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KYBERNETIKA ČÍSLO 1, ROČNlK 6/1970 

Criterion of the Correctness of an Analogue 
Model of a System of Differential 
and Algebraic Equations 

JAROMIR KJREMEN, JOSEF SOLDAN 

In the paper there are derived the general sufficient conditions for the correct analogue model 
of the ordinary differential and algebraic equations. The formulation of the sufficient conditions 
is based on the theory of the small parameter at the highest derivative for the systems of ordinary 
differential equations. 

1. INTRODUCTION 

In creating a model of a given system of differential and algebraic equations 
on an analogue computer we may, in certain cases, find that the solution obtained 
by means of this model differs principally from the correct one. Such an incorrect 
solution (i.e. the incorrect model) is caused by special features of the computer 
setup. Some authors tried to determine these special features and to formulate 
sufficient conditions for the given system in order to obtain its qualitatively correct 
solution on the analogue computer. 

For example, in the years 1945-1947,1. S. Gradstein and B. A. Taft set the condi­
tion that the given system should contain no algebraic equations. In 1959, N. N. Leo-
nov requested that the computer setup should not contain any closed loops composed 
of the operational units solving the algebraic relations only [ l ] . A similar condition 
is expressed by W. Giloi and R. Lauber in their book in 1963 [2] as well as by other 
authors. 

These conditions and their formulation have a common defect. They are too strict 
and they do not show the dependence of the correctness of the solution from the 
dynamic qualities of the used computer's operational amplifier. The said conditions 
follow from purely physical considerations not based on a strict mathematical 
theory. 

In this paper we shall try to formulate more general sufficient conditions for the 
correctness of the analogue model which would be based on the theory of the small 



38 parameter at the highest derivative for the systems of ordinary differential equations. 
The application of the above mentioned conditions) will, in each individual qase, 
depend on the choice of an appropriate approximation of the definition of the 
dynamic properties of the operational units. 

The chosen examples are just intended to clarify the matter. The delimitation of the 
field where the model is correct is very closely connected with the dynamic properties 
of the operational units. Thus, as indicated in this paper, the procedure of the solution 
based on sufficient conditions depends on the type of the used computer. The question 
of the dynamic properties of the operational units that are given by their design 
is a very complicated problem from the general point of view and its detailed analysis 
would exceed the framework of this paper. 

2. CLASSIFICATION OF OPERATIONAL UNITS 

In the mathematical description of the action of analogue computer's operational 
units in the first approximation i.e. the ideal one (as described in text books dealing 
with computing on analogue computers), we find that they can be divided into two 
groups. In the first group there are the units the action of which has been described 
by a differential equation, usually of the 1st order (integrator, differentiator), in the 
second one the units the action of which has been defined by an algebraic equation 
(invertor, summing amplifier, multiplier, function generator). The dynamic pro­
perties (further called the dynamics) of the computer setup created by the connection 
of such units are described (in their ideal form) by a system of algebraic and dif­
ferential equations corresponding with the respective operational units. 

This dynamic is analogical to the dynamics of the problem solved by the computer 
setup. Therefore, let us call it "the given" or, more frequently, "the ideal" dynamics. 

Nevertheless, certain phenomena, occuring in the computer setup, cannot be 
explained on the basis of the ideal dynamics. Finite deviations from the ideal solution 
(the so called solution errors), namely the quantitative phenomena will not be dis­
cussed in this paper. We shall concentrate on instances when the dynamic action, 
described by the ideal dynamics is stable, whereas the real dynamic action of the 
computer setup is quite different and always unstable. We shall speak on about 
this phenomena, as the qualitative phenomena. 

While deriving the ideal equations describing the action of the operational units, 
certain phenomena are neglected. They are, altogether, undemanded and therefore 
called parasite phenomena. 

For instance while deriving the ideal equations we suppose that the absolute 
value of amplification of the operation amplifier is infinite for all the frequencies. 
The amplification is, as a matter of fact, finite and dependent on the frequency and 
the action of the amplifier is described by a differential equation, i.e. the ampifier 
is a dynamic system. Similarly, the action of all the operational units is described 
by differential equations. 



If all the parasitic influences are taken into account, the exact description of the 
computer setup, i.e. the real dynamics of the model, will be obtained. The dynamic 
phenomena induced by parasitic influences will be called the parasitic dynamics. 

It is practically impossible to identify and to describe all the parasitic influences 
occuring in the computer setup. While analysing the model with the aim to determine 
its stability some influences have to be neglected. 

Let us try to find the most simple approximation of the actual dynamics by which 
the qualitative phenomena can be identified. 

