plane of the roots. The setting must be performed
in such a way that the dominant roots attain a position ensuring the desired character
of the transient process in the system.

HI. CHANGES OF ROOTS INDUCED BY COEFFICIENT VARIATIONS

Thus, the basic problem of the root-locus method is to find out the connection
between the variations of the coefficients and between the changes of the roots in
an algebraic equation with real coefficients of the form:

(6) et =0.

The examination should be performed in such a way, as to enable the use of suit-
able iterative proceedings, without the necessity of repeated solution of the algebraic
equation with altered coefficients.

The alteration Ac,, of any arbitrary coefficient c,, is connected with the variation
Ap; of any selected root p; by the relation

n
(7) k;)ck . (Pi + AI’.‘)’c + Acy, - (Pi + AP.‘)M =0

whence

n

- z Cy - (Pi + Api)k
k=0

(Pi + Al’i)m ’

m

(8) . Ac, =

As the coefficients of the equation must be real, the increase Ac,, must be real, too.
The relation (8) is valid for any value of the increase Ap;.

IV. COMPLEX ROOTS

The relation (8) is applicable without difficulty in the domain of real roots. It
allows to find the necessary alteration Ac,, corresponding to the desired variation
of a root Ap;, chosen in advance.

The situation changes if the root is a complex one. Choosingin this case an arbitrary,
real or complex, increase Ap;, we get from (8) an increase Ac,, which is in general
complex, too. Thus, the altered equation will not fulfil any more the requirement
of real values of the coefficients.

To fulfil the requirement of reality of the coefficients in the altered equation, the
increase of the root, Ap;, must be chosen in a quite definite way. To find out this
characteristic variation of the root, corresponding to the real value of the increase
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Ac,, let us examine the local properties of the relation
(9) Ac,, = gmi(Api) .
Considering the left-hand side of the equation (6) as a function of two variables

k
Ck - Pi

M=

(10) fmi(Cm’ pi) =

k

il

o

we may bind both variables with a functional relation

(11) p: = Fmi(crrl)

in such a way that during a variation of c,, the initial equation (6) remains valid.
By differentiating (10) we get

(12) S S ket al = 0
' k=1
whence
(13) Qi = T /I
de,,

Zk-ck-P’E"
k=1

The argument of the generally complex expression on the right-hand side of (13)
indicates the direction of the infinitesimal variation of the complex root, or in other
words the direction of the root trajectory, corresponding to the real value of the
increase Ac,,.

For m = 0, i.e. for the alteration of the absolute term of the equation, we get
dp; -1
(14) doi = P T
Yk.oc. it
k=1

The alterations of other coefficients may be calculated from g4; by the use of the
relation

(15) dmi = qoi - P¥ (15)
or by the application of the recurrent formula
(16) dm+1,i = dmi - Pi -

V. GENERALIZED SETTING PARAMETERS

The proceeding indicated above may be generalized in the way that the root of the
equation may be regarded as a function of several or all coefficients of the equation.



Thus, we get instead of (10):
(17) fi(c(h €15 €25 -0 Cps Pi) = Zock . P,;-
P
The alteration of singular coefficients yields then partial derivatives

(18) ‘;Pi . —Di .
 Skog.
K=1

A simultaneous alteration of several or all coefficients results in the total increase
of the corresponding root

(19) dp; = Y i - Ay = qo: ). D7 - A s
m=0 m=0
op, —1
(193) qo; = P =
0cg

Z k.c.pi™!
=1

If the coefficients are represented as given functions of several independent setting
PArameters Sy, Sy, ..., Sp, ..oy Sk

(20) Cm = Cm(sls 5250005 Sk)
we obtain:

. op; & de, - dc
21 == mi - - = qoi .
@ 0s; m;)q 0s; o mZ::op ds;

with go; given by (19a).
The resulting variation of the root, caused by the alteration of the setting parameter

$; 18

(22 dp; = ds; Y

The formulae indicated above are important from the practical poinf of view.
The formula (18) indicates for any root its variation caused by the alteration of any
singular coefficient of the characteristic equation. The generalized formula (21)
gives the variation of any root, resulting from a simultaneous alteration of a complex
of coefficients. The same situation has been met above in formulating the problem of
the synthesis of a feedback control of a linear system.

