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KYBERNETIKA CISLO 4, ROCNIK 2/1966

The Synchronization Problem of Information
Theory

1GOR VAIDA

In the paper a formulation of the synchronization problem is given. There are shown some
simple characteristic properties of synchronizing block encoders. Further the paper treats with
a rate of convergence of a probability of error associated with synchronizing block encoders
provided the channel is memoryless and source independent.

1. INTRODUCTION

Some authors working in the algebraic coding theory studied the synchronization problem
which rises up under using of block encoding procedures. Namely, if a-tuples of consecutive
letters of a message are encoded to the p-tuples of letters of the input alphabet of a noiseless
channel, then the receiver obtaining a sequence of consecutive letters of output alphabet of the
channel cannot a priori split up this sequence into p-tuples corresponding to the p-tuples sent
over the channel and, consequently, he cannot use the appropriate decoding procedure. If we
assume that the communication channel under consideration is the unique communication channel
between the sender and the receiver, the encoders satisfying some synchronization requirements
must be used. The questions rising up in this case may be sumarized as the synchronization pro-
blem of information theory.

The synchronization problem provided the channel is a noisy one was first given and studied
by J. Nedoma, [2]. It follows from [2] that in this case the algebraic methods must be replaced
by suitable statistical methods. The aim of this paper is to define the synchronisation problem
of information theory under general assumptions ¢oncerning encoding and decoding procedures
as well as sources and channels. Most attention will be paid to the definition of a synchronizing
encoder that is the basic concept concerning the problem. Particular attention will be devoted
to certain properties of the synchronizing encoders which may be useful for a further study of
the problem as well as for applications.

2. NOTATION AND PRELIMINARY DISCUSSION

Throughout the paper the set of all integers will be denoted by I and the set of all
positive integers by I'*.



For every non-empty set X and for every n e I"™ we shall define the sets X" and X by
u +o
(2.0 X"=®X;,, ¥= ® X;, X;=X forall iel,
i=1 i=—w
where ® is the symbol for the Cartesian product. Elements of the sets X and X"
will be denoted by x and x respectively, i.e. ¥ denotes an infinite-dimensional vector
with the i-th coordinate (z); € X, and x denotes and n-dimensional vector with the
coordinates (x)y, (X)s, ..., (x), belonging to X. In the entire paper we shall use the
notation:

(2.2) (®)f = (@) ®)iv1r .., (x);) forevery xeX, i, jel, i<j.
If i,jel, i £ j, then the o-algebra generated by the class of all sets of the form
{z:xeX, (¥)f=x}, xex/ 7!
will be denoted by 24, the g-algebra generated by the class
v
igj
will be denoted by 2, and the g-algebra gencrated by the class {{x} : x € X"} will be
denoted by 2".

For every non-empty set X and for every j € I we shall define the coordinate-shift
transformation TV of the set ¥ into itself by

(2:3) (T9%); = (2);4; forevery iel, xeX.

it is casy to see that TV is a measurable transformation of the measurable space
(%, Z) onto itself, for every j el

An information source (or, briefly, a source) is described by specifying the following
two elements:

(I) A non-empty alphabet C. The measurable space (€, %) will be called the space
of messages.
(i) A probability measure y on €.

A communication channel (or, briefly, a channel) is described by specifying the fol-
lowing two elements:

(I) Inputalphabet A4 % @ and output alphabet B + 0 of the channel. The measurable
spaces (‘JI, o), (ﬂi,é’?) will be called spaces of input and output signals of the
channel.

(1) A function v = v(E | a) defined for all ae % and E € # which is «/-measurable
for evey fixed E € # and is a probability measure on # for every fixed a e 2L.

Since in the sequel the sets A, B, C will be assumed to be fixed, 2 source will be
denoted briefly by p and a channel by v.
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By saying:“cncoder @” we shall understand the following two elements:

(I) A probability space (9, %, 7).
(I1) A measurable transformation @ of the space (€ ® 9,4 ® ¥) into (U, )
such that for every ¢ € € the function @(¢,9) of y € 9 is ¥-measurable.