As for the operational units of the first group, the output values of which will 
be designated by xk, their parasitic dynamics (increasing the order of its differential 
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G„, Fig. 1. Circuit of the integrator. 

equation) does not influence the results of the solved problem from the qualitative 
point of view and can thus be neglected. The reasons of this assertion will be briefly 
given in the fourth paragraph of this paper. For example, the action of the /c-th 
summing integrator connected into the computer setup will be described as a dif­
ferential equation of the 1st order (see figure 1): 

(1) -JS- = /*{>., t, Zj) , i = \,2,...,n, ; = 1,2, ..., m, 
at 

i ' = i Ck j = i ck 

gi and Gs are nonlinear and time-variable conductences. 
With regard to the operational units of the second, group their output values will 

be designated by z„ their dynamic properties being given by the parasitic elements 
only. Therefore, their parasitic dynamic cannot be neglected. In our basic consider­
ations let us content ourselves to describe them approximately by differential equations 
of the 1st order. Further it will be demonstrated that this description will not be 
sufficient for many a purpose. 



40 Should the action of the 1-th operational unit be described in the ideal case by the 
algebraic relation 

(2) F,(x;, t, zj) = 0 , i = 1, 2 , . . . , n, j = 1,2, . . . , ra 

and should it be taken into account that the amplifier is the dynamic system (for 
brevity's sake) described by the differential equation of the 1st order (i.e. the fre­
quency dependence of its gain can be expressed by the logarithmic asymptotic 
characteristics with the constant slope — 20 dB/dec and the boundary frequency m0 

for 0 dB) the action of such a unit can be described by the differential equation 

(3) 

where 

åt 

H, = n « K ) > 0 , P, = PiQit, Hj) > <5 > 0 

(/j, and Hj are nonlinear and time-variable conductences, 8 being a positive constant). 
For the number |i, reaching small values (the so called "small parameter") it holds 

|i,(tOo) -* 0 if co0 -*• oo . 

Fig. 2. Equivalent circuit of 
the summing amplifier. 

(C{ = i K • fli/ft. 
Infinite gain of the opera­
tional amplifier is supposed.) 
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Therefore, for co0 = oo the ideal relation (2) holds for the description of the oper­
ational unit. By way of example let us point to the relation (3) expressed for the 
summing amplifier and the servomultiplier. 

According to (3) the differential equation (4) holds for the equivalent circuit 



the scheme of which is illustrated in figure 2: 

u\ u *h - -A (v M*.. 0 v - v Hki>') - ^ 

where 

Џi = 
1 Я, 

Zя̂  + xл, 
J=Í , = i 

hi and #,- are nonlinear and time-variable conductences. 
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Fig. 3. Equivalent circuit of the servomultiplier. 

Unit of ideal 
multiplication 

The mathematical description in our approximation of the fourquadrant multiplier 
can be given according to the equivalent circuit in figure 3. 

For Zj > 0 the following equations hold: 

z, = z^j , nj -h = - 0-5(5; + Zj) , Hj = —; 
dt cos 

for Zj < 0 it holds: 

z, = ztZj , nj—]- = -0-5(zj + Zj), Hi — i = -0-5(z, + z,) , p; = — . 
dr dt co0 

The initial conditions of the differential equations describing the units of the second 
group will be discussed in paragraph 4. 



42 3. THE GIVEN AND THE EXTENDED SYSTEMS OF DIFFERENTIAL 

EQUATIONS 

Prior to more general considerations let us demonstrate the ideal and then the more 
accurate description of the simple computer setup on the following example. 

A system of two differential equations of the 1st order is to be solved on an analo­
gue computer: ' 1 

(5) **± + 4-H.V+ BX1 + CX2 = -v(t) , 
dt dt W 

D*X± + d * l + EX, + FX2 = -w(t). 
dt dt 

The corresponding block diagram is shown in figure 4. 
The ideal dynamics of the computer setup is described by the system of equations 

(5), the corresponding variables being indicated between the square brackets in 
figure 4. 

0[Jfi] 

o[x2] 

Fig. 4. Block diagram of the systém (5). 



The description including the parasitic dynamics in the approximation mentioned 43 
in the 2nd paragraph will be called the extended system which will have the following 
form for the computer setup shown in figure 4: 

(6.1) \i — = —H>! + Az2 + Bz3 + Cz4 + v), 
At 

(6.2) fi ----- = - l ( D z x + z2 + Ez3 + Fz4 + w), 
dr 

(6.3) /i^=-K-a + î). 
dt 

(6.4) ^ = _ x ( z 4 + X 2 ) , 
d t 

(,5) £ - . , . 
M. fe--.,. 