It is important to emphasize that the trajectory of any root is examined separately,
without- taking into account the behaviour of other roots of the equation, or even
without the knowledge of the values of these roots.

367



368

VI. MULTIPLE ROOTS. GENERAL CONSIDERATIONS

The foregoing considerations assumed the fulfilment of the condition
(23) Yk.oc.pt+0
k=1

equivalent to the assumption, the root, the trajectory of which is examined, to be
simple.

Let us now pay attention to the case of multiple roots. For this purpose we trans-
form the equation (7) to the form

@4 Se z (k) A (Ap) =

K=o h
< by (KN e -
= 2 (AP.’) Z (% pi = "(Pi + APi) CAcy, .
h=0 k=0 h

The change in the upper bound, performed in the summation by h, is based on the
fact that

(:).= 0 forall h>k.

For polynomials of the form (10)

(25) Ya (IZ) pioh = L),

h dp

Thus, if p; is a I-fold root of the equation
(26) f(p) =k§_:0ck =0
both sides in (25) are equal to zero for any
0<h<i-1

but are different from zero for all

I<h

IA

n.

A

Keeping this in mind, we may arrange (25) to the form

. e i
@) S @p)'s ( );f: b e ey (pi + A"
r=1 =0 h



VII. NON-ZERO MULTIPLE ROOTS

Let us suppose the root to be a multiple one with p; # 0. Neglecting increases

of higher orders on both sides of (27) we get

! —p
(28) lim %’ﬁl -— ":
dem—0 Ac, ch( )p’ﬁ"
K=o \I

1 indicating the multiplicity of the root.
The increase Ac,, is here of the same order as (Ap,-)’.
From (28) results

_m 1/1
(29) lim Ap; = lim [—— Pt . Ac,\ .
Aem=0 Aem=0 | o [ A
P pi
k=0 1 /

The expression on the right-hand side represents generally a complex value. To

find its argument let us put:

30) @; = arg R 4 S

The value of Ac,, being real there is
(31) argAc,, =0 for ¢, >0,
argAc,, =n for ¢, <0.

From (29), (30), (31) there results

(32) arg Ap; = % +

kg

-] =

for h=0,1,2,...,(2I = 1),
the even values of h corresponding to positive values of Ac,,
the odd values of h corresponding to negativevalues of Ac,,.

A I-fold root is the starting point of 21! trajectories, forming in the proximity of the
root a regular star. Indicating on the trajectories the direction of positive increase
of Ac,, and marking the trajectories successively by numbers in such a way that the
trajectory with the argument ¢/l be marked by 0, we find that the odd trajectories

aim towards the multiple root, the even ones run away from the root.
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VIII. ZERO ROOTS

The case of a I-food zero root requires special examination. The corresponding
algebraic equation has coefficients

¢ =0
for all
0<k=s1-1
Thus, the relation (7) has the form
(33) Yoo (Ap) + Ac, . (Ap)" =0.
K=1
Going over to the limit we get
t=m
(34) g Y I |
dem=0  Ac, [
valid for all m < I, whence
’ _ /(L ~m)
(35) lim Ap; = lim (wécl'f> .
4em=9 Acm—0 ¢

A I-fold zero root is the starting point of 2(I — m) trajectories, forming again in its
proximity a regular star, one half of the trajectories aiming again towards the root,
the other half running away from the root. The remaining m zero roots do not under-
go any change with the alteration of Ac,,, keeping identically the zero value.

