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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 3 

GEOMETRIC METHODS IN THE THEORY 
OF SINGULAR 2D LINEAR SYSTEMS 

GIUSEPPE CONTE, ANNA M. PERDON, TADEUSZ KACZOREK 

A geometric approach for systems represented by a singular 2D Fornasini-Marchesini model 
is developed by introducing suitable notions of invariant subspace and controlled invariant 
subspace of the state space. The first notion is shown to be usefull in characterizing the set of 
compatible boundary conditions and in studying the existence and uniqueness of solutions 
to the state space equation of the considered models. The second notion is proved to be relevant 
in investigating the solvability of a Disturbance Decoupling Problem and is employed for stating 
a constructive sufficient condition for the existence of solutions to such problem. 

1. INTRODUCTION 

Singular linear systems have received an increasing attention during the last 
years and, recently, also 2D singular systems have been considered by some authors. 
In particular, a singular general model of 2D linear system has been introduced 
and studied in [7], and a singular Roesser model has been considered in [11]. 
Conditions for the existence and uniqueness of solutions to such models have been 
given in [7] and in [9], [11]. The utility of employing singular 2D models in e.g. 
image processing, hyperbolic equations, heat equations has been discussed in [11], 
[12] and [10], which also contains an extensive bibliography. 

In this note we consider singular 2D Fornasini-Marchesini models. Our aim is 
to develop a geometric theory for such models and to explore the potential of the 
geometric approach both in analysing the properties of singular 2D models and 
in solving specific synthesis problems. 

Geometric methods have been introduced in a 2D framework and used to solve 
some related control and observation problems, in [2], [3], [4] and, in a slightly 
different way, in [6]. On the other hand, a geometric approach to singular systems 
in the ID framework has been first developed in [I] . In the first part of this note, 
we combine the ideas of [2] together with those of [1]. This allows us to define 
suitable geometric objects which are used for characterizing the set of compatible 
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initial conditions and for studying the existence and uniqueness of solutions to 
the state equation of the models we are dealing with. Then, we consider a Disturbance 
Decoupling Problem and we provide a constructive sufficient condition for its 
solvability using geometric tools. From a general point of view, our results show 
that the geometric approach can be usefully employed in studying the structural 
properties of singular 2D models, for instance the singular Fornasini-Marchesini 
model, and in solving related noninteracting control problems, for instance the 
considered Disturbance Decoupling Problem. 

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS 

Consider the singular 2D Fornasini-Marchesini model Z = (E,Alt A2, Bu B2) 
[7], [5] described by 

Ex(i + l,j + 1) = A±x(i + 1,/) + A2x(i,j + 1) + B,u(i + l,j) + 

+ B2u(i,j + 1) (2.1) 

where /, j are nonnegative integers, x(i,j)eX = Rn is the local state vector at the 
point (i,j), u(i,j)eU = Rm is the input vector and EeRrXn, AkeRrXn and Bk e 
e Rrxm for k = 1, 2, are real matrices. The special feature of the singular model is 
that the matrix E is in general not square and if it is square it may be singular. 

In our setting, we let Z evolve over the region 3) contained in the plane Z x Z 
given by 

9 = {(i,j) eZ x Z, with / = 0 and j = 0} . 

A boundary condition for Z is an assignment of the form 

x(i, 0) = xi0 for / > 0 and x(0,j) = x0J for j > 0 . (2.2) 

In the following we will identify the boundary conditions with the elements of XN+ x 
xXN+. 

If W is a linear space, the space of all W-valued doubly-indexed sequences w(/, j) 
defined on @\{0, 0} will be denoted by S(W). By a solution to Z over B with boundary 
conditions (2.2) for the input u(/,/) e S(U), we mean a sequence x(i,j) e S(X) which 
satisfies (2.1) and (2.2). A boundary condition such that there exists a solution for 
the input u(i,j) = 0 is called a compatible boundary condition for Z. 