The inner resistance of potentiometers realizing the coeficients A to E is, for the 
sake of simplicity, in the calculation of the value P, not accounted for. According 
to paragraph 2, it holds p = l/ca0. 

The above mentioned system is a six-order system which includes the parameters /j. 
which, if compared with other coefficients, are lower by several orders. They may 
therefore be considered as "small parameters". The solution of the extended system 
will be a function of both time and the small parameters. 

A question arises whether the extended system (6) will be stable if the given system 
(5) is stable. Or, more generally speaking, what will be the relation of the solution 
Xi(t) and x2(t) of the system (5) to the corresponding solution x^(t, p) and x2(t, n) 
of system (6). Let us try to answer these questions. 

First, let us introduce the description of the general computer setup in our ap­
proximation in the vector form: 

(7) ~ r - / t * . - , 0 . 
at 

^ = P(x,z,t)F(x,z,t) 
at 

with initial conditions 

<0) = x 0 , z(0) = 



where 
x = ( x 1 , . . . , x „ ) , f -( f i , . . . , f»)> 

X0 = (X0l, ..., X0n) > Z = ( Z l> •••> Zm) ' 

fi.F = (P1F1,...,PmFm), F = (F1,...,Fm), 

z0 = (z01> •••> z 0 m ) • 

Let us suppose that the function ffi.F, F are continuous, j8,- > 5 > 0, j «- 1,2, 
..., m, 5 = const, /. > 0 is a constant. Further let us suppose that the system (7) 
has a unique solution x(t, fi) and z(t, y). 

If we put n = 0 in the equations (7), we obtain the singular system: 

(8.1) ft=f(x,z,t), 

(8.2) 0 = F(x, z, t) . 

This system describes the ideal dynamics of the computer setup and the comput­
ation process usually follows by means of the block diagram created on the basis 
of the said system. 

The solution of the singular system is a function of time only: 

x = X(t) , z = Z(t) . 

According to the supposition concerning system (7) its solutions, i.e. the function 
x(t, fi) and z(t, ft), are continuous functions of the variable p for n > 0. If it holds 

(9) lim x(t, n) = X(t) , 
W-.0 + 

lim z(t, n) = Z(t) . 
^-o+J 

then for the sufficiently small ft, the solution of the extended system will slightly 
differ from the solution of the ideal system, maintaining its qualitative properties. 
In the opposite case only the computer setup may give the qualitatively different 
solution in comparation with the correct (ideal) solution. 

As for the parasitic parameters, let us suppose that they are sufficiently small 
to keep the qualitative properties of the computer setup according to the upper 
paragraph. There remains the basic question as to what conditions have to be satisfied 
by the extended system, namely by the computer setup to fulfil the conditions (9). 

A. N. Tikhonov [4] solves this question mathematically and the solution of our 
problem will be based on the results of this analysis. 

First, let us introduce some concepts. 



Let us designate by 

(10) zk = 4>k(x, t) 

one of the roots of the system of equations F(x, z, t) = 0. This root will be called 
the isolated root, if for the sufficiently small e > 0 and each vector z fulfilling 

Az - <P(x, t)\\ < s, z 4= <P(x, t) 

the following relation holds: 
F(x, z, t) 4= 0 . 

If we choose an arbitrary firm moment t0 = const and carry out the substitution 
of the independent variable 

T = ^ 

in the system (7), we obtain a new form of system (7): 

— = Hf(x, ?, to + ^T) , 
dT 

~ = P(x, z, t0 + nx) F(x, z, t0 + in). 
ax 

Let us call the system arising thereform for n -> 0+ (if the limit does exist) the residual 
system. It will have an important role in our further considerations. The system is the 
following (r0 will be designated t again for better clearness): 

(U) ~- = P(x, z, t0) F(x, z, t0) - p(x, z, t) F(x, z, t) 
ax 

with initial conditions z(0) = z(t0) where x and t are the parameters. The root zk = 
= $k(x, t) is a singular solution of the system. 

The isolated root (an isolated singular solution) will be called an asymptotic stable 
solution of the residual system if for arbitrary e > 0 such 5(s) > 0 can be found 
so that two following relations hold: 

(12) limz(x) = zk if | | f ( 0 ) - z t | | <5(s), 

1.e. the trajectory of each solution z for initial conditions z(0) from the 5(s) neighbour­
hood of the singular solution zk converges to zk for x -* co and 

(13) ||Z"(T) - zk\\ < s 

for an arbitrary x > 0 if ||z(0) — zk\\ < (5(e). 
The isolated root zk = <Pk(x, t) will be called stable in a bounded region D of the 

space of the parameters x, t if for all the points of the closed region D (i.e. the region D 



46 with its boundary) the proper values zk = $k(x, t) are asymptotically stable solutions 
of the corresponding residual systems (i.e. the residual systems with parameters x, f). 