The alteration of the coefficients ¢, with

n=zkz=l
does not influence the value of the zero roots. This fact is evident directly from the
equation (33).
IX. VARIABILITY OF SIMPLE REAL ROOTS

Let us suppose the coefficient of the highest order
a, >0

and let us examine the variations of the simple real roots, if there are any. Let us
put again

(36) floy =Y a. .
k=0
It is evident that

(37) ‘ limf(p) = + .



At first let us pay attention to the dominant simple real root. From topological
considerations we find for this roots

(38) : (%@>> 0.

dp

According to (18) there is

(39) sign gﬂ = sign {—pT).

m

In consequence we may formulate for the dominant simple real root the following
rules:

1. If the root is positive it decreases with the increase of any coefficient

2. If it is negative it decreases with the increase of any coefficient with zero or even
order number, but it increases with the increase of any coefficient with an odd order
number.

3. If p; = 0, it decreases with the increase of ¢, and remains unchanged under the
alteration of any other coefficient of the equation.

Going over to the next lower simple real root we find again from topological con-
siderations that the sign of the derivative has changed. From this fact we may con-
clude that neighbouring simple real roots are always moving in opposite directions
under the alteration of any coefficient of the equation.

X. SENSITIVITY OF ROOTS VARIATIONS

The relations (15) and (16) make it possible to estimate the sensitivity of the varia-
tions of real and complex roots depending on the alteration of the coefficients. Let
us define the sensitivity as the absolute values [g,..|-

Then following relations are valid:

1. for lpil >1

(40) l‘Zmﬂ..i‘ > |qmi\ ,
2. for |p| < 1

(41) Iqm+h,i‘ < |qmi| >
3. for lp,-] =1

(42) lqm+h,il = |qkmi| ’

for any positive values of m, h.
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Thus for |p;| = 1 the roots are equally sensitive to the alterations of any coeffi-
cient of the equation. For lp_«l > 1, i.e. for roots situated far from the origin, altera-
tions of coefficients of higher order show a more expressed influence on the root
changes as compared with coefficients of lower order. For [p,.] < 1, on the contrary,
the coefficients of lower order show a more expressed influence on the root variations
as compared with coefficients of higher orders.

XI. EXAMPLES

In the following the application of the preceeding theoretical considerations is illustrated on
several examples.

Example 1
For the equation .
3
3
(14) fp)=Ye.p'=0
k=0
with the coefficients
c3=1, c;=4, ¢, =9, ¢ =10

the variations of the root

pi=-1+2

were examined for the alterations of singular coefficients ¢g, ¢;, ¢;.

ap i
a:

Fig. 1.

=



Table 1.

‘f Py 401
Co | — 7 I
Re | Im i Re | Im
100 | —10000 2-0000 +0-1000 ‘ +0-0500
01 | —09901 +2:0050 00987 | 0-0504
102 | —09803 2:0101 00972 | 0-0509
103 09707 2:0152 0-0956 0-0514
104 ‘ —0-9612 2:0204 0-0941 0-0518
105 ! — 09519 2:0256 00927 | 0-0521
106 | —09427 2:0308 00912 | 0:0524
107 —0-9336 20361 00898 | 0-0527
10-8 ‘ — 09247 20414 0-0885 | 0-0529
10-9 | 09160 2:0467 00871 | 0-0531
110 | —09073 2:0520 00858 | 0-0533
111 —0-8988 20573 00845 | 0-0534
112 ‘ —0-8905 2:0627 00833 | 0-0535
113 —0-8822 2-0680 0-0821 0-0536
14 | —o08741 2-0734 0-0809 0-0536
s | —08660 2-0787 0-0798 0-0536
16 | —08581 20841 0078 | 0-0536
17 | —08503 2:0895 0-0776 0-0536
118 ' —0-8426 20948 0-0765 0-0536
19 | —08351 2-1002 0-0754 0-0536
120 | —0-8276 21055 0-0744 0-0535

The examination was achieved on a digital computer by application of (13) with the choice
of iterative steps Ac,, = 0.02. Intermediate results were fixed after every fifth step.

