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K Y B E R N E T I K A - V O L U M E 19 (1983), N U M B E R 5 

ON E X T R E M U M - S E A R C H I N G APPROXIMATE 
PROBABILISTIC ALGORITHMS 

IVAN KRAMOSIL 

In this paper a simple probabilistic algorithm is proposed the aim of which is to find an appro­
ximation for the maximum value of a recursive function defined on a finite set. It is shown that 
if this function is "regular" or "continuous" in a sense, then its maximum value can be relatively 
approximated within a computational complexity which is substantially smaller than that of 
corresponding deterministic procedures. The basic idea of the proposed algorithm is very close 
to that of the well-known Monte-Carlo methods. 

1. THE LIMITS OF POWERS OF CLASSICAL PROBABILISTIC 
ALGORITHMS 

Instead of abstract theoretical considerations let us start this paper with a simple 
example the generality of which seems to be sufficient in order to cover a large class 
of computational and decision problems. L e t / be a function defined on a finite set 
with n elements and taking values in the set Jf = {0, 1,2, ...} of naturals, / is 
supposed to be recursive and its computational complexity is supposed to be uni­
formly majorized by a constant; this constant may be taken as the unit without 
a loss of generality. The nature of the set on which/is defined is irrelevant, so we may 
suppose that Dom(f) = {l, 2, ..., n) = Jf(n) <=. Jf. 

Now, we are looking for the maximal value max (/, n) = max {/(/) : / ^ n} 
taken b y / on its domain. Clearly, computational complexity of this problem, i.e. 
computational complexity of the function max (/, n) is majorized by n and, in 
general, no better upper bound can be given, as the necessity to compute and compare 
all the values / ( / ) , / :g n, cannot be avoided. For the sake of simplicity we do not 
take into consideration, here or in what follows, the computational complexity 
connected with the necessity to remember the temporary maximum value, to compare 
it with the new value and to actualize the temporary maximum if necessary. 

Hence, the computational complexity of max (/, n) is a linear function of the 
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input size supposing that this size is defined by the cardinality of set on which / 
is defined. If the input size is measured by the number of bits, necessary to inscribe 
the input argument of/, then the input size of the function max (/, n) is majorized 
by the value Inf(log2 (n) + l), where Int(a) denotes the integer part of a real a 
Then the computational complexity of the function max (/, n) will be an exponential 
function of the input size, as n = 2log2". The same situation may occur, when se­
arching for the maximum of a function defined on the system of all subsets of a finite 
set when the cardinality of this set serves as the input size. For example, let us mention 
the problem to find one or all combination(s) of truth-values which verifies (verify) 
or falsifies (falsify) given propositional formula the complexity of which is measured 
by the number of different propositional indeterminates occuring in this formula. 
As a rule, the exponential dependence between the input size and computational 
complexity is considered not as the acceptable one from the computer implementa­
tion point in view. This is why we shall study the possibilities how to reduce the 
computational complexity of max (/, n) below n even if we were forced to a resigna­
tion to the precision or reliability of the results obtained by a modified algorithm. 
Let a, P be two functions defined on Jf — {0} and taking it into itself, we write 
a 6 0($), if 0 < lim (a(n)) (/3(n))_1 < 00, we write a e o(p), if lim (a(n)) (yS(n))~x = 0. 

Hence, we would like to find such an "approximate" algorithm for max (/, n), the 
computational complexity of which belongs to o(n) and, particularly, to 0(log2 n) ero(n). 

What about the possibilities of probabilistic algorithms (p.a.) in this domain? 
They are rather limited when considering p.a. in their classical sense, i.e. measuring 
the quality of a p.a. by its probability of error, hence, by its probability to obtain no 
matter which other result but the correct one. Le tZ 1 ; X2,... be independent random 
variables defined on a probability space <[Q, Jf', P>, taking Q into Jf(n), and such 
that 

(1) P({Z ;(cW)=i}) = n - 1 , (- = l , 2 , . . . , 7 = l , 2 , . . . , n . 

(We write P({X(co) e B}) for P({co :coeQ, X(co) e B}), in general, B c Jf) Given 
N e Jf, we sample XY(co), X2(co),..., XN(co) and compute 

(2) M(f, n, N, co) = max {/(X,(to)) : i < N} , max 0 = 0 . 