The intuitive meaning of an encoder is such that the sender (situated between the
source and the space of input signals) chooses for every realized message c€ € an
input signal a = @(¢, 1) depending on the value of the random variable y e(‘D, Y, 7).
The definition of a random encoder as it is given here is a natural generalisation of the
usual definition of an encoder.

By saying ““decoder ¥ we shall understand the following two elements:

(I) A probability space (3, Z, &).
(I1) A measurable transformation ¥ of the space (B ® 3, # ® £) into (€, %) such
that for every b & B the function ¥(b, 3) of 3 € 3 is Z-measurable.

The intuitive meaning of a decoder i is such that the receiver observing the sample
space (B, %) ot output signals takes a decision ¢’ € € by the random decision pro-
cedure . The definition of a random decoder as it is given here is a natural generalisa-
tion of the usual definition of the decoder.

By saying “(n, p)-encoder ¢” for n, pelI* we shall understand the following two
elements:

(I) A probability space (Y, %, n).
(I1) A measurable transformation ¢ of the space (C* ® Y, 4" ® ¥,,) into (47, o)
such that for every ¢ € C" the function ¢(c, y) of y € Yis % ,-measurable.

By saying “(p, n)-decoder ¥* for n, peI* we shall understand the following
two elements: .

(I) A probability space (Z, &, &).

(I1) A measurable transformation ¥ of the measurable space (B" ® Z, %" ® Z,)
into (C", ¥") such that for every b e B" the function Y/(b, z) of ze Zis Z,-measur-
able.

For every (n, p)-encoder ¢ and (p, n)-decoder y we shall define an encoder @ and
decoder ¥ by

+ o0
29 9.7 )= (Yo ¥un)s (Y, Yon)= (Y ¥un) foral iel,
i=—ow

+ o0
25 (32.8= ® (2, 2:8), (2, 2.8) = (2. 2,8 foral iel,

(26) (@l D)2t = (e (v)) forevery ce€ye®, icl,
@7 (0, T = W) G)) forevery be®, 3e3,iel.



If w(e, ¢') for ¢,¢’e € is a ¥ ® ¥-measurable non-negative real-valued function
serving as a measure of the loss caused by taking decision ¢/, whereas ¢ is the trans-
mitted message, then in case (. [ ¢) is a conditional probability measure on & corre-
sponding to the transmitted message ¢, the risk corresponding to ¢ and i may be
expressed as the average value of the loss corresponding to them, i.e. as

(28) L J Sw(c, P(6,3)) dG) dr(b | o),

for every ¢ and for every decoder .

Remark. In (2.8) there is evidently assumed that 3 € 3 and b € B are independent
random variables.

We shall say that the space of output signals is directly observable by the receiver
if, for every encoder @, the measure y(. | c) on 4 is given by

(2.9) y(E| ¢) = J ¥W(E | #(c,v)) di(y) forevery Ec#®, ceC.
2

In information theory it is customary to assume that the space of output signals is
directly observable, and the usual properties of channels such as the transmission rate,
capacity, ..., are always defined and studied under this assumption. In this case,
according to (2.8) and (2.9), the risk under the transmission of the source p through
the channel v by means of @ and y may be expressed as

(2.10) ol ) = j E j ) j (e F6,9) 420 ) (0| (9.

where y(. | .} is defined by (2.9). If we denote by 9 a class of decoders and by & a class
of encoders, we may define for every encoder @ the non-negative number

(2.11) @, D, W) = igf ol @, ¥, W)

which may be referred to as a minimum risk under the transmission of the source
through the channel v by means of the random encoding procedure @. If we put

(2.12) rm(ﬁ, 2, w) = igf ruv((f), 9, w)

then the number r,,(&, @, w) may be regarded as a minimum risk with respect to the
classes & and 9.

3. FORMULATION OF THE PROBLEM

In this section we shall study some questions connected with the transmission of
sources through channels under the assumption that the space of output signals is
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not directly observable by the receiver. Specifying the conditions of the observation
we shall see that the problem which will rise up may be regarded as a synchronization
problem.