The results are given in Tables I, II, Il and are shown graphically in Fig. 1. The results were
not corrected during computation. In spite of it the relative error of the final roots after 200
iterative steps is of the order of 1074,

Example 2
The examination of root variations was done for the equation
(24) 9() =p-f(p) =0

with f(p) defined by (1A) and with the same values of coefficients, so that

4
(2B) 9(p) = Lk - p*
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Table 1L
[ Py ’ 211
¢y It
‘ Re | Im ‘ Re Im
90 —10000 |  --2:0000 —0-2000 401500
91 —1-0199 ‘ 20152 —0-1990 401547
92 —1-0397 20310 —0-1969 01604
93 —1:0592 ‘ 20474 —0-1945 01657
94 —1-0784 20642 —o1913 | 01710
95 —10972 | 20816 01880 01760
96 —1-1158 20994 —0-1843 01807
97 —11339 | 21178 —0-1802 01850
98 —1-1516 21365 —0:1759 01892
L 99 ~—1-1689 21556 —01714 01927
I 100 —1-1857 21750 —0-1667 01961
101 —12020 | 21947 —01620 01989
102 —1:2179 22148 —01569 02013
103 —1-2333 22350 01522 02035
104 —1-2482 22554 —o1472 02052
105 —1-2626 22760 —~0-1424 02068
106 —12765 | 22967 ~01378 | 02078
L 107 —12900 | 2:3175 —01331 ‘ 0-2085
| 108 —13030 | 23383 —o1285 | 02091
109 —13155 | 23592 01240 | 02095
110 —13216 | 23802 —0-1198 ‘ 02007
with

The same root as in Example 1 was chosen.

The examination was done for the alterations of the coefficient cﬁ again on a digital computer
by application of (13) and with iterative steps Acg == 0.02. The results are given in Tab. IV.

It was not necessary to calculate the variations of the roots, produced by alterations of other
coefficients, as may be seen from the following consideration.

By differentiation of

(20) 9(p) = p.f(p)
we get
(2D) g'(p) =1(p) + ./ ().

But for the roots of the equation (1A)

f(Pt)=0,

Designating by gy, the variation of the root of equation (1A), defined by (13), and by r,, the



Table II1.

“ Py 921
€2
Re Im Re Im

40 —1:0000 +2:0000 —0-1000 —0-5500
41 —1-0084 1:9449 00651 —0:5479
42 —1:0129 1-8898 ~0:0247 —0:5445
43 | —10132 1-8354 +0-0177 —0-5338

| 44 | —1o09s 1-7823 +0-0546 —0-5185

|

|

| 45 | —10020 1-7312 +0-0898 —0-4959
46 | —09912 1°6827 +0-1201 —0-4686
7 —o9m 1-6372 +0-1445 —0:4380
48 | —09620 1-5949 +0-1624 ~0:4061
49 09449 15558 +0:1745 —03741
50| ~09269 1:5199 +0-1816 | —0:3438
51 | —09084 1-4869 +01848 | —03156
52 | —08897 1-4567 +0-1848 —0-2901
53 —~0-8712 1-4289 +01825 —0:2670
54 [ —0-8530 14032 +0-1790 — 02465
55 08352 | 1:3795 +0-1744 —0-2283
56 | —08180 1-3576 +0-1692 —02122
57 | —o08013 1-3371 +0-1634 —0-1979
58 | —07851 13180 +01577 —01852
59 ’ —0-7696 1-3001 +0-1520 —~01737
60 f —0-7546 1-2832 +o1464 | —01636

| \

variation of the root of equation (2A), we find out from (14), (15), (16) and (2D)

1 1

(ZE)' Fo; = ————— = —{o;

¢ i -f,(Pi) p;
and further
(ZF) ryi = Pi Toi = qo;i -
Generally
(ZG) Pmi = Gm—-1,i

Example 3

Analysis and synthesis of feedback for the system with the characteristic equation

6N S0 =T 7t =0

375
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Table IV.