If there is just one n0 <. n such that f(n0) = max (/, n), then we arrive at the error 
iff no of Xt(co), i < N, equals n0, so the probability of error is (1 — n~1)N, as it is 
nothing else than 

(3) P({M(f, n, N, co) + max (/, n)}). 
But 
(4) l im(l - n-iy = e~1, e = 2-718..., 

hence, given an s > 0, 

(5) lim (1 - n - 1 )" -" 1 )" == (lim (1 - .r1)")"*^ = (e"1)-,nE = e l n £ = e . 
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So the number of samples necessary in order to keep the probability of error below 
e increases linearly with the computational complexity in the deterministic case and 
the ratio is even greater than one when e < e"1 . Hence, the randomization does not 
reduce, in this case, the computational complexity and we have to look for another 
solution. 

2. APPROXIMATE PROBABILISTIC ALGORITHMS 

The probability of error admits an uncertainty as far as the correectness of the 
result is considered, but does not admit the acceptability of an unprecise or approxim­
ate result. In the terms of loss functions we can say that the contemporary probabi­
listic algorithms use the zero-one loss function, i.e., the loss suffered when taking 
the result of the probabilistic algorithm for the desired value, equals zero if p.a. 
gives the desired value and equals one otherwise, not taking into account which the 
difference between the desired and the obtained value may be. Then the expected 
loss is nothing else than the probability of error given the argument; the p.a. is 
usually taken as acceptable, if this probability of error may be kept under an a priori 
given threshold value uniformly for all values of the argument. Now, this demand 
will be weakened in the sense that we want only that the obtained value differ from 
the desired one relatively little with a high probability. 

Definition 1. Let a be a function which takes Jf into Jf. Probabilistic algorithm 
(in the most general sense) which computes g is a pair (g, 3>}, where SC = <Ylt Y2,.. .>' 
is a sequence of random variables defined on the probability space <fl, Sf, P> and 
taking their values in Jf. Probability of error connected with <g, ,f > and corres­
ponding to n e Jf will be denoted by pe(g, 3C, n) and defined as 

(6) pe(g,!Z,n) = P({Yn(w)*g(n)}), 

if g(n) is defined. The pair <a, S"> is called e-classical p.a. which computes g, if 
pe(g, 9C, n) S £ for all n e Dom(g). The pair <a, %") is called (e, S)-approximate p.a. 
(a.p.a.) wich computes g, if for all n e Dom(g), 

(?) P({\Yn(co)(g(nT*-l\^5})Se, 

setting 0/0 = 1, ajO = +oo for a =f= 0. Clearly, each e-classical p.a. is also an (e, 0)-
a.p.a. which computes the same function. • 

Definition 2. Let <a, #"> be a p.a., let n e Dom(g). The risk r(g, 9S, n) connected 
with {g, &} and corresponding to neJ/'" is defined by 

(8) r(g, X, n) = £P(|Y„(co) [>(,,))-* - l|) = f jY„(c) (g(n))" - l | P(dco) . 
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w HP such a p.a., that r(g, X, n) S e for all n e Dom(g). 
Theorem 1. Let (g, &} b e SU 

, / /c-\ — a.p.a. 
Then <#, 3Cy is also a <v

/fi' \'b) v 

Proof. Dznote 

(9) A„ = {co : co e Q, | 1 » ^ (n) ) " 1 - l | ^ V£) • 

If P(A„) > Ve, then 

(10) r(g, 3C, n) = f |r.(a,) (*(»)) " - -| <-P £ f |Y„(<») (a(n))-"1 - l | dP £ 

Z(s/£).P(A„)>e 

and it is a contradiction, so P(A„) g ^ e and the assertion holds. • 

Theorem 2. Let (g, Xs) be such an <e, <5> - a.p.a., that 0 < Y„(co) (g(n))~l < 
< M < oo holds for" all n e Dom(g), co e Q. Then r(g, SC,n) < Me + <5 for all 
n e Dom(g). 

Proof. Denote 

(11) A„(<5) = {co : co e Q, \Y„(co) (a(n))"1 - l | = 5} , 

so P(A„(<5)) < e and, for all n e Dom(g), 

(12) r ( a , S r , n ) = f |Y,(co) (g(n))^| dP + 
J/i„(3) 

+ f |Y,(co)(a(n))- l - l\dP<M. P(A„(8)) + <5(1 - P(A„(<5))) < 
J «-/!„(*) 

< Me + <5 . • 

It would be clearly possible to strengthen the definition of a.p.a. replacing (7) 
by the demand r(g, SC, n) < e for all n e Dom(g). Theorems 1 and 2 prove this modi­
fication not to be substantial when the ratio Y„(a>) : g(n) is bounded; in the case 
of searching for the maximum value of a function the ratio M(j, n, AT, co) : max (f, n) 
is always majorized by 1. The transformation from e to <N/e, v/<s> or from <e, <5> to 
Me + <5, as far as the values of parameters are concerned, is not substantial, as we 
always study, whsther there exists, for all e < 0, <5 < 0, a.p.a. or an a.p.a. with the 
corresponding risk, which solves the given problem within computational complexity 
substantially reduced (e.g., to a constant, linear or polynomial complexity) when 
compared with corresponding deterministic algorithms, if any. 