A set of initial values z(0) of all the solutions of the residual system for which 
it holds 

lim Z(T) = zk 

will be called the region of contraction of the asymptotically stable root zk = $k(x, t) 
for x = const, t = const. 

On the basis of these concepts the following theorem can be formulated. 

The Tikhonov theorem. The solution of the extended system (7) converges for 
fi -> 0+ to the solution of the singular system (8), i.e. the relations (9) hold if: 

1. the root zk = <Pk(x, t) of equations (8.2) on the basis of which the solution 
X(t), Z(t) of the system (8) was reached is an asymptotic stable solution of the 
residual system (11); 

2. initial values z0 of the system (7) lie in the region of contraction of the root 
zk ~ $k(x, t) for the values of the parameters x = x0, t = 0 (i.e. for initial 
values of the corresponding variables). 

The equation (9) holds for all t for which the solution zk of the residual system lies 
within the stability region D(x, t) of the root zk. 

The theorem is proved in [4]. 
This theorem answers the question on what conditions the relation (9) holds, 

namely when the solution of the extended system maintains the qualitative pro­
perties of the solution of the given (ideal) problem. 

The computer setup described by the (extended) system of differential equations 
satisfying the conditions of the Tikhonov theorem will be called the correct model. 

Now let us show in more details what these conditions mean in the computer 
setup. 

4. THE RESIDUAL SYSTEM AND ITS INITIAL CONDITIONS 

The residual system plays the main role in the Tikhonov theorem. Let us express 
the system as follows: 

(14) ^ = piF1(x1,...,xn,z1,...,zm,t), 
dT 

—~ = PmFm(xi, ...,xn,z1,...,zm, t), 
ax 

xt = const, t = const. 



Each equation holds for one operational unit of the second group, i.e. for the 
unit with the parasitic dynamics only. The parasitic dynamics of the units of the 
first group is not taken into account. As t and x,- appear as parameters in the residual 
system, we can say that the system (14) defines the parasitic dynamics of the model 
in the before mentioned approximation. According to the Tikhonov theorem the 
stability of the residual system is one of the conditions of the validity of the relation 
(9), i.e. the stability of the parasitic dynamics is one of the conditions of the correctness 
of the model. 

As is often the practical case, the system (14) breaks down into several simultaneous 
systems or, more often, into both several simultaneous systems and a number of 
separate equations (i.e. simultaneous systems of the 1st order). For instance, in the 
example demonstrated in paragraph 3 regarded from the point of view of the residual 
system, the equations (6.1) and (6.2) form the simultaneous system of the 2nd order 
and the equations (6.3) and (6.4) two simultaneous systems of the 1st order (two 
separate equations). The solution of the residual system is stable if the solution of each 
of its simultaneous parts is stable. 

Each of the simultaneous systems of the 1st order describes the parasitic dynamics 
of an operational unit corresponding to the proper equation. The stability of each 
operational unit is usually guaranteed by its design. Only in the case of nonlinear 
units it can occur that the operational unit is not stable in some region of the values 
of output variables. 

Generally it holds: The action of the operational unit is described from the point 
of view of the residual system by the equations 

-T" = PjFj(.Xl> ••;X„,Z1,...,Zm,t). 

OX 

The /-th root of the singular equation Fj = 0 is designated: 

Zjl = q>jl(Xu ..., X„, ZX, . . . , _ ; _ ! , Zj+u ••-, zm, t). 

In order to obtain a stable root, it is sufficient to have an e0 > 0 such that for each s, 
|e| < e0 it holds: 

s g n F / x i , . . . ,x„, z l 5 ...,zJ_1,cpJl + s,zJ+1, ...,zm, t) # sgn s . 

Or else in the case of the differentiability of the functions Pp F} the following is to hold: 

• F, , 8FJ < 0 namely -—l 

*J-VJ, dz. 

< 0. 
Zj = <PJ, 

If the order of the simultaneous system is higher than the 1st order, then the 
computer setup contains the feedback system of the units of the 2nd group, the so 
called algebraic loop. The analytical examination of its stability is possible (see 1st 



example of the 5th paragraph). Usually, however, it is mathematically very difficult, 
specially in the case of nonlinear systems. 

