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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 3 

POLYNOMIAL MATRIX SOLUTION 
TO THE DISCRETE FIXED-LAG SMOOTHING PROBLEM 

MIKE J. GRIMBLE 

The solution of the optimal linear fixed lag smoothing problem is considered using a poly­
nomial matrix description for the discrete systems. The smoother is given by the solution of 
a diophantine equation and is equivalent to the transfer-function matrix form of the Wiener 
smoother. The pole-zero properties of the optimal smoother are more obvious in the polynomial 
representation and new insights into the measurement noise rejection properties of the smoother 
are obtained. The signal model is assumed to be stable and allowance is made for both dynamic 
cost weighting and coloured measurement noise. The model structure was determined by the 
needs of industrial smoothing problems. The polynomial form of filter may easily be included 
in a self-tuning algorithm and a simple adaptive smoother is described. 

1. INTRODUCTION 

The linear fixed lag smoothing problem is considered where signals are to be 
estimated from noisy measurements and given causal signal and noise descriptions. 
The measurements noise or output disturbance can be coloured and the signal and 
noise models are represented by polynomial matrices. It is assumed that the observa­
tions are available up to time t but that the estimate is required at some time r ^ t. 
In this problem t normally denotes real time and the smoothing lag / : = t — T is a 
fixed interval. 

The advantage of a fixed lag smoother over a normal optimal filter, is that as the 
lag / increases, the estimation error variance decreases due to the information provided 
by the additional data. For very large lag length the performance will approach that 
of a non-causal optimal estimator. In practice a lag of two or three times the domi­
nant system time constant will guarantee near optimal performance (cf. Goodwin 
and Sin [1]). 

Moir [2] considered a special form of optimal smoothing problem for use in 
reflection seismology where the signal to be estimated is white (the primary reflecto-
gram) and the distorting system is the seismic wavelet. He developed a fixed-lag 
deconvolution smoother using a Wiener type of optimization argument. 
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The solution presented here follows a Kucera [3] type of argument and deals 
with the general smoothing problem which includes both white and coloured noise 
and dynamic cost weighting. The relationship to the non-causal Wiener smoothing 
problem is established providing a useful lower bound on the minimum estimation 
error which can be achieved with increasing lag /. 

The z-dominant expression for the smoother is simple to implement and in many 
signal processing applications a transfer-function form of smoother is more appro­
priate than a state space based design. There is no need for backwards and forwards 
integration and the smoother may be implemented on-line in recursive form. More­
over, the polynomial matrix expressions for the smoother enable self-tuning smoothers 
to be defined. The development of self-tuning filters, predictors and smoothers was 
considered previously by Moir and Grimble [4]. 

The system and noise models are introduced in §2. The output smoothing problem 
is first considered where a signal is to be estimated in the presence of (possibly 
coloured) measurement noise. The main theorem in §3 gives the optimal smoother 
in terms of the solution of a diophantine and a spectral factorisation. Frequency 
domain aspects of the smoothing problem are considered in §4. The adaptive smooth­
ing problem is discussed in §5 and conclusions are drawn in §6. 

2. SIGNAL MODEL 

The system model shown in Figure 1 can represent either an industrial plant 
or a message generationg process. The system is assumed to be linear and time-
invariant and the noise sources are stationary. These noise signals £(t), a>(t), v(t) are 
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mutually independent with zero means, and the covariances are defined as 

cov [£(*), £(T)] = Qs5tT, cov [w(t), OJ(X)] = Qndtt and cov [v(t), v(x)] = R5tr, 

respectively. Here dtr denotes the Kronecker delta-function and the assumption is 
normally made that R = RT > 0. 

The system is assumed to be in the steady-state, that is t0 -> — oo. The various 
subsystems are necessarily taken to be free of unstable hidden modes and are defined 
as: 
Signal 

y(t)~W,(z-*)S(t) (1) 

Coloured measurement noise 

n(t)= Wn(z~x)w(t) (2) 

The observations signal z(t) e Rr is given as: 

z(t) = v(t) + n(t) + y(t) (3) 

where v(t) denotes white measurement noise and n(t) represents a coloured measure­
ment noise or output disturbance. 