Let rz(i), iel, be a sequence of non-negative numbers for which
(3.1) Ya()=1.

iel
Let us assume that in case when an output signal b € B is realized, the signal observed
by the receiver is T'b € 8, where i I is a random variable given by the probability
distribution 7 on I.

The intuitive motivation of this assumption may be the following one: Let us
consider the source g, the channel v, and the encoder @. Let, for every ¢ € &, the i-th
coordinate of the signal @(c,.) be sent at the time i measured by the time scale of the
sender. Let us assume that, for every such coordinate, the time necessary for the
transmission through the channel is zero and let b'e B coincides at the output of
the channel with the input coordinate (@(c,.)); for every i € I. Hence, the output signal
beB which coincides with the input signal ¢(c,.) is such that (b), = b for every
iel. Let the time scale of the receiver be shifted by the value j e I with respect to
the time scale of the sender, i.e. let the i-th time of the sender be (j + i)-th time of
the receiver, for every i €l. In this case the signal observed by the receiver is not b,
but b’ = Tb.

It is easy to see that if ¢ e € is a realized message and i is a realized value of the
random parameter i, then the conditional probability measure on the sample space
(B, #) provided @ is an encoder used for transmission is given by

(32  HE|ei)= j WTE| ¢(c,v) dif(y) forevery Eed,ce@,iel.
9

In the sequel we shall study composed decision procedures of the following form:
if b is a realized signal at the output, if  is a decoder, and it Q(b) el is a decision
concerning parameter i, then the received message ¢’ will be defined as

(3.3) ¢ = P(b,) = H(T~ED,).

We shall assume that in this case the loss corresponding to the message ¢ sent over
the channel is given by

(34) w(e, T e (8,.)),

where w is the weight function discussed in the preceding section and where s(i), i €,
is a sequence of integers with s(0) = 0 (an assumption of consistency with the preced-
ing section).

If & or 9 is a class of admissible encoders or decoders respectively and if the con-
ditions of observation are as above, then the number r,(&, &, w) cannot serve as



a measure of the risk under the transmission of the source y through the channel v

and instead of it the number 7,(&, &, w) must be used,

(3.5) Fyy = inf inf 7,(&, ¥, w)

0ER E.,%
where # denotes the class of all #-measurable functions ¢ : B - I and where
FM(@, x/?u, w) is the average risk corresponding to the encoder @, decoder ¥, and
decision function g, i.e.

(3.5) (P g w) = iEZ/E(!’) f GLLw(c, T*¢ (b, 3)) d&(3) d5i(b | <, i) du(c)
(cf. (33)).

The preblem of a relation between 7,,(&, &, w) and r,(&, 2, w) can be refered to
as a synchronization problem of information theory. If we assume that the class @
contains for every i € 2 also decoders of the form T°¢~¢®N (p,) then it is easy to
see that F,(@, , w) 2 r,(@, 2, w) for every encoder @, where ,,(@, @,w) is
defined similarly to r,,($, 9, w), and consequently ,($, D, w) Z r,,(&, D, w) for
every ¢ € &. The problem arises, for which p, v, &, and 9 there is, for every 1 > 0,
an encoder ¢ € & and a class 9, of decoders of the form (3.3) such that

(3.7) Fud @ Do W) S 106, D, W) + 4.

Let us consider, for example, the following trivial case: Let for every ¢ € & there
is a decision function ¢ that is #-measurable transformation of the set B into I such
that, in case i el is a is a realized value of the random parameter, Q(b) = ifor any
observed signal b. If we define 9, for any class 2 by

Dy = {‘;2”1759} >
then it is easy to see that
Fﬂv((ﬁ! 96’ W) = f,w(@ D’ W)
and consequently that (3.7) is satisfied for every 4 and @ € &.
The remainder of this section will be devoted to a general definition of synchroniz-

ing encoder. Let us assume that the weight function w is bounded from above, i.e.
let