The result obtained is usually a system of unequalities for variables xt, t, with 
the values of variables xt (excepting initial values) being unknown prior to creating 
a model (computer setup). Only the intervals of their position can be guessed. 

Although we can succeed in determining the region of the stability of the residual 
system (14) by an analytical process, the theoretical computations will usually not 
correspond with practical results on the computer, this being caused by an only 
approximate description of the action of operational units of the 2nd group, as intro­
duced in the 2nd paragraph. 

A simplified description has enabled a clearer explanation aiming to a definition 
of a correct model of the system of both differential and algebraic equations. However, 
it is unsufficient for an exact quantitative determination of the regions of the correct 
model. 

While deriving differential equations, describing the action of operational units 
of the 2nd group, we supposed that the frequency dependence of the operation 
amplifier was given by a logarithmic asymptotic frequency characteristics with 
a permanent slope — 20 dB/dec. In fact, however, this dependence is far more complic­
ated and dependent on the construction of the amplifier, i.e. of its type. The action 
of the amplifier (and of the operational units of the 2nd group as well) can be more 
exactly described by a differential equation of a higher order (for instance in depend­
ence on the fact how many fractions of the asymptotic frequency characteristics 
must be taken into consideration). This description will differ for individual types 
of the amplifier. A common and important feature is, however, the fact that each 
equation of, let us say, the s-th order, can be decomposed into an s system of dif­
ferential equations of the 1st order each of which has a small parameter fit. The 
"more exact" extended system thus obtained is again of the form (7). However, 
it is of a higher order, having a greater number of equations with small parameters. 
From the point of view of the residual system, however, the s equations belonging 
to one operational unit form a part of one simultaneous system, or else, they create 
an independent simultaneous system which, in the case of a linear operational unit, 
is always asymptotically stable. 

Now we can outline the reasons for the assertion expressed in the 2nd paragraph, 
namely that the neglecting of parasitic dynamics of the units of the 1st group will 
not influence the analysis of the correctness of the computer setup. Each unit from 
the 1st group can be more exactly described, for instance, by a set of three differential 
equations, the first one describing the ideal dynamics, the two remaining ones with 
a small parameter at a derivative being dependent on the dynamic properties of the 
amplifier. From the point of view of the residual system, each of the remaining two 
equations will create an asymptotic stable simultaneous system of equations of the 
1st order (for all the values of parameters x„ t) without influencing the validity of the 
1st condition of Tikhonov's theorem. 



Thus, it can be summarized that the determination of the region of the asymptotic 49 
stability of the residual system, containing the simultaneous system of a higher order, 
will be very complicated from the analytical point of view. It will often be more 
complicated than the solution of the given problem. In conclusion let us point to the 
possibility of using the computer in order to solve the given problem. 

The second condition of Tikhonov's theorem gives the demands for the initial 
conditions of the units of the 2nd group, namely of the units with parasitic dynamics 
only. There are no prescribed initial conditions for these units. The values of their 
output variables Zj(t) in time t = 0, i.e. z0j are given by the solution of the system 
(8.2), in which there are substituted xt for given initial values x0i of the operational 
units of the 1st group. 

These values appear on the outputs of the corresponding units almost at the very 
moment of switching the computer into the regime "Solution". Only then, however, 
if the 1st condition of Tikhonov's theorem is satisfied, namely if the corresponding 
root of equation (8.2) is an asymptotically stable root of the residual system. 

If the residual system is linear, then, generally speaking, it has one root 

z, = * , ( * , t) 

which either is asymptotically stable or is not (we say that the system is either stable 
or unstable). If it is asymptotically stable, then all the points z0J lie within the region 
of contraction of this root; therefore, in the linear case, the validity of the IstTikhonov 
condition ensures that the 2nd Tikhonov condition is satisfied as well. 

The situation is different in the nonlinear case: the system (8.2) can have more roots 
than one. Some of them are asymptotically stable and some are not. Each asymptot­
ically stable root has its region of contraction. If we are interested in the root zk = 
= <Pk(x, t) from the point of view of the solved problem, i.e. of the ideal dynamics, 
and if the root is an asymptotically stable root of a residual system, then several 
cases can occur: If the initial contions z0J lie within the region of contraction of this 
root, the 2nd condition of Tikhonov's theorem is fulfilled, then relations (9) hold and the 
model is correct. In another case the initial conditions can lie in the region of contrac­
tion of another root; then, the requested solution cannot be obtained on this model. 
As it is often the case, the initial conditions lie between the regions of contraction 
of two (eventially more) asymptotically stable roots and it is impossible to determine 
beforehand which solution will be obtained. (It usually depends on the momentary 
condition of the circuits connecting the critical part of the computer setup.) Finally 
the initial values can lie in the region of instability. The solution corresponding 
to the root zk cannot be obtained on this model (in spite of the 1st Tikhonov condition 
being fulfilled) and the model is incorrect. The questions concerning initial conditions 
will be demonstrated in the following paragraph in the example 3. 