The subsystem transfer-functions can be represented by the following coprime 
polynomial matrix representations 

Ws(z~x) = As(z~ri Cs(z~x) , WJLz--) = A^z"1)-1 Cn(z~i) (4) 

(The dependence upon z~x is often suppressed to simplify notation.) The measure­
ment noise of output disturbance model Wn is assumed to be asymptotically stable. 

2.1. Spectral factorization 

Let Af be defined from the following left-coprime decomposition: 

V[C ,„C ; | = [A;1C,„A;XCS] (5) 

The generalised spectral factor (cf. Shaked [9]) which is needed in the following 
solution is defined using: 

YfYf* = R+ WnQnW: + WSQSWS* = R + A~lCnQnC*nA^~x + 

+ As-
iCsQs*cAri (6) 

where the asterisk denotes conjugate transpose, Yf(z~x) = Yj(z). The spectral 
factor Yf can be represented as: Yf = AJlDf where D/(0) is full rank, D^z-1^ 
e l l r X r (z" 1 ) , and the definition of the noise sources ensures Df is strictly Hurwitz. 
From (5): 

YjY* = A~f\AfRA*f + CnQ„C*n + CsQsCf) A;-1 (7) 

and hence Df satisfies: 

DfD*f = AfRA*f + CnQ„Cn + CSQSC* (8) 
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3. FIXED LAG SMOOTHING PROBLEM 

The smoothing problem is concerned with finding the best estimate of the signal 
S(t) in the presence of the noise terms v(t) and n(t). 

3.1. Estimation error variance criterion 

Let the estimation error be defined as: , 

y(x\t):=y(x)-y(x\t) (9) 

where y(x | t) is the estimate of V(T), given observations {z(xi), xr e (— GO, t]}, up to 
time t. The variance to be minimized is given, in terms of the trace function, as 

J = E{f(x | t) y(x | t)} = Trace {E{J~(T | f) y(x | t)T}} (10) 

3.2. Solution of the output smoothing problem 

The signal model was defined in §2 and the variance to be minimised was given in (10). 
It remains only to introduce the smoother before proceeding with the solution. The 
smoothed estimate is assumed to be generated from a linear estimator of the form 

y(x\t) = Hf(z^)z(t) (11) 

where Hf is realised in a form free of unstable hidden modes. 
To obtain an expression for y(x \ t), note from (1) and (3): 

z(x) = v(x) + A; • C„ O>(T) + A; 1CS £(T) (12) 

and hence from (9): 

y(x | t) = y(x) - y(x \ t) = A;'CS f(r) - Hf(z") z(t) = 

= A;1^ C(T) - Hf(z-') zl z(x) = (I, - Hfz
l) A;'CS « T ) -

- H ^ ^ + A^Cn^x)) (13) 

Cos t - func t ion expans ion 

Let the unit-circle contour \z\ = 1 be denoted by U then the following contour 
integrals are computed around U. The covariance of the estimation error can be 
expressed, using (13) as: 

- i - 1 Trace {(/ - Hfz
l) A^C.QfiUT1 (I ~ - V ) * + 

2TTJ JU 

+ Hf(R + A^CnQnCUr^H*}^ = 
z 

— jjmcelH.AJ^D.D^^H^+A^CfitA:-'- . . 

- HJZ-'A^C&CU:-1 - A;'CSQSC*SA*S-
1Z-1H*}--

z 
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Completing the squares gives: 

— | Trace {{HfAj'Df - A;XCSQSC*A*-XA*D*-Xz-1). 
2m Jv 
.{HfA~f'Df - ArCsQsC*sA*-'A*D*-'z-y + (14) 

+ [A^CACUr1 - ArCsQsC*sA*s-'A*fD*-'D-fUfArC2QcC*A*s-^ 
z 

The final term in (14), within the square brackets, can be written, using (7), as: 

[•] = ®ss ~ ®ss$ff1(Pss = $ss®7fl$nn 
where 

$ss : = A s CSQSCSAS , <Pnn := A n CnQnCnAn 

and 
<Pff:=YfYf*. 