3. APPROXIMATION OF EXTREMAL VALUES 

Even when we make our demands more weakened and if we use an appropriate 
a.p.a. when searching for max (f, n), it is not possible, in general, to reduce the 
computational complexity of this a.p.a. (i.e., keeping in mind the simplifying assump-
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.tions mentioned in the beginning of this paper, the size of the necessary random 
sample) in such a way that it would belong to o(n). Let Dom(f) = Jf(n) = {1 ,2 , . . . 
•••>«} jO) = 0, j < n, j * j 0 < n, f(j0) = 1. So max (/, n) = 1, but M(f, n, TV, .), 
i.e. Y„ in the sense of Definition 1, equals 0 if j 0 is not sampled by a random variable 
Xh i <: N, which satisfies (l). Hence, for 8 < 1, 

(13) P({|M(/, n, N, co) (max (/, B ) ) " 1 - l | _ 5)} = P({M(/, n, N, co) = 0}) = 

= P({j0ejr-(){Xi((o)}}) = (l-n-r, 
i= 1 

and it is the same expression as in the case of classical p.a. with the same negative 
consequences as far as the necessary sperd of increasing of N is concerned. The follow­
ing theorem shows simple sufficient conditions under which there exists a.p.a. which 
computes max (/, n) and such that N(n) e o(n). 

Definitions. Le t / : Jr(n) -*Jf be a function, let n„ be a permutation of < 1,2, ...,«>, 
denote by n„f the function taking Jf(n) into Jf which is defined, for all i _ n. by 
(n„f)(i) = f(n„i). Let 7i° be the permutation of {1, 2 , . . . , n], for which (n°J)(i) < 
= (nnf)(j)£°T aH i _ J _ n> 'f there are more such permutations, i.e., if there are 
i,j <; n, i =|= j , such that / ( / ) = f(j), then n® is fixed arbitrarily among those 
permutations. Set / = n°f. 

Theorem 3. Let #" = {ft,f2, •••} be a sequence of recursive functions such that 
each /„ takes Jf(n) into Jf. Let there exist positive KUK2,K = 1, c, such that, 
for all n eJf 

(14) Kin<f„(n), 

(15) /„(«) - f„(x) < K2(n - x)K for all xejf(n), (n - x) < en . 

Then, for all £ > 0, 5 > 0, the function JV(d, e):Jf -* Jf 

(16) N(3,e)(n) = / n r ^ X J 1 ^ " 1 In (2c""1)] n 1 " 1 ^ + co«5/, 

which belongs to o(n), possesses the property that <max (/„, n), {M(f„, n, N(8, e) (fi), 
.)}> is an <e, 3} — a.p.a. which computes (estimates) the maximum value of /„ on 

Jf(n). 

Proof. Let 8 > 0, e > 0 be fixed, write / instead of / , . As /(«) = f„(n) = 
= max {/„(() : i g n], (15) yields f(n) - f(n - j) = K2j

K, if; = CB, hence, f(n) -
= j(n — j) g K2m

K for all j g ??i ^ en. So, for m g en 

(17) 1 - / ( „ - ^ ( / ( n ) ) " 1 < K.m^n))-1 < K.m^K.n)'1 , 

using (14). Set 

(18) m(n) = lnt((K1Klibn)XIK) < (K.K^Sn)1'11, . 

then mK^K1K2'dn, so K^n^K^)"1 < 5, hence, 1 - f(n - j) (f(n))~1 < 5. 
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If K < 1, then m(n)eo(n), so there exists nx = nt(c)eJf such that n — m(n) _ 
_ n(l - c) for n _ nt. Let X < 1, n < n., denote by ^(n , m) the set {n, n — 1, . . . 
..., n — m} of naturals. The relation 

(19) |l - M(f, n, N, co) ( j(n)) - 1 | < <5 

is assured, for K < 1 and n _ n., if at least one among the random variables 
Xt, X2,..., satisfying (l), takes its value in °U(n, m(n)). The probability of the opposite 
event is, due to the supposed statistical independence and equiprobable distribution, 
given by 