(3.8) we, ) S w, forevery ¢, ¢'e@,

and let ¢ be any #-measurable decision function: B — I. In order to evaluate, for
given g e &, €, and w, the risk 7,,(¢, ¥,, w), we shall define a set {r,}, iel, of
signed measures on % by

(39) =(E) = [w(e, TPU(T'D, 3)) — w(c, §i(b, 3))] 4&(3) dy(b | ¢) du(c)
CJEJB
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for every E € 8, i e I. Let us define, for every i, i’ € I, the function w(i, i’ | @, 1, w) =
= 0 or w, according as 7,_;{E) is or is not non-positive on #. Next we shall prove
that the following inequality holds:

(3.10) Fol @5 W W) < 1(B, 1, wY + 10, 7, W),

where

(3.11) o, m, W) = z;n(i)j Ww(i, o(0) | @, W, w) dyT (D).
3 %

(In other words, rm,(g, 7, W) is the average risk corresponding to the decision func-
tion g, parameter space (I, n), decision space I, weight function W, and conditional
probability measures y7* on (B, 93) defined for every i €I by means of

(3.12) WE) = J WE|)du(e). Ee @,
¢
where (. | .) is defined by (2.9).)
Proof: Let g be a decision function definedas above and let

B =UE,:

i'el

E.={b:beB,ob) =i}.

It follows from the definition of W that

Yot (E) f w(i, o(0) | Y dyT ~(6) forevery iel,

Vet ®
and the desired inequality (3.10) follows from the following relations:

Fol Bs Wor W) — 7B, ¥, w) = (i) f J .[ [w(e. Ts(i~g(b)),/;(Tf—grb>b, 3) —
iel €JBJ3
— (e 90 )] 423) (6 .4u(9) = 3A() . - o(E)
1€, i'e
Denoting by & the set of all distributions = on I, it seems to be suitable to define

a synchronizing encoder in the following way:

An encoder @ is said to be synchronizing with respect to g, v, w, and 9 if, for every
Ve,
(3.13) inf sup r,(0, @, W) = 0.

eeR neP

(As, in accordance with our model, the distribution 7 cannot be assumed to be known,
the minimax condition is used here.)



But, on the other hand, we must respect also the viewpoint of real communication
systems. As the memory of real receivers is always finite, the requirement of the %~
measurability of decision functions ¢ € # in the latter definition is not sufficient.
Namely, in case the capacity of the memory is ““h € I concesutive letters of the alphabet
B”, it is to see that the receiver cannot distinguish between output signals b, b’ in
case (b)f = (b')]. That is why we shall define a synchronizing encoder as follows:

Definition 1. Let 2, = &, hel™, denotes the set of all ﬂ'{—measurable decision
functions ¢ and let y, v, w, &, and 2 be fixed. We shall say that ¢ € & is a synchroniz-
ing encoder with respect to u, v, and @ if, for every ¥ € 9,

(3.14) lim 7 (%) = 0,
e
where
(3.15) rho () = inf sup r,.(0, m, W(., .| @ J, w)), hel®.
Rn P

It is clear that the condition (3.14) is stronger than (3.13).

Now the synchronization problem may be formulated as follows (cf. (3.7) and
(3.10)): For which y, v, &, and 2 there is, for every 4 > 0, a synchronizing encoder
@ € & with respect to g, v, and 2 such that

(3.16) Pl B, D, W) S 16, D, W) + 4.
4. CONCEPT OF SYNCHRONIZING (n, p)-ENCODER

In what follows we shall rastrict ourselves to the class &,,, n, pel * of encoders @
which may be obtained from an (n, p)-encoder ¢ by (2.4) and (2.6), and to the class
9,,, of decoders ¥ which may be obtained from a (p, n)-decoder y by (2.5) and
(2.7) where, in order to keep a logical meaning of this statements, the sets Y and Z
are assumed to be for instance sets of real numbers. Moreover, since there is one-to-
one correspondence between an (n, p)-encoder ¢ and & € &,,, we shall restrict oursel-
ves further on to the study of (n, p)-encoders only. Throughout this section we shall
assume that if i = kp for some k €I, then s(i) = — kn.