Non-causa l so lu t ion 

Since the final term in (14) is independent of H} it is clear that the minimum is 
achieved when the first term is null, giving: 

J f / (z - ' ) = * „ ( z - ' ) # / / ( z - ' ) - ' z - ' 

where <PSS and <Pff denote the power spectral density matrices of the signal and 
the total noise spectrum. This solution clearly provides a non-causal smoother which 
is not feasible in real-time applications. However, the minimum cost in this case 
is as useful lower bound, obtained using (7) and (14) as: 

1 I* A 

^non-causal = — 0 Trace {$„$}}$m} — 
2TCJ J v z 

where <0m denotes the spectral-density for the measurement noise. Note that the 
absolute minimum of the cost, in this case, is not dependent upon the smoothing 
lag/ . 

To minimise the cost-function, when the smoother is restricted to being causal, 
the first term in (14) must be expanded and simplified using a diophantine equation. 

D i o p h a n t i n e equa t ion 

First define the scalar g = deg(D /(z - 1)) . Then the diophantine equation (cf. 
Kucera [3]) required follows as: 

ASE0 + GoD/V" - C&&Z-*-1 

This equation may be written, using (5), in the form: 

E0D;-V + A;'G0 = ArC.Q&Ar'A^Df-'z-1 
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S t a b l e / u n s t a b l e decompos i t ion 

Since deg F0 < g the first term has all its poles strictly outside the unit-circle 
in the z-plane. Thus, the squared term in the cost-function (14) can be decomposed: 

(HfAj'Df - A^C&^A^-'A^D*-^-1) = 

= [HfAJ' Df - A;' Go] - F0z«D*f ~
l (15) 

The term within the square brackets in (15) has all its poles strictly within the unit-
circle. The final term in (15) is strictly unstable with all poles outside the unit-circle. 
By the residue theorem the integral of the cross terms in (14) is zero and the cost-
function can be written as: 

J = — (£ Trace (HfAJ^Df - AJxG0)(HfAJxDf - A^'Go)* + 
2rcj Jv 

+ F0D*-'DJ lF* + [ # „ , # ; ; # J } - (16) 
z 

The only term in the cost-function which depends upon the smoothing filter is the 
first term and hence the cost is minimized by setting this term to zero. The optimal 
smoother follows. 

3.3. Summary of the solution 

There follows a summary of the results obtained: 

Theorem 3.1. (Fixed Lag Smoothing Filter.) The optimal smoothed estimate 
for the signal and noise models, shown in Figure 1, at the time T, is obtained as: 

$(x\t) = Hf(z-i)z(t) (17) 

given the observations {z(tj)}, for tx e (— oo, t], and t ^ T. The optimal smoothing 
filter, to minimize the cost (9), is given by: 

Hf = A;1G0DJ1Af (18) 

The polynomial matrix G0 is obtained from the minimal-degree solution (G0, F0), 
with respect to F0, of the diophantine equation: 

ASF0 + G0D*fz-° = CsQsC*z~°-1 (19) 
where 

g := deg(Df) and deg(E0) := g - 1 . 

Proof. By equating the first term in (16) to zero. • 

The existence and uniqueness of the solution to this type of diophantine equation 
has been established by Kucera [3]. Note that to ensure solvability of the smoothing 
problem, detfDXz"-1)] =j= 0 on \z\ = 1. 
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Lemma 3.1. (Minimum-cost expression.) 

Jnnn = ^ : <j> Trace {F0D* " x D;1E* + $„*}}*,»} -
27TJ J-, Z 

Proof. Follows directly from (16) and (18). 

(20) 

D 
Note that if the measurement noise tends to zero (R = 0, Qn = 0) then DfD* = 

= CSQSCS and (19) gives F0 = 0, G0 = Dfz~l. The minimum cost then follows 
from (20) as Jmin = 0. The smoother is stable from the definition of the polynomial 
matrices in (18). 

Example 3.1. (Coloured measurement noise fixed lag smoothing problem.) 
Consider the smoothing problem illustrated in Figure 2 where the signal and noise 

models are defined as: 

2 - l -5z - 1 „ . 1 - 0-2z_1 

W = — 
s (1 - * _ 1 ) 0 -0 -5Z- 1 ) 

where R = 0, Qs = 1 and Qn = 1. 