The space of all the compatible boundary conditions for a given Z is, in general, an 
infinite dimensional subspace of XN+ xXN whose description may be very cumber­
some. Consider, for instance, the system Z = (E, Alf A2, Bls B2) where E is the zero 
n x n matrix. A boundary condition ({xi0, i > 0), {x0J,j > 0}) is a compatible 
one for Z if and only if 

— Ai^io = ~A2x01 ; 

- Alx20 = —A2x11 and A2x02 = —Aix11 for some xxleX; 
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- AjA'30 = —A2x21 and A2x03 = —A:x12 for some x12, x21eX such that 

^ i x 2 i = ~A2x12 ; 

- and so on 

In setting our framework, we may however restrict our attention to subspaces of the 
space of all the compatible boundary conditions which enjoy good properties and 
which have a simpler description. In fact, if V is the space of boundary conditions 
we are going to deal with, it is quite reasonable to ask that, for any element of V, 
x(i, 0), as well as x(0, j), can assume any value in a certain vector space, independently 
of the values assumed by other points. In order to satisfy these requirements V 
must be of the form V = VN+ x VN+ for some subspace V of X. Then, our first aim 
is to look for the largest subspace V of X such that any element of VN+ x VN+ is 
a compatible boundary condition for I. This requires to introduce the following 
definition. 

2.1. Definition. A subspace V of the state space X which satisfies the relation 

A1V+A2cEV (2.3) 

is said to be an invariant subspace of I. 

The family of invariant subspaces of I is not empty, since it contains {0}, and it is 
closed under subspace addition. Therefore, it contains a maximum element, namely 
the largest or maximum invariant subspace of E, which will be denoted by V. 
The computation of such subspace is made possible by the following proposition. 

2.2. Proposition. The sequence of subspaces defined recursively by 

V0 =X 

'M"V™ . ^ (2-4) K*+i = F * n U A \EVkxEVk) 

is decreasing and converges, in a finite number of steps, to V, the maximum invariant 
subspace of I. 

Proof. The sequence is obviously nonincreasing and, if Vq = Vq+l, it becomes 

stationary at the step q. Therefore, since X is finite dimensional, the sequence con­

verges in a finite number of steps, say q rg n, to Vq. By I l J Vq = I * J Vq+1 c: 

a EVq x EV^, we have that Vq is invariant. Moreover, if Vis an invariant subspace, 
it is obviously contained in V0 and, if it is contained in Vk, it is easily seen to be 
contained in Vfc+1. Then, by induction, Vis contained in Vq and Vq = V. • 

We can now state the following results concerning the compatible boundary 
conditions for I. 

2.3. Proposition. The maximum invariant subspace V of I is the largest subspace 
of X such that any point in VN+ xVN+ is a compatible boundary condition for I. 
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Proof. Given a point in VN+ x VN+ it is easy to construct recursively a solution 
over 2 for u(i,j) = 0 using (2.3). Hence, any point in VN+ x VN+ is a compatible 
boundary condition for I. Conversely, if Vis the largest subspace of X such that any 
point of VN+ x VN+ is a compatible boundary condition for I, V is obviously an 
invariant subspace of I. Hence F c V and, since VN+ x VN+ c VN+ x VN+ by the 
first part of the proof, V = V Q 

2.4. Remark. Denoting by V ami x p full column rank matrix such that Im V = 
= V, we can write AtV = EV'El5 A2V' = EVF2 and x(i,j) = V z(i,j) for z(i,j) e 
e Rp. Then, given a solution z(i,j) e S(RP) to the non singular 2D equation 

z(i + 1, j + 1) = E, z(i + l,j) + F2 z(i,j + 1) 

with boundary conditions (\zi0, i > 0}, {z0j,j > 0}), x(i,j) = V z(i,j) is a solution 
to I with boundary conditions ({xi0 = Vzi0, i > 0), {̂ 0y = Vz0j, j > 0}). It 
follows, in particular, that given a boundary condition whose local components 
belong to V (respectively, to an invariant subspace V) there exists a solution x(i,j) 
whose local components x(i,j) belong to V(respectively, to V). 

The next result about the existence of solutions corresponding to nonzero inputs 
will be useful in the sequel. 

2.5. Proposition. Given the model I = (E, Ax, A2, Bu B2), described by (2.1), if 

Im Bj c= EV and Im B2 c= EV (2.6) 

holds, then there exists a solution to I over B for any compatible boundary condition 
and for any input u(i,j) e S(U). Moreover, if Vis an invariant subspace and Im Bt <= 
c: EV and Im B2 <= EV, then, for any compatible boundary condition with local 
components belonging to Vand any input, there exists a solution with local com­
ponents belonging to V. 