In the sequel the following two cases will be discussed separately:

(ST) Both the source p and the channel v arc stationary, i.e.

(a.1) W(TE) = p(E) forevery E€%,
(4.2) WTE | Ta) = E|a) forevery Ec®, ae .
(NON-ST) The source y or the channel v is non-stationary.

Following Khinchin [1] we shall use in case (ST) the weight function w = w,,
nel*, defined as follows:

(4.3) we, ¢) =0 if (] = (
wie, ¢) =1 if (¢ = (¢
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1t is clear that w, is ¥ ® %¥-measurable and
(4~4) w,<wo=1 forevery nel'.
In case (NON-ST) we shall use the weight function w = #W,, neI*, where
(4.5) w,(¢, ¢') = lim sup Lt Zk: wT™"e, T™"¢')
k-w 2k 4+ 1=k .

for w, defined above. It is evident that W, is ¥ ® %-measurable and
(4.6) W, Swo=1 forevery nel*.

We shall put for every (n, p)-encoder ¢
*7) o 1, V) = 1y (3. Do W),

where w = w, or W, according as the condition (ST) is or is not satisfied. The number
(¢, p, v) is refered to as the average probability of the incorrect transmission of an
n-sequence (¢)i$4", i €I, associated with the (n, p)-encoder ¢.

Defining on I ® I the weight function

(4.8) w,(i, i) = <(1) for pel”

depending on whether i = i’ (mod p) or i % i’ (mod p) respectively, we shall prove
the following result:

Lemma 1. For every ¢ € &,,, % € D, 0 € R, m € P, for every channel v and source
i, and for every sequence s(i), i €I, under consideration the following inequality
holds

(4-9) I‘I‘V(Q, n, W(. ) - ’ &, '/;’ W)) = ’AMV(Q’ 7, Wp) s

where w = w, or W, according as the condition (ST) is or is not satisfied.

Proof. (I) let the condition (ST) be satisfied. To prove (4.9) it suffices to
show that, in case i = i’ + kp, kel, for every $eé&,, and ¥ €D, the equality
W(i, i’ | @, ¥, w,) = 0 holds or, in view of the definition of W, that wE) £ 0,
E e 4. To prove the latter inequality it sufficies to prove that

(4.10) f @ j E j e TH(T0.) 6) 015 | au()

< J j ) j e 56, 9) E0) 815 | )00 B3,

(cf. the equality s(kp) = —kn). The latter inequality (with the sign of equality)
immediately follows from the following property of (n, p)-encoders: J(T*b, 3) =
= T*J(b, T™*3) and from the clear fact that 1% = & (cf. (2.5)).



(II) The proof of (4.9) in case (NON-ST) can be given similarly.
According to Lemma 1 and Definition 1, we can give the following definition:
Definition 2. Let u be a source and v a channel. We shall say that an (n, p)-encoder
@ is synchronizing with respect to u and v if

4.11 limrl, =0,
uv
h—co0
where
(4.12) vk, = inf sup r, (o, @, W,) .
0eRy TeP

Formulation of the synchronisation problem: For which source u and channel v
there is, for every A > 0, a positive integer n and a synchronizing (n, n)-encoder ¢
with respect to g and v such that e(¢, p, v) < A.

Remark. 1t was shown in [2] and [7] that if u is an ergodic source with finite
alphabet C and v is a totally ergodic channel with finite alphabets 4, B, and with
finite past history, then in case the entropy rate of yu is less than the ergodic capacity
of v there is, for every 1 > 0, nyeI* such that for every n > n, there exists a syn-
chronizing (n, n)-encoder ¢ (with respect to x4 and v) with ¢(@, y, v) < A. The author
has obtained a similar result in case that p is an arbitrary source and v is a memoryless
channel, including an evaluation of the rate of convergence of r:v in (4.13) to zero (for
the obtained synchronizing encoders). A similar result was obtained also in case v
is a non-ergodic channel of a special type.