W. 
1 - 0-5Z"1 

Signal generator 
Measurement 
noise 

z Observations 

Signal to 
be estimated 

Fig. 2. Smoothing Problem. 

Solut ion: In polynomial form: 

As = (l - z'^^-O^z-1), Cs = 2-V5: 

Cn=\- 0-2z~x 

Thus from (5): 

A = ì - 0-5: 

-v [Cn> Cs\ 
1 

(1 - z " 1 ) ^ -0-5Z" 1 ) 
— [(l - z-1)^ - 0-2z-%2 - 1-5Z-1-] 
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and the spectral factor equation (8) gives: 

D*D* = 8-73 - 4-44z -1 - 4-44z + 0-2z -2 + 0-2z2 

hence 
Df = 0-088(z-1 - 20-08) ( z - 1 - 1-3) 

^ - ( 1 - 0 ( 1 - 0 - 5 z - 1 ) . 

The diophantine equation (19) becomes: 

ASF0 + G0D*z-e _ CsQs£tz-°-1 

(1 - r - i ) ( l - 0-5z -1)Eo + Go0-088(z - 20-08) (z - 1,3) z - 2 _ 

= ( 2 - l - 5 z - 1 ) ( 2 - l - 5 z ) z - 2 - ' 

(1 - l -5z - 1 + 0-5z -2)Eo + Go(0-088 - l-8814z-1 + 2-2972z-2) _ 

- ( _3 + 6-25z-1 - 3 z - 2 ) z - 1 - < 

For optimality deg (E0) = 1 and deg (G0) =1 + 1. 

From the expression (18) for the smoothing filter obtain: 

H,(z-1) = ll-3636Go/((20-08 - z - 1 ) ( l -3 - z - 1 ) ) . (21) 

The G0(z
-1) polynomial was evaluated for different values of the smoothing lag /, 

and these are shown in Table 3.1. Note that for large delay the highest order coeffi-

Table 3.1. Fixed Lag Smoothing Filter Polynomials. 

/ - 0 
/ = 1 
/ = 2 
/ = 3 
/ = 4 
/ = 5 

G° = 1-9122- 1-4122-
G0 - 0-1979+ l-6154z 
G0 = 0-0889 
G0 - 0-0652 
G0 = 0-05 
G0 = 0-0385 

- 1 

- 1 

0-0646z 
0-009z-1 

0-0098z-

0-0077z" 
l-3133z 

- l 
l-3133z-2 

l-6598z-2 - l-3133z 
0-0972z-2 + l-6598z" l-3133z" 

+ 0-016z-2 + 0-0972z-3 + l-6598z-4 - l-3133z-5 

- з 
- б 

+ 0-0094z-2 + 0-016z-J + 0-0972z l-6598z" 

1=6: G0 = 0-0296 - 0-0059z-1 + 0-0071z-2 + 0-0094z-3 + 0-016z" 0-0972z" 

/ = 20: Gr 

+ l-6598z-6 - l-3133z-7 

- 4 0 - 0-OOOOz-1 + 0-0002z~2 + 0-0002z-3 + 0-0003z-4 + 00004z" 
+ 0-0005z-6 + 0-0007z-7 + 0-0009z-8 + 0-001 l z - 9 + 0-0015z" 
+ 0-0019z- 1 1 + 0-0025z- 1 2 + 0-0032z- 1 3 + 0-0042z - 1 4 

+ 0-0055z - 1 5 + 0-0071z - 1 6 + 0-0094z - 1 7 + 0-016z" 
+ 0-0971z - 1 9 + l-6598z - 2 0 - l-3133z - 2 1 

•5 

10 

•18 

E0 = 0-0837 - 0-226z
-

E0 = 0-0087 — 0-1015z 

E0 - 0-0039 - 0-0745z 

F0 = 0-0029- 0-05715z 

F
0
 = 0-0022- 0-044z

-1 

E0 — 0-0017 - 0-03385z 

E0 = 0-0013 - 0-02605z 

En = 0-0000 - 0-00065z 

-1 
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cients converge to the same values and the lowest order coefficients converge to zero. 
These correspond to impulse-response coefficients and the shape is clearly two-sided 
with a peak at the coefficient of z~l. The largest contribution to the smoother output 
is therefore due to the signal: z(t — I) = Z(T) which is reasonable since the estimate 
is required at this particular time. 