- Py o1
Co 5 T T
Re | Im ‘ Re Im

0-0 —1-0000 +2-0000 0-0000 —0-0500
0-1 —1-0000 19950 0-6000 —0-0504
02 ~—1-0000 1-9899 0-0000 —0-0510
0-3 —1-0000 1:9848 0-0000 —0-0515
04 —1-0000 | 1-9796 0-0000 —0-0521
65 ~—1-0000 | 1-9743 0-0000 —0-0527
06 —1-0000 1-9690 0-0000 —0-0533
0-7 —1-0000 19637 0-0000 —0-0539

.08 —1-0000 1:9582 0-0000 —0-0546
09 ~1-0000 .| 1:9527 0-0000 —0:0552
10 —1-0000 1:9472 0-0000 —0-0559 ‘
11 —1-0000 1-9416 0-0000 —0-0566 ‘
12 —1-0000 | 1:9359 0-0000 —0-0573
13 —1-0000 ! 1:9301 0-0000 —0-0581
14 ‘ —1-0000 19242 0-0000 —0-0588
15 | —1-0000 1-9183 0-0000 —0-0596 |
1-6 ‘ —1-0000 1-9123 0-0000 —0-0604
17 ! —1-0000 1-9062 0-0000 —0-0613
18 | —1-0000 1-9000 0-0000 —0:0622
19 | —1:0000 1-8937 0-0000 —0-0631

|
20 [ —1-0000 18874 0-0000 —0:0640
with
co=1, es=4, ¢, =6, c3=4, c,=1,

i.e. with a quadruple real root.
The Hurwitz criterion gives for this case the stability condition [compare [6])

(3B) o & & <c2 _a C:>-
s ¢

As far as we are concerned only with the alteration of ¢ in the realization of feedback setting,
the admissible value of ¢, is limited by '
=5,

For simultaneous setting of cg, ¢;, i.e. for PD feedback control, we get the admissible limit
values from

(30) éﬁzi,(ﬁ_&q)_ﬁ;a:o'

2
de;, ¢3 c3



whence
=9, ¢ =12.

The setting range of ¢y, given by (3C), may be too wide for most practical purposes. By limiting
the range of ¢, to, let us say

4

A
A

v, <6
we get

¢y £ 675.

With respect of the quality of transients we are limited to about one half of this value, which
gives for practical application
co £35.

This value is too low with respect to the static deviation. It is therefore advisible to use a feed-
back including the integral action, i.e. of the type PI or PID.

Fig. 2.

Fig. 3.

By the introduction of the integral action, the degree ot the characteristic equation is raised
by a unit, so that the characteristic equation will get the form:

5
(3D) 9(p) =k20ak =0 ‘
with

Cp = Gy -

Let us consider ay, a; (PI control) or ay, a;, a, (PID control) as setting parameters.
Let us examine the root trajectories in the proximity of the quadruple root

pi=—1, i=1234,

connected with the alteration of the absolute term. The situation for the equation (3A) is shown
in Fig. 2, for the equation (3D) in Fig. 3. In both cases the star has the same form, but with
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opposite sense of the movement, In equation (D3), a double root

pa = —02
is formed for

aq = 008192
by coincidence of the former roots p; = —1 and ps = 0.

According to the theoretical considerations, the root trajectories show a high sensitivity in the
proximity of the quadruple root. To make sure of it, the connection of the variation of the term ¢,
in (3A) and of 4, in (3D) with the variation of the roots was calculated.

Changing the roots to

pi=—-1+Ap, p,=~-1—-Ap, pya=—-1%1i.Ap

we find-that only the coefficients ¢, a; undergo variations. Values of these coefficients and of
derivatives of the functions f(p), g(p} are given in Tab. V.