50 5. EXAMPLES 

The presented text is illustrated by several examples. 

Example 1. The following differential equation is to be solved on the analogue computer: 

dX 
(15) . - І ^ p r - д o ] . ВД-o 

dí k, — 1 
where k1 and k2 are the coefficients which are to be set independently to each other during the 
computation process and/is a driving function. The solution of this equation is asymptotically 
stable if klj{k2 — 1) < 0 holds, i.e. if inequalities either kx < 0, k2 > 1 or kx > 0, k2 < 1 
hold simultaneously. 

The equation (15) may be written as a system of differential and algebraic equations: 

— = /c1Z, (k2-\)Z=X - f, Z(0) = 0 . 
dt 

This system describes the ideal dynamics of the computer setup illustrated in figure 5 (the variables 
of the ideal dynamics are designated there in the square brackets). 

0[X] 

Fig. 5. Block diagram of the relation (15). 

The extended system may be expressed by approximation in the form of a 1st order differential 
equation (in the calculation the inner resistance of the potentiometer k2 was neglected, therefore 

(16) 
dx 
— = &1-Í , 
dí 

1 dz t 

co0 dř 
= i ( - - i - k2z2 - x +f(t)), 

1 dz2 ,. , 
co0 dí 

The residual system has a linear form: 

dz. dz, 
= i(-Zl-k2z2-x+f(t)), ^ l = i ( - Z l - Z 2 ) 

dт dт 



where t, x are parameters. When analysing the roots of the characteristic equation we find out 
that the system (and consequently the parasitic dynamics too) is stable for k2 < 1. 

When analysing the solution of the example 1, we get the results shown in table 1. 

Table 1. 

Analysis of the solution of the example 1. 

Case Ideal 
dynamics 

Parasitic 
dynamics 

1 kx > 0 k2 > 1 unstable unstable 
2 kt > 0 k2< 1 stable stable 
3 kt < 0 k2 > 1 stable unstable 
4 ky < 0 k2 < 1 unstable stable 

The oscillogram of the solution of the case 2 for the driving function f(t) in a form of step 
function is shown in figure 6 and the oscillogram of the case 4 is shown in figure 7. The model 
is correct in both mentioned cases (in the latter a greater error of the solution can be expected 
due to the instability of the ideal dynamics). 

Fig. 6. Oscillogram of the solution of the example 1 for kv > 0, k2 < 1. 

The oscillogram of "the solution" of the case 3 is indicated in figure 8. In spite of the stable 
ideal dynamics Tikhonov's conditions are not satisfied and the model is not correct. The diagram 
indicated by figure 8 has no relation to the solution of equation (15). (The output voltages of the 
summing amplifiers reach limit values almost immediately after the computer was set to "Solu­
tion". The output voltage of the integrator 3 increases in time linearly.) The solution of the 
mentioned differential equations was carried out on the computer AP 3M (product of Tesla — 
Czechoslovakia). 



Fig. 7. Oscillogram of the solution of the example 1 for kl < 0, k2 < 1. 

Fig. 8. Oscillogram of the incorrect "solution" of the example 1 (kt < 0, k2 > 1). 

Example 2. In the following example we shall show the relation between the stability boundary 
and the way of approximation. We shall investigate the greatest gain admissible for which a loop 
of three summing amplifiers is stable. See figure 9. The assumption is that all summing amplifiers 
possess the same dynamic properties. 

a) Let us consider the case that the dynamics of the summing amplifier is described by a dif­
ferential equation of the 1st order. On these conditions the action of the summing amplifier 
(see figure 10) can be described by the differential equation as follows: 

J_dzj 
a>0 dł 

= -ß(Zj + /cz;) 



fc = ^ > 0 , /> = _ i - . 
G„ 1 + k 

The system of the three summing amplifiers will be described by the (extended) system of 
equations: 

±*±±=-fl(Zl + kz3), 
to0 at 

L^i=-p{kZl + Z2), 
co0 at 

i -^= - J g ( / cz 2 + z3). 
co0 at 

Î* 

Fig. 9. Feedback loop of the three summing amplifiers; 

The residual system has an analogue form. The analysis of stability will be carried out on the 
base of the analysis of the roots of its characteristic equation: 

X + 1 + k3 = 0 . 