5. PROPERTIES OF SYNCHRONIZING (n, p)-ENCODERS
Theorem 1. If p is a stationary source, v a stationary channel, and ¢ an (n,p)-
encoder, then the following three conditions are equivalent:

(1) @ is a synchronizing encoder with respect to y and v.

(IT) For every A > O there is hel* and a mapping g € %, of the set B into the set
of integers {0, 1, ..., p — 1} such that

(5.1) LLV({&:@(T"&W i} | #(c.)) di() du(e) < 2 for i=0,1,..p—1.

(I) y L yT' for i = 0,1,..., p — 1, where v is defined, for the given ¢, by (2.6)
and (3.12).
Proof. The proof will be based on the following two lemmas:

Lemma 2. Let (X, %) be an arbitrary measurable space and v, 7 probability
measures on . If, for every A > 0, there is E € & such that y(E) > 1 — 4, #(E) < 4,
then y, § are mutually singular, i.e. v L 3.
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324 Proof. Forevery A(n) = (12), neI*, there is E(n) € & such that

(52) < (B > - (1),
H(E() < (12

Put

F(K) = S ),

F = n F(k).
k=1

It follows from (5.2) that y(F(k)) = 1 for all keI* and, therefore, y(F) = I. To
prove 7(F) = 0 one uses the relation F = F(k) which holds for alt ke I* and, con-
sequently, which implies the inequality

®
¥(F )§ Z F(E(m)) = (1)2)* forall kel*.
=kt
Lemma 3. [f u is a stationary source and v a stationary channel and if ¢ is an
(n, p)-encoder, then, for every i, jel, i = j(mod p), yT° = yT/, where the measure y

is defined for the given ¢ by (2.6) and (3.12).
Proof. If E € %, then

yTH(E) = J J WTE | ¢(c. v)) dii(y) dy(c)
€JY
(cf. (2.4)) and, in accordance with (4.2),
yT{(E) = j f WE| T7'(c,p)) dii(n) dp(c) forevery iel.
€JY .

If i =j (mod p), then there are kj, kyel and 1 < r < p such that i = k,p + r,
Jj = kyp + r. In view of

~
>

T3(c, v) = ¢(T*",

v)

and (2.4), it follows that

yTHE) = J j WE | T77¢(c,n)) dif(y) duT*?(c) ,

yT(E) = J J. YE| T7"(c.)) dif(y) duT>(c) ,

and it remains to use (4.1).



Next we prove that (I) = (II). By (3.11) and (4.8) we can write, for every ¢ e %,

run(os ™ w,) = 3. n(i) yT~Y({6 : o(b) % i (mod p)}) .

iel;

There is a disjoint decomposition

defined by

jelij<j=i(modp) for i=0,1,..,p—1.
Hence, by Lemma 3,

p-1 ;

(5.3) rule, T, W) =>Zon(1,-) yTi({b : o) * i}).
1t follows immediately from (5.3), (4.13), and (4.14) that if (I) holds, then there is,
for every 4 > 0, heI™ and a decision function g € %, such that
(5.4) YT (o) + i}) <4 for i=0,1,....,p—1
or, equivalently,

(5.5) ({6 :o(Th) +i}) <4 for i=0,1,..,p—1.

The desired validity of (5.1) follows from (3.12).

(I1) = (). Let 4 > 0 be arbitrary. If ¢ satisfies the inequality (5.1), then defining
a measurable set E by E = {b : g(b) = 0} one may show that y(E) > 1 — A, §(E) < 4
for

1 .
j=—— ¥ o7

=
I

-

i

(cf. the equality
p—1 . p—1 K
YT =3 T
i=1 i=1

implied by Lemma 3). To prove that (III) holds it remains to apply Lemma 2 and use
the fact that yT', i = 1,2,..., p — 1, is absolutely continuous with respect to .
(ITD) = (). In case that (III) holds it is easily verified that there is a set Ee #
such that y(E) = 1 and that T'E U TVE = @for i,j = 0, 1,...,p — 1; i = j. Hence,
denoting by E, a cylinder set in 4, determined in coordinates 1,2, ..., h i.e.

E=U {b:(b)} = b}

for at least one F < B", we obtain the following result: There exist, for i = 0, 1, ...