Table V.
, P I
Py Co3 ay Acy; Aa, [y g'(py)
_ - _
|
01 09999 —0-0001 +0-004 —0-0036
02 09984 —0-0016 +0:032 —0-0256 i
03 0-9919 —0-:0081 +0-108 —0-0756 ’
04 09744 —0-0256 +0-256 —0-1536 \

As may be seen from Fig. 3, the initial root p5 = 0 remains the dominant one up to the forma-
tion of the double root p; = —0-2. Afterwards, the pair of the complex conjugated roots, arising
from this double root, represents again the dominant pair of roots.

For the absolute term a,, reaching the value of

Qo = 0-56853
the stability limit with the purely imaginary roots

P12 = +i.041421
is attained.

There exists a pair of dominant roots in (3D) formed by the alteration of the absolute term
alone, fulfilling the condition

(3E) Rep; = FImp,

They are
P12 = —0-16580 + i. 0-16580

corresponding to the value of

ag = 020891 .




Let us choose this pair of complex conjugated roots as the starting point of the establishment
of the feedback setting, We get for this pair of roots following characteristic values:

g'(p1.,) = —0-19568 + i.048262,

Pz Loma1st 4. 177950,
da,

iz _o41467 7 1. 017542,
da,

OP12 - 1009784 T i.0:03966. ’
da,

The setting diagram is shown in Fig. 4. It allows to find out the necessary alterations of the

coefficients for any selected direction of an infinitesimal movement of the root. For example
to obtain the movement of the root in such a direction as to keep up the validity of the relation

0,51

/

o
B

\I’Zu

+~0.5i

Fig. 4.
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(3E), it is necessary to alter the coefficients of the equation so as to fulfil the relation

Aa
=0 = 0236
a,
leaving a, unvaried.
Fig. 4 illustrates very clearly the relation of root sensitivity with respect to the variations of
singular coefficients of the equation. As the absolute value of the chosen dominant roots

|py.2| = 023448

is substantially smaller than unit, the considerations of Chap. X indicate an inferior sensitivity
of the position of the roots to the variations of higher coefficients of the equation.
Actually, the absolute values

P12 _ 190955,
. | Gag

izl _ 4507,

da,

19219 _ 10557

[ 9ay |

show, for the case given, the sensitivity of the root position to the variations of the coefficient a,,
to be 4:27-times greater than the sensitivity to variations of the coefficient @,, and 18-3-times
greater than the sensitivity to variations of the coefficient a,. Therefore, the PI type of feedback
appears to be the most appropriate choice for achieving the setting the dominating roots con-
sidered in this example.

It should be emphasized that this fact is a local property of the root, dependent on its distance
from the origin. The fact of the matter is considerably changed when considering other roots of the
same equation, situated farther from the origin. For these roots, the influence of proportional,
and especially of derivative feedback would be much more marked, as a result of the sensitivity
properties described in Chap. X, N

The diagram of Fig. 4 is rigidly valid only in the proximity of the root under consideration.
For wider variations of the root position, an iterative procedure is to be used, taking into account
the variations of the root as well as those of the coefficients along the trajectory of the root.

(Received July 30, 1969.)
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VYTAH

Metoda kotenovych trajektorii z algebraického hlediska

JINDRICH SpAL

Clanek se zabyva metodou kofenovych trajektorii z algebraického hlediska.
Formuluje problém syntézy zpétné vazby pro linedrni systémy jako variaci souéini-
telt charakteristické rovnice. Rozebird souvislost zmén kotfent: algebraické rovnice
se zmé&nami jejich koeficientt a poddvd tak algebraickou verzi vySetfovédni kofeno-
vych trajektorii. Zvld$tni pozornost je vénovdna soudasné proménlivosti komplexa
soudinitelt pro pfipad, kdy kazdy souéinitel komplexu je danou funkei ladictho para-
metru. VySetfuji se pfipady trajektorii v mist& vicendsobnych kofentt pro nulové
i nenulové kofeny. Uvddgji se n&které souvislosti vzdjemnych vztaht pohybu kofent.
Vieobecné zdsady jsou zndzornény na pfikladech.

Prof. Ing. Jindfich Spal, CSc., Vysokd skola technickd, Svermova 3a, Kosice.
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