The polynomial E0 is also shown in Table 3.1 and clearly this becomes smaller as 
the lag / increases. Recall from (20) that Jmin has two basic terms an the first depends 
upon E0. Clearly as the coefficients of E0 become small Jmin -> Jnon.causa]. That is, 
the performance approaches that of the non-causal optimal fixed-lag smoother. 
Note that most of the decrease in the size of the E0 coefficients occurs for a relatively 
small lag. This suggests that a relatively short smoothing lag is all that is required 
in some applications to obtain a reasonable cost implement relative to the filtering 
case (/ = 0). 

It is interesting to note that by implementing a sequence of the G0 polynomials, for 
different values of /, a fixed point smoothing action can be achieved (computing 
J>(T I t) for fixed T). This particular application is not so convenient because of the 
need to store data and polynomial coefficients. This fixed-point problem was pre­
viously considered by Shaked [5] using a transfer-function approach. 

3.4. Smoothing with dynamic cost weighting 

The previous results can be generalized by introducing a dynamic cost weighting 
term Wp into the cost-function. This enables the estimation error in a particular 
frequency range to be heavily penalized. The results are summarized below. 

Theorem 3.2. (Smoothing filter with dynamic cost-function?) Assume that the 
weighted estimation error y0(x | t) : = Wp y(x | t) is to be minimized, where the cost: 
J0 := E{yo(x | t) y0(r j t)}, and the signal model and noise are as shown in Figure 1. 
The optimal fixed-lag smoother becomes: 

H/ = B;1A0
1G0D71A/. (22) 

where Bp is defined in Appendix 1. The polynomial matrix G0 is obtained from the 
minimal-degree solution (G0, F0), with respect to E, of the diophantine equation: 

A0APE0 + G0D*Z-° = B0CsQsCtz-°-1 (23) 

where g : = deg (Df), deg (E0) = g - 1 and A0, B0 are obtained from the left-coprime 
decomposition: A0

 1B0 = BPA~X. The minimum variance of the smoothing error 
can be computed as: 

Jmin = ~& Trace ({F0D*-lDJ lfi + W,*„*J* $mWp*} - (24) 
2rcj j v z 

Proof. Presented in Appendix 1. • 

This form of the main theorem is needed when deriving an H^ optimal linear 
smoothing filter. 
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4. FREQUENCY DOMAIN PROPERTIES 

The frequency domain and pole-zero properties of the optimal linear smoothing 
filter which equivalent to the Wiener smoother, are easy to establish in this poly­
nomial a matrix representation (cf. Grimble and Johnson [12]). 

Lemma 4.1. The optimal smoother Hf has zeros (unless cancellations occur) at the 
poles of the measurement noise or output disturbance model Wn. 

Proof. From (5) the zeros of det (Af) include those of det (An) and det (As), and 
since from (18) Hf = As~

1G0Df~
lAf, and therefore, unless cancellations occur, 

the zeros of Hf include those of det (An). D 

The fact that the filter includes blocking zeros, at the poles of the measurement 
noise model is necessary if the signal estimate is to be uncorrupted. 

Lemma 4.2. If the measurement noise source is minimum phase and CnQl/2 is 
square and full rank, then as the covariances of the noise sources £ and v tend to zero, 
some of the poles of the smoother tend (unless cancellations occur) to the zeros of Cn. 

Proof. From (6) Yf = A~1CnQ
l
n

/2 or Df = CnQ\/2 and the results follow from 
(18). D 

These results suggest that in the case of low signal to noise ratios the smoothing 
filter tends to the inverse of the measurement noise or output disturbance model Wn. 
Thus, as in classical design, the optimal smoothing filter tends to a notch frequency 
response characteristic. 