Proof. As in 2.3, 2.4. • 

After having investigated the existence of solutions to I, one is usually concerned 
with their uniqueness. A sufficient condition for the uniqueness of solutions is stated, 
in a form that will be useful in the sequel, in the next proposition using the character­
istic subspaces of the pairs (E, A.) and (E, A2) (cf. [1] Definition 1). Recall that these 
are the largest subspaces Vx and V2 of X such that A^VX c EV{ and A2V2 <= EV2. 

2.6. Proposition. Given the model I = (E, Au A2, Bl5 B2) described by (2.1), let 
V! and V2 denote respectively the characteristic subspace of the pair (E, At) and of 
the pair (E, A2). Assume that x(i,j), x'(i,j) e S(X) be two solutions to I correspond­
ing to the same boundary condition ({xi0, i > 0], {x0j,j > 0}) and to the same 
•nput u(i,j) G S(U). Then, if 

either Ker E n V, = {0} or Ker E n V2 = {0} (2.7) 

wehavex(i,jf) = x'(i,j). 
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Proof. Assume that KerE n V. = {0} and denote by x"(i, j) the difference x(i,j) — 
— x'(i,j). The sequence x"(i,j) is a solution to I corresponding to the zero boundary 
condition and to the zero input. In particular, x"(l, 0) = 0 and Ex"(I, j + 1) = 
= Axx"(l,j) for all j > 0, hence {x"(\,j), j _ 0} is a solution to the singular ID 
linear system (E, Au B), for arbitrary B, corresponding to the zero initial condition 
and to the zero input. Then, by [1] Theorem 2, we get that x(\,j) = 0 for all j _ 0. 
In turn, this implies E x"(2,j + 1) = Ax x"(2,j). By recalling that x"(2, 0) = 0 and 
by applying recursively the same argument as above we get x"(i,j) = 0. The proof 
is analogous if Ker E n V2 = {0}. • 

2.7. Remark. It is worthwhile to remark that if A2 and B2 are zero and, hence, _ 
reduces essentially to a singular ID system, then V reduces to the characteristic 
subspace of the pair (E, Ax) and (2.7) coincides with the necessary and sufficient 
condition for the uniqueness of solutions stated in [1] Theorem 2. 

3. CONTROLLED INVARIANT SUBSPACES AND DISTURBANCE 
DECOUPLING 

Several control problems concerning ID have been solved in an elegant and very 
effective way by employing geometric methods (see for instance [14]). Similar, 
although generally weaker, results have been obtained in a 2D framework in [2], [3], 
[4]. A classical problem we can consider from this point of view is that of de­
coupling a disturbance by means of a static state feedback. A natural formulation 
of such problem in our context is the following. 

3.1. Definition. Let Id be the singular 2D model described by 

Ex(i + 1, j + 1) = Al x(i + i,j) + A2 x(i,j + 1) + Bx u(i + i,j) + 

+ B2 u(i,j + 1) + Dl w(i + IJ) + D2 w(i,j + 1) 

y(i,j) = Cx(i,j) (3.1) 

where u is the controlled input and weW = Rq is a disturbance. The Disturbance 
Decoupling Problem (DDP) for Id consists in finding a feedback law u(h, k) = 
= F x(h, k) such that the compensated system IdF admits a unique solution for all 
compatible initial conditions and all disturbances and its output is not affected 
by the disturbance vv. 

In order to find conditions for the solvability of the DDP, we need to introduce 
a suitable notion of controlled invariant subspace. So, given a singular 2D Fornasini-
Marchesini model I = (E, Au A2,BX, B2) described by (2.1), we begin, following [2], 
by stating the following Proposition. 

3.2. Proposition. Given a subspace V of the state space X, the followings are equi-
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valent: 

i) ( l J V c EV x EV + Im ( l ) in the product space X x X; 

ii) there exists a feedback E: X -* U such that 

( ( / ) + L y ) Vcz EV x EVin the product space XxX. (3.2) 

Proof. As in [2] 2.1 with the obvious modifications. • 

3.3. Definition, i) Any subspace V cz X for which the equivalent conditions of 
Proposition 3.2 hold is said to be a, controlled invariant subspace for I or an(E, A1)2, 
B1 2)-invariant subspace. 

ii) Given and (E, A1>2, B1 2)-invariant subspace V, any feedback E: X -> U for 
which (3.2) holds is said to be a. friend of V. 