(20) P({co : _ ef i , ]l - M(f, n, N, co) ( j(n)) - 1 | _ <5}) = 

= (1 - (card %(n, m(n))) n " 1 ) " _ (1 - 1 + m(n)) n~lf _ 

_ (1 - (K3(of^(n)) n-*Y = (1 - K3(b) n ^ ^ f , 

where_K3(5) = (-K"1KJ 1<5)1/*. If K= 1 or n < n1; then the same probability is majorized 
by either 0, if °ll(n, m(n)) = Jf(n), or (l — c)N, if m(n) < en. So there exists cteJf 
such that the probability of non-validity of (19) is smaller thane for n < n1;ifiV _ c., 
namely c1 _ (log2 (l — c))"1 log2 e will do. The following assertion holds: 

(21) lim ((1 - K3(8) n-a-W)"<-1/K)(K3TO)-M„(2£-i) _ 

= (lim (1 - K3(5) n-a-i/K))«'-"^(K3(a))-'i„(2e-i) _ 

_ / e - A ' 3 W \ ( K 3 W ) - l l n ( 2 E - » ) = e - l n 2 e - ' __ e ln( £ /2) _ . Ij 

as (1 - K3(5) n-V-wy-1'* is a subsequence of (1 - K^x'^f with the same 
limit value e-*3(,5). Followingly, there exists n2eJf such that 

(22) P({co : CO e Q, |l - M(j, n, iVx(n), ca) (/(n))"1] < 5}) < e 

holds, for all n _ n2, with Nx(n) being defined by 

(23) N,(n) = N.(5, e) (n) = 7n<(K3(5)) -1 In 2e - 1) n1"1!*) + 1 , 

clearly Nt(n)eo(n), as l imiV^nJn" 1 = const (^f (n)Yl = 0. There exists c2eJf 

such that (22) holds for n _ n2, if iVx(n) is replaced by N^n) + c2, clearly, 

(24) c2 = /n((max {(log2 e) (log2 (1 - m(n) n - 1 ) ) " 1 : n < n2}) + 1 

will do. Hence, N(n) =Nx(n) + max (cx, c2) assures, that <max (/, n), {M(f,n, 
N(n), .)}> is an <e, ^> - a.p.a. for max (/, n) on Jf(n). However, the same rests 
valid if j — / , is replaced by the original function j„, as the proved property of our 
a.p.a. depends only on the number of argument values, for which the corresponding 
function value approximates max (j„, n) in the sense of the adopted criterion. This 
number is card %(n, m(n)) = m(n) + 1 for all nj, particularly for j„ itself. Hence, 
(22) holds forj„ as well with N(n) defined by (16) and with const = max (c1; c2). • 
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The complexity reduction following when N(n)e 0(ny-llK) c o(n) is not suffi­
cient, in general to avoid the exponential complexity if the input size is measured 
by m = log2 n. Or, then n = 2m n1'11* = (2m)1'1/K = cm, 1 < c < 2, and this is, 
again, an exponential function of m. We would like to make the conditions stronger 
to assure the validity of the assertion of Theorem 3 even for an appropriate N(n) e 
e 0(log2 n), e.g., for N(n) = ct log n + c2. 

Theorem 4. Let the notations and conditions of Theorrm 3 hold with (15) replaced 

by 

(25) f„(n) - f„(x) < K2(n - x) logj (n - x) , xe Jf(n), (n - x) < en , 

where log* x = max (log2 x, 1). Then, for all e > 0, 5 > 0, the function N(S, e) : 
Jf ->Jf, 

(26) N(5, e) (n) - Int^K,1 In (2s"1) d'1] log2 n + const, 

which belongs to 0(log2 n), satisfies the assertion of Theorem 3. 

Proof. The proof is similar to that of Theorem 3, it is why we introduce here just 
some of its key points. (26) yields that 1 - f(n - j) (j(«))_1 ^ K2m log* mK^n"1. 
Take 

(27) m(n) = /nf(n(log* n)'1 &KXK2
 x), 

then, for n > 2, 

K2 m(n) log2 m(n)K^n"1 ^ 

S S + <5(log2 n)-1 (log^SK^1) ~ log2 log2 n) < 6 

for n < 2iKlKl'\ but this may be always assured taking K2 large enough. Hence, 

(28) |1 - M(f, n, N, co) (JT(«))-1f < 5 

holds, if at least one value among X^co),..., XN(co) does not differ from n by more 
than m(n). The probability that (28) does not holds is majorized by 

(1 -(m(n) + 1) n-'f < (l - (SK^1)^, B)--)0--»-1)--1-M .- ,-»" f 

and the limit value of the last expression can be proved to be e/2 using the same 
argumentation as in the proof of Theorem 3. Hence, the probability that (28) does 
not hold is smaller than s for n large enough; enlarging N(n) by an appropriate 
additive constant we extend the validity of the last statement to all n 6 Jf. Hence, 
there exists ceJf such that, for 

(29) N(n) = 7nf[ln(2£-x) S " % £ - x ] log2 n + c e 0(log2 n) , 

<max (f, n), {M(f, n, N(n), .)}> is an a.p.a. which estimates max (f, n). • 
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4. CONCLUSIVE REMARKS 

Let us close this paper by four remarks which comment the preceding considera­
tions and results. 