Lemma 4.3. The gain of the optimal smoothing filter Hf depends upon the signal 
0SS and signal plus noise <Pmm spectral densities, and for a scalar problem the gain is 
proportional to the square root of the signal to signal plus noise ratio. 

Proof. Now <PSS := A^C.Q^A*'1 and <Z>mm := A]lDfD*A*fx and from (18): 

Hf = (A;lCsQ
l
s
/2) (CsQl12)-' G0DjUf D 

If in a particular frequency range the measurement noise is relatively large it is 
reasonable for the gain of the smoother to be reduced, as the above result confirms. 

5. ADAPTIVE SMOOTHING 

An adaptive smoothing filter has the advantage of accommodating slowly varying 
noise or signal model changes by on-line calculations. Consider the class of linear 
noise or signal models with unknown parameters which are slowly time-varying 
or time-invariant. Explicit self-tuning smoothers output estimation can be constructed 
by using an extended least squares (ELS) identifier (cf. Panuska [10]) in conjunction 
with the results of Theorem 3.1. Implicit self-tuning estimators where the estimator 
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polynomials are identified directly from the ELS algorithm can be obtained as 
described by Moir and Grimble [4] and by Fung and Grimble [11]. 

Consider the output smoothing problem, and using (3) write the observations 
signal in the innovations form: 

z(t) = v(t) + A; ' cn a>(t) + A; ' cs l(t) = A;' Df s(t) 

where (s(t)} denotes white noise of zero mean and unity covariance. Assume first 
that Af and Df are estimated using an ELS algorithm. Also assume that the signal 
model spectrum A~ XCSQSC*A*~X is known, so that Cs = AfA~lCs can be computed. 
All the terms in (18) and (19) are then known and the smoothing filter can be computed 
at time t. Clearly as the noise model varies the smoothing filter will adapt accordingly. 

6. CONCLUSIONS 

The Kalman filter and related smoother has been very successful in many applica­
tions but being state equation based, it is not so convenient for adaptive smoothing 
problems where polynomial system models are used in the identification algorithms. 
The preceding polynomial matrix form of multivariable smoother is simple to im­
plement in recursive discrete form and is also suitable for use in self-tuning schemes. 

The smoothing problem considered was more general than the usual Kalman 
problem, allowing for coloured measurement noise, or even the singular case of 
white noise. It was shown that the minimal-cost which could be obtained, for large 
smoothing lag /, was determined by the minimum cost for the non-causal Wiener 
smoother. The frequency-domain properties of the smoother were easily established 
in this polynomial form, including the limiting pole-zero positions. 

There are some signal processing applications where a discrete Wiener smoother is 
more appropriate than a Kalman smoother, since it is transfer function based. 
However, Wiener smoothers are difficult to compute using standard routines on 
a digital computer. The polynomial method overcomes this problem. Further research 
is necessary to establish the relative computational advantages of calculating either 
the polynomial or Kalman smoothers. The approach might also be applied to the 
evaluation of finite impulse-response smoothers (see Grimble [6], [7]) and to cal­
culating an Hx smoothing filter (cf. Grimble [8]). 
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APPENDIX 1: SOLUTION FOR DYNAMIC WEIGHTING CASE 

If a dynamic weighting term Wp = Ap
lBp is introduced into the cost-function 

the solution follows the same steps as previously but with the following changes. 

Write Ao lBo = BpAs
 l and note that introducing the weighting Wp results in the 

integrand in (14) being left multiplied by Wp and right multiplied by W*. Thus, 

the new integrand includes a term: 

(WpHfA-f
xDf - A-p

lAolB0CsQsC*A*s-
xA*D*-lz-1) = 

= WpHfA-f
xDf - (A0Apy

x B0CsQsCtD*f-
lz-1. 

The diophantine equation needed to expand the second term is the same as (19) but 

with A0Ap replacing As and B0CS replacing Cs. The term within (16) then follow as: 

(WpHfAf
lDf-(A0Ap)-

1Go) 

and setting this term to zero gives: 

Hf = B;lAoiG0Df-
iAf. 

(Received September 18, 1990.) 
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