For any subspace K c l , the family of controlled invariabt subspaces for I 
which are contained in K is not empty, since it contains {0}, and is closed under 
subspace addition. It therefore has a maximum element, namely the maximum 
controlled invariant subspace for I contained in K or the maximum (E, A1>2, Bx 2)-
invariant subspace contained in K, which will be denoted by V*(K). The computa­
tion of such subspace is made possible by the following Proposition. 

3.4. Proposition. The sequence of subspaces defined recursively by 

V0 =K 

^ y ( E V k x E V k + i m ( B B i 
is decreasing and converges, in a finite number of steps, to V*(K), the maximum 
(E, A12, B1 2)-invariant subspace for I contained in K. 

Proofs . As in Proposition 2.2. Q 

Clearly, if V is an (E, Alt2, B1;2)-invariant subspace for I = (E, Ax, A2, B1? B2) 
and E is one of its friend, Vis an invariant subspace for ZF = (E, A1 + BXF, A2 + 
+ B2F). Conversely, any invariant subspace for IF is an (E, A12, B12)-invariant 
subspace for I having E as a friend. In the following, given a model I = (E, Ax, A2, 
Bl9 B2, C) described by 

E x(i + l, j + 1) = Ax x(i + X,j) + A2 x(i,j + 1) + Bx u(i + l,j) + 

+ B 2 u { i J + l ) 

y(i,j) = Cx(i,j) 

we will consider in particular the (E,AX>2, B12)-invariant subspace V*(Ker C), 

botained by letting K = Ker C in (3.3). 

3.5. Proposition. For all boundary conditions ({xi0, i > 0), {x0j,j > 0}) e 
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e (V*(Ker C))N+ x(V*(Ker C))N+, there exists an input u(i,j) for which the system 
I has a solution over 3) belonging to ;3(V*(Ker C)). 

Proof. By direct computation using the (E, Ai,2, Bi,2)-invariance. • 

The above Proposition says that V*(Ker C) has an output nulling property analo­
gous to that exhibited by the maximum controlled invariant subspace contained 
in the Kernel of the output map in the linear ID case. This implies that V*(Ker C) 
can be used, as in the ID case, to state the conditions for the solvability of the DDP. 

3.6. Proposition. Given the system Sd described by (3.1), let V*(Ker C) be the 
maximum (E, A1>2, Bi,2)-invariant subspace contained in Ker C and let F:X -* U 
be one of its friends. If we have Im Dk c EV*(Ker C), for k = 1, 2, then for any 
boundary condition belonging to (V*(Ker C))N+x(V*(Ker C))N+ and for any 
disturbance w(i,/) there exists a solution of the compensated system IdF over 3 
which gives identically zero output. 

Proof. By Proposition 2.5, since V*(Ker C) is an invariant subspace for IdF 

contained in the Kernel of the output map. • 

We can now state a sufficient condition for the solution of the DDP. To this aim, 
we need to consider the largest (Al5 E, Bx) invariant subspace and the largest 
(A2, E, B2) invariant subspace described in [13]. Recall that these are the largest 
subspaces V* and V2* of X such that AV*c EV* + Im Bx and A2V2 cz EV2 + Im B2. 

3.7. Proposition. Given the disturbed system Id described by (3.1), let us assume 
that Im Dk c EV*(Ker C), for k = 1, 2 and that either Ker E n V* = {0} or 
Ker E n V2* = {0}. Then the DDP is solvable. 

Proof. Let E be a friend of V*(Ker C). By Proposition 3.6, for any disturbance 
w(i,/) there exists a solution of the compensated system IdF over 3 which gives 
identically zero output. Moreover, since V* and V2* contain, respectively, the character­
istic subspaces of the pairs (E, Ax + BiE) and (E, A2 + B2E), the solution is unique 
by Proposition 2.6. • 

4. CONCLUSION 

Some methods and ideas of the geometric approach have been applied in the 
context of the singular 2D Fornasini-Marchesini models. This has produced geometric 
tools which allow us to analyse the existence and uniqueness of solutions to the 
state equation of the model and to give a sufficient constructive condition for the 
solvability of a Disturbance Decoupling Problem. Further developments of this 
approach in connection with observation problems and with noninteracting control 
problems are under investigation. 

(Received December 29, 1990.) 
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