G, 

-O 
Fig.10. Circuit of the summing 
amplifier. 

All the roots have negative real parts if it holds: 0 < k < 2. The loop gain under the conditions 
mentioned above must fulfil k3 < 8. 

b) Now we suppose that the dynamics of the summing amplifier is described by the equation 
of the second order with critical damping: 

co0 d í 

1 dwj 

co0 dt 
= - Í J 4 W j + Zj + kzt) . 



The extended system of the 6th order describing the action of the loop, composed of three 
summing amplifiers (see figure 9), contains three such couples of equations. The residual system 
has the analogue form to the extended system. By analysis of roots of the characteristic equation 
we obtain the condition 0 < k < 1-33 for the stable loop. The greatest admissible loop gain 
for the loop composed of three summing amplifiers is given by the following relation: kz = 2-35. 

Evidently the greatest admissible loop gain depends to a great extent on the chosen approxim­
ation of the dynamic properties of the amplifier. 

The values reached in practical cases differ considerably from each other according to different 
types of computers used. For instance, the authors Giloi - Lauber [2] state that the loop gain 
for the loop composed of three summing amplifiers is of the magnitude from 2 to 4. If the computer 
AP 3M is used, however, the mentioned loop is stable even for the values greater than 8. 

Example 3. Let us solve the following system of differential equations: 

(17.1) 

(17.2) 

— = -XY + 0,008 , X(Ö) = X0 > 0 , 
dř 

X - Y2 = 0 . 

Fig. 11. Block diagram of the systém (17). 

The roots of the equation (17.2) are Yx — + y/X, Y2= — y/X for X > 0. In the case of X < 0 
no solution can be reached in the real domain. When the roots Yu Y2 are substituted into equation 
(17.1), two solutions will be obtained. The singular solutions are y/(X) = +0-2 for the root Y1 



1 dz 2 _ 
co0 dř 

1 dz 3 - 1 . 2, 
я , 1 _ 1 1 ( Z з + Zг) 

co0 ăt 1 + | z 2 | 
for z 2 > 0 , 

z 3 = 0 for z 2 < 0 , 

z 4 = 0 for z 2 > 0 , 
1 d z 4 _ - 1 / „24 

c o d t " i + N ( 4 2 ) 
for z 2 < 0 , 

± ^ = _ І ( Z 5 + Z 4 ) , 
co0 át 

and -J(X) = —0-2 for the root Y2. The solution y/(X) — + 0 2 is stable, the solution y/(X) = 5S 

= —0-2 is unstable (it is easy to find out by the use of the second Liapunov's method). 
The block diagram for the solution of equations (17) is shown in figure 11. 
In describing the dynamics of the operational amplifier by an equation of the first order, 

the following system is obtained: 

(18.1) i - ^ - = - K z 1 + z3 + z5 + x ) , 
co0 df 

(18.2) 

(18.3) 

(18.4) 

(18.5) 

(18.6) _ _ d i _ _ _ i ( z g + Z 2 ) 5 

co0 df 

(18.7) ~ - - * i + * ) - • 
co0 df co0 

(18.8) z8 - z7z2 for z7 > 0 , 

(18.9) . z8 = z7z6 for z7 > 0 , 

(18.10) — = - z 8 + 0-008. 
df 

The simultaneous system is made up by the equations (18.1). (18.2) and (18.3) if z2 > 0 holds. 
By means of linearization in the neighbourhood of the singular point zl = 0, z2 — + Jx, 

z3 = —x, we may find out that this point is the stable solution of the proper residual system 
within the limits of stability 0 < y/(x) < 0 5 (on the computer AP 3M the upper limit of stability 
approaches y/(x) = 1). 

The other simultaneous system is constituted by the equations (18.1), (18.2), (18.4), (18.5) 
supposing that z2 < 0. The proper singular solution zl = 0, z2 = — y/x, z4 = x, z5 = — x 
is unstable for all values —y/x. (The analysis is carried out again by means of linearization and 
by application of the Hurwitz criterion.) 

The solution on the analogue computer shows that the region in which the residual system 
is stable is fully situated in the region of contraction of the root Y^ = +y/X. It means that the 
solution belonging to the root Y1 (the steady state is X= Y\ = 004) is obtained, if the initial 
value of X is chosen within the interval 0 < X0 < 0-5. The model is correct in this case. 