325



326

... p — 1, sequences {Ej};°, of cylinder sets in 2 such that

(5.6) limE} = T'E,

b o

limy(T™/E}) =0 forall j=0,1,...,p—1, j*i,

h-=o0

and, consequently, for every 1 > 0 there exists 4 € I such that

(5.7 T HE) > Alp
yTHE})y < afp forall i,j=0,1,...,p—1; i>]j.

If we define a decision function ¢ to be equal 0 for b e EJ, to be equal j = 1,2, ...
..y p — 2 for

. j-] .
beE, — UE,,
Ei=0
and to be equal p — 1 for

-2
be®B ~ UE < EI"t,
i=0
then g € #,. Moreover, in view of (5.3) and Lemma 3, it follows that r}, < 1 (cf.
(4.12)). Since A may be taken arbitrarily small, the desired statement holds.

Theorem 2. If u is a stationary source and v a stationary channel and if ¢ is
a synchronizing (n, p)-encoder with respect to y and v, then there is a decision func-
tion g € R such that r (o, n, W,) = 0 for all ne 2.

Proof. Theorem 2 is an immediate consequence of Theorem 1 (cf. property (III)
of synchronizing encoders).

6. APPLICATION OF SOME DECISION THEORY RESULTS

It is easy to see that the rate of convergence of rj, in (3.14) to zero is an important
economical characteristics of every synchronizing (n, p)-encoder. That is why we
shall give some results concerning it. Our results are based on the ideas and results
concerning data reduction problems of statistical decision theory, latterly developed
by A. Perez 3], [5].

Let ¢ be an (n, p)-encoder, u a source, v a channel, and =z a distribution on I.
Denote by £ the g-algebra of all subsets of the set I and by P, the probability measure
defined on J ® # by
(6.1) P(E) =Y a(iyT({b:(i,b)e E}) for every EcS @ &,

iel
where y is the probability measure on 4, defined for the given ¢ by (2.6) and (3.12).
Denote by P, the probability measure defined on & ® % by

(6.2) P,=n®P,,



where P, is the marginal probability measure of the measure P,, defined on 4, i.e.

(6.3) P,(E) = gn(i)yT"(E) for every Ee &,

(6.4) P(E) =Y n(i)a(j) yT'({b : (j, ) € E}) forevery Ec S Q@ B.
i,jel

It follows from (6.1) and (6.4) that P, < P, and, consequently, the Radon - Nikodym

density function

exists and is # ® #-measurable. Denoting by P, P* the restrictions of the measures

P, and P_ on the o-algebra .# = A}, the Radon - Nikodym density function
_dpt
o,

fh

also exists and is # @ %}-measurable. Hence we may define informations (cf. [4]):
J(P,) = j log f+(i, b) dP,(i, b) ,
o®
A= [ togriB)ape ),
res

where, according to Theorem 6 of [4], J(P,) = J(PL) for every hel*.

In case that ¢ is a synchronizing (n, p)-encoder with respect to ¢ and v, the Bayes
risk of the decision problem with parameter measure space (I, B A 7:), sample space
(B, @), decision space I, probability measure P, on .4 ® 4%, and weight function W,
is zero (cf. (3.13), (4.11)). Hence, according to Theorem 4.3 of 3] Corollary 4.1 of [5].

(6.5) inf (0, m, W,) < 2(J(P,) — J(PY) forevery ne#?,

eeRy
where the number on the left side is the Bayes risk of the decision problem differing
from the above decision problem only in what concerns the sample space: in the
place of (B, &) we have now (B, 7).

Defining
(6.6) #(i) = 1fp forevery i=01,...,p~1,
#i)=0 for i¢{0,1,..,p—1}
we obtain: '

Theorem 3. For every stationary source p, stationary channel v, and for every
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synchronizing (n, p)-encoder ¢ with respect to y and v,
(67) T S 2p(J(P3) = J(P})
(cf. (4.12)).

