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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 4 

POLYNOMIAL APPROACH TO POLE PLACEMENT 
IN MIMO n-D SYSTEMS1 

MICHAEL ŠEBEK 

Matrix polynomial equations in n-D polynomials are employed to assign desired invariant 
polynomials to general n-D multi-input multi-output systems. 

1. INTRODUCTION 

A lot of dynamical properties of a linear system can be naturally expressed in terms 
of the positions of its poles. That is why the problem of pole placement has become 
so popular in control. In scalar linear systems, it is sufficient to assign just the charac­
teristic polynomial. In multi-input multi-output systems, however, one must assign 
separately all the invariant polynomials (and not merely their multiple — the charac­
teristic polynomial). The reason is that the characteristic polynomial itself does not 
say enough about the internal dynamics of a multi-input multi-output system. 

For a scalar 2-D system, the problem of pole placement has been solved by several 
authors recently. We shall follow here the approach of [7] which is based on 2-D 
polynomial equations. The progress described in the present paper is twofold: at 
first, the multi-input multi-output systems are considered which call for matrix 
(instead of scalar) polynomial equations. At second, n-D systems are involved so 
that general n-D equations (n ^ 2) apply. 

2. BASIC DEFINITIONS 

Throughout the paper, the n-D multi-input multi-output systems are described 
by their transfer matrices which are expressed as matrix polynomial fractions of the 
type 
(1) D^NL 

1 The original version of the paper was presented at the IMACS World Congress, Paris, 
July 1988. 
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or 
(2) NRDR

l 

where the matrices DL, NL and DR, NR have their entries in 0t\zu z2,..., zn] which 
is the ring of real polynomials in n indeterminates Zi, Z2, •••, Zn. 

When facing a discrete n-D system (such as an n-D digital filter [ l ] or the discrete 
model of a complex plant described by partial differential equations [2]), the Zt's 
are usually interpreted as delay operators working in various directions. In the case 
of a delay-differential system [7], they stand for exp (—/.,*) where s is a complex 
variable in the Laplace transform and h/s are various (possibly noncommesurate) 
delays durations. 

Let us now recall some basic concepts for left fractions such as (1). They are 
mostly cited from [6]. Similar facts for (2) are dual. 

Definition 1 (Factor Coprimeness). The matrices DL and NL are left factor 
coprime iff they have only unimodular left common factors (i.e. those with nonzero 
but real determinants). 

Definition 2 (Zero Coprimeness). The matrices DL and NL are left zero coprime 
iff the composite matrix \DLNL~] has a full row rank for every n-tuple (zi» Z%> •. •> zn) 
of complex numbers. 

These two different types of coprimeness project into the following two different 
concepts of equivalence. 

Definition 3 (Intertwining Equivalence). The matrices DL and DR from M\z\, z2, ... 
..., .-„] are equivalent (or intertwined) iff there are two matrices NL and NR from 
$\Z\, z2,..., £„] such that 

(3) DL-1NL = NRD~i 

where the both fractions are factor coprime. 

Definition 4 (Strict Equivalence). The matrices DL and DR from 0l\zu z2,..., z„] 
are strictly equivalent iff there are two matrices NL and NR from 3k\z\, z2, ..., z„~\ 
such that (3) holds with the both fractions zero coprime. 

It can be shown [6] that the matrices DL and DR of the same sizes are strictly 
equivalent iff there are two unimodular matrices U and F in 0t\z\, z2,.--, zn~\ such 
that 

(4) DL = UDRV 

Needless to say that the strict equivalence implies the intertwining one. The vice 
versa, however, is not true and two intertwined matrices need not be related by (4) 
in general. 

Invariant polynomials of n-D matrices can be formally defined in the same way 
as in 1-D: 
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Definition 5 (Invariant Polynomials). Let, for an m x m full rank matrix D, 
the greatest common divisors of its k x k minors are denoted by dk, 1 = k ^ m, 
and d0 = 1. Then the invariant polynomials of D are defined by 

(5) it = djd0 , i2 = d2jdu ..., im = c4/<lM-i 

The Smith form of D (in ^ [ z i , z2, •.., z„]) is the matrix diag (i l5 i2,..., tm). 

As expected, two n-D polynomial matrices DL and DR are intertwined iff they 
have the same (nonunit) invariant polynomials [6]. Consequently, every n-D poly­
nomial matrix is intertwined with its Smith form but, in contrast to 1-D, is not strictly 
equivalent to it in general. That is why the unimodular operations (4) are not suffi­
cient to calculate Smith forms in n-D. Fortunately, just the intertwining equivalence 
is what we often need to solve control problems. 

3. FEEDBACK SYSTEMS 

Consider an n-D linear /-input m-output system given by its transfer matrix 

(6) AL'BL 

where AL and BL are left factor coprime matrices in 0t\zx, z2, •••, z„], AL is m x m 
and invertible while BL is m x /. 

Further consider a linear output feedback controller described by the transfer 
matrix 

(7) QRPR1 

where PR, QR are, respectively, m x m and / x m matrices in M\_zx, z2, ••-, z„] 
and PR is invertible. 

As usually, we assume that both the system and controller have their charac­
teristic polynomials equal to the determinants of their transfer matrices which means 
that they are free of hidden modes. 

Let them be connected in the standard feedback structure in Figure 1. Similarly 
as in [4] for 1-D systems, we can derive that the matrix 

(8) ALPR + BLQR 

is interwined with the matrix 

(9) PLAR + QLBR 

where AR, BR and PL, QL are defined via the following factor coprime matrix fractions 

(10) BRAR
X = A~L

XBL and P£1QL = Q^1 

In addition, both the matrices (8) and (9) are intertwined with the denominators of any 
transfer matrix in the feedback loop in Figure 1 (provided that no cancellation nor 
extension has been made in these transfer matrices). Consequently, (8) and (9) 
have the same nonunit invariant polynomials and these polynomials equal (up to real 
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multiples) nonunit invariant polynomials of every realization of the feedback system 

(provided that no hidden modes are added in this realization). 

So to place desirably the poles (invariant polynomials) of the resultant feedback 

O "T 

(R^R 

Fig. 1. Standard feedback structure. 

system, one must first choose an m x m matrix CL or an / x / matrix C^ (both 

in 0l\zx> z2» •••> So]) n a v m g these desired invariant polynomials. Then the problem 

reads as follows: 

Formulation 1. For the AL, BL and CL find PR invertible and QR such that 

(11) ALPR + BLQR - CL 

or, equivalently, for the AR, BR and CR find PL invertible and QL such that 

(12) PLAR + QLBR = CR . 

4. SOLUTION 

We have now transformed the problem of pole placement (invariant polynomials 

assignment) into the solution of one from the n-D matrix polynomial equations (11) 

or (12). The method of solution for such equations can be found in [8] and need 

not be repeated here. However, it may be interesting to analyze the results of simple 

examples. We focus our attention on (11) in what follows. The equation (12) is dual. 

Example 1. Let be given a 4-D system with 

AL = 

Bт 

and 

\_Z3 + zA l j 

- [ z' 1 
\_Z3 + Z*] 
[2 + Zt 0 ] 

L 0 2 + z2\ 0 2 + z2_ 

When using the algorithm from [8], we result in the controller with 

2 0 1 
2z2z3 - 3z3 + 2z2zA - 3z4 2 + z2\ 

QR = [1 - 2z2 0] 

PR = 
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It is well known that matrix polynomial equations may possess infinitely many 
solutions. In fact, here any matrices 

(13) PR + BRT and QR - ART 

where T is an arbitrary compatible matrix with entries