The solution of the equation (17.4) proper to the root Y2 satisfies none of Tikhonov's condi­
tions. Thus, the model is not correct and the solution which can be reached by analytical cal­
culation (the root Y2 = —-J X is substituted in the equation (17.1)) is not obtainable on this 
model. 

6. CONCLUSION 

In our paper we tried to accomplish a new analysis of the computer setup dynam­
ics - an analogue model of a system of differential and algebraic equations. We 
introduced the concept of the residual system. The idea is based on the Tikhonov's 
work about the systems of ordinary differential equations with small parameters 
at the highest order of derivatives. Further we demonstrated the stability of the 
residual system to be the fundamental condition for the correctness of the model. 
The case was also solved when the algebraic equations have more than one root 
and sufficient conditions were given to reach the solutions proper to individual roots. 

The contents of the article indicate that for practical analysis of the residual 
system stability our interest may be limited to the operational unit of the second 
group only and further more to feedback systems of such units (i.e. to simultaneous 
parts of the residual system). The exact mathematical analysis is, as demonstrated 
by the examples, often too complicated. The result of the analysis may, in some 
cases, namely if an unsufficiently suitable approximation of the dynamics of an 
operational units is chosen, diverge from the practical results shown by the computer. 

Practically the analogue computer can be used for the solution of the problem. 
As the first step we have to create the circuits described by simultaneous sets of 
equations with small parameters (such systems are, for instance, in example 3 — of 
paragraph 5 — the system of the equations (18.1), (18.2), (18.3) and the system (18.1), 
(18.2), (18.4), (18.5)), to realize the computer setup according to the block diagram. 
Let us note that the block diagram must also be created in the case of mathematical 
analysis in order to compose the residual system. Initial conditions of the units 
of the first group are parameters and they are realized as constant driving functions. 
Also all time dependent elements and functions are realized as constants equal 
to its values for time t = 0. Thus, for the values of the parameters t = 0, x = X0 

the model of the simultaneous parts of the residual system is created. As soon as the 
computer setup is put to "Solution", the stability of the residual system can be found 
out for t = 0 (it can be carried out even in a certain interval t > 0, as the solution 
is continuous in the relation to the parameters) as well as the fact whether the initial 
conditions lay in a region of contraction of the demanded root. It means the verific­
ation of the validity of the conditions of Tikhonov's theorem. If the conditions 
are satisfied, the computer setup may be filled up by necessary integrators connected 
according to a proper block diagram. This way, the correct model of a solved problem 
can be reached. 

Unless Tikhonov's conditions are satisfied, a way must be searched how to manage 
it if possible. It may be done by a new formulation of the problem. For example 



a new variables can be introduced or some of algebraic operations can be carried 
out analytically (in the example 1 the case happens when the separate adjustment 
is not demanded and the expression k1j(k2 — 1) is realized by one potentiometer). 

Finally let us remark that the analysis of the computer setup dynamics shown 
in the article holds even in the case if either differential equations only or algebraic 
ones only are solved. A model of algebraic and transcendental equations contains 
units of the second group only. Its (parasitic) dynamics is given by the proper residual 
system. Practically, such a computer setup is stable only in some special cases. To 
warrant the stability of a solved problem, another way has to be chosen (creation 
of a different stable dynamic system whose steady state is described by the given 
algebraic equations [2], [3], [5] etc.). This problem has been much more discussed 
in the existing technical literature than the one which is dealt with in this article. 

(Received November 19th, 1968.) 
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Kritérium korektnosti analogového modelu soustavy diferenciálních 
a algebraických rovnic 

JAROMÍR KŘEMEN, JOSEF SOLDÁN 

V článku jsou uvedeny obecné dostatečné podmínky pro „korektnost" modelu 
soustavy obyčejných diferenciálních a algebraických rovnic na analogovém počítači. 
Je zavedena tzv. „rozšířená soustava" diferenciálních rovnic, která popisuje dynamiku 
modelu při uvažování zpřesněného popisu počítacích jednotek. Na jejím základě 
je v článku definována tzv. „reziduální soustava", která popisuje v určitém přiblížení 
zavedenou „parazitní dynamiku" modelu. Je dokázáno, že dostatečnou podmínkou 
korektnosti modelu je asymptotická stabilita této parazitní dynamiky. Je rovněž 
rozebrána možnost získání požadovaného řešení v modelu nelineárních diferenciál­
ních rovnic. Teorie je doplněna ukázkami řešených příkladů. 

Ing. Jaromír Křemen, RNDr. Josef Soldán, Ústav výpočtové techniky ČVUT, Horská 3, Praha 2. 
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