Proof. Using (5.3) we obtain the inequality
ruv(g’ n, Wp) < pr‘w(g, T, Wp)
for # given by (6.6). In view of (6.5), it follows that

h H Y
Ty < pinf r,w(@7 7, Wp)
¢eln

and hence, to obtain (6.7) it suffice to use (6.5).
The source p is said to be independent if
+ oo
L= ® n,
where y; is a probability measure defined on €' by
u{E) = u({c:(c); €E}) forevery Ee®', iel.

Remark. It is easily verified that

where €; = " for all i eI (cf. Sec 2).
The channel v is said to be memoryless if the zero-past-history condition

(6.8) v({b:(6), €E}|a) = v({b: (b}, e E| a)
is satisfied for every Ee€ £, a, a’ € ¥, (a), = (a’); and if, for every a € U,

1) = & nl| @),

where vy(. | a), defined by
vi(Ela) = v({b:(b), €E}a), aecW, (a);=a

(cf. (6.8)), for every E e %', is for every a € A a probability measure on Z".

Let u be an independent source, v a memoryless channel and let ¢ be an (n, p)-
encoder. Let # be defined by (6.6) and let j€ {0, 1, ..., p — 1} be a realized value of
the unknown parameter. In this case the measure on the sample space is yT ™/ and
the sequence {(B)2{i,}, i €1, is, for every j taken into the consideration, a sequence
of independent equally distributed random variables. This implies that in case the



alphabet B is finite we can use the result of Rényi [6] (cf. also §5 of [5]) to obtain
the following assertion: J(P;) = log p and there is 4, el* and 0 < g, < 1 such that

(6.9) J(P3) — J(PY) < 4oed'™ forevery hel',

where [h/p] is non-negative integer defined by the inequality [h/p] < h/p <
< [h/p] + 1. Hence, in view of Theorem 3, we have obtained the following Theorem
(cf. also inequality (5.8) of [5]).

Theorem 4. If u is an independent source and v a memoryless channel with finite
output alphabet B, then, for every synchronizing (n, p)-encoder ¢ with respect to p
and v, there is AelI* and 0 < ¢ < 1 such that

6.10 < Ag"
nv

for every hel*.
(Received January 14th, 1966.)
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VYTAH

Problém synchronizace v teorii informace

IGOR VAIDA

Abychom pfi sd&lovdni zprdv sd&lovacimi kandly pfi pouZiti blokovych kédu
mohli pouZit optimélnich dekédovacich procedur je nutné nejdfive rozdslit pfijatou
zpravu v bloky, které by ,,éasové™ odpovidali vyslanym blokim. V pfipadech kdy
uvaZovany sd8lovaci kandl je jedinym sd8lovacim prostfedkem mezi vysilatelem
a piijemcem tedy vznikd jakysi problém synchronizace. Tento problém byl v posled-
nich létech hluboce studovédn z hlediska algebraické teorie kéda za pFedpokladu, Ze
uvaZzovany kandl je bezSumovy. Zd4 se, Ze v pfipad& Sumovych kandll je nutné tento
problém studovat z hlediska obecné teorie statistického rozhodovéni o coZ se pokousi
pfedkiddand préce. Hlavni pozornost je vénovédna definici synchronizaéniho kédu.
Za jistych pfedpokladit zdd se rozumnym nazvat synchronizaénim takovy kéd, ktery
umoZiiuje rozdéleni libovolné vystupni posloupnosti sestdvajici z h pismen v Sasové
odpovidajici bloky se stfedni pravdépodobnosti chyby #*, kde lim #* = 0 pro h — oo.
V prdci jsou ukdzdny nékteré nutné a postadujici podminky proto, aby blokovy kod
byl synchronizaéni (Theorem 1) a je nalezen jisty obecny odhad &isla . V poslednim
paragrafu prace je dokdzdno, Ze v p¥ipad kandlu bez paméti a nezdvislého zdroje "
konverguje k nule exponencidlng pro jakykoliv synchronizaéni blokovy kéd.

Ing. Igor Vajda, Ustav teorie informace a automatizace CSAV, Vysehradskd 49, Praha 2.
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