(1) Theorem 3 holds also in the case K = 1. Then it is sufficient that N(n)e 
eO(n1~1/K) = 0(1), i.e., that M(n) be a large enough constant. Considerations 
analogous to those in the proofs of Theorems 3 and 4 give 

(30) N = N(e, 3) £ (log2 s) (log2 (1 - gK.XJ 0 ) " 1 . 

Verbally said, a finite number of samples suffice, for all n and independently of n, 
to discover with the precision of 100<5 %, and probability 1 - e, which is the maximum 
value of the function/for arguments smaller than n and under the condition that the 
variation o f / l i e s in an angle limited by two lines (intersecting themselves in the 
beginning of coordinates, but this is not substantial). 

(2) When considering some other ways how the values taken by a random variable 
Y„ may approximate the desired value g(n), we may try to replace the demand 
\Y„(co) (g(n))~x —l\£8,0£d£l, by the demand | Y„(a>) - g(n)\ g 5, 0 g 5 < oo 
Under such a more strict condition imposed to a.p.a. Theorems 3 and 4 can be proved 
to fail. E.g., even if (15) holds, we must take m(n) = m(5, e) independently of n 
and the corresponding probability of error would be (1 - m(S, e) n~l)N, hence, 
N would increase as a linear function of n in order to assure the possibility to majorize 
this probability by an e > 0. This is why a weaker and practically justifiable demand 
of a relatively good approximation of g(n), by Y„(co) has been applied throughout 
this paper. 

(3) In this paper we always suppose, that the limitations to the precision of the 
obtained results (given by o) and to their reliability (given by e) must hold uniformly 
for all possible values of arguments. Instead of this assumption we may suppose 
to have at our disposal an a priori probability distribution on the set of argument 
values (e.g., the equiprobable one in the finite case) and to classify the quality of p.a. 
or a.p.a. with respect to the expected probability of error or expected risk under 
this a priori distribution. The weak point of this approach consists in the necessity 
to justify why such and such a priori distribution gas been used, by reasons staying 
outside the mathematical theory itself. This situation is difficult namely if we cannot 
apply the equiprobable distribution and the Laplace principle according to which 
the absence of any reason supporting other than equiprobable distribution may be 
taken as a sufficient reason for this equiprobable distribution. This is a more general 
problem of the so called Bayes statistics, in [3] this approach is studied in more 
details as far as p.a. which test propositional formulas are concerned. 

(4) The similar forms of Theorems 3 and 4 lead to the idea that they both are 
particular cases of a more general assertion proclaiming some dependences between 
lower and upper bound for the variation of the function / , and the number N(n) 
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of samples. Searching for such an assertion will be a matter of further investigation, 
however, we believe that even the particular assertions presented here are of certain 
illustrative importance as far as the possibilities and limits of powers of p.a. are 
concerned. 

The approach to the problem of approximations of extremal values as presented 
here is far from being the only possible, however, it is qualitatively different from 
the other ones. The deterministic methods are based, as a rule, on a global knowledge 
of the investigated function (e.g., when the gradient method is to be used, we suppose 
that the function in question has no local extremum, that it is differentiable, etc.) 
In the approach presented here, on the other hand, the only needed is that an algo­
rithm produces the value of the function given the value of its argument. From the 
other side, the stochastic approximation methods suppose also the investigated 
function itself to be of stochastic character and they aim to estimate the extremum 
of its expected value. The results are of asymptotic character and are conditioned 
by rather complicated assumptions of probabilistic nature. Moreover, it is rather 
difficult to define and estimate, in this case, the computational complexity of the 
statistical decision procedure in a way reasonable enough and comparable with the 
complexity measures used in this paper. Hence, the approach presented here seems 
to be an acceptable outcome in the situation when our possibilities to handle with 
the tested function is limited to the algorithm computing the corresponding values 
and the results presented above demonstrate our possibilities and limits of our 
powers in such a situation. 

In spite of the self-explanatory character of this paper we refer below the mono-
graphy [1] which may serve as an informal introduction into algorithms and their 
complexities from the implementational point of view; [2] presents the basic ideas 
of probabilistic algorithms. 

(Received November 26, 1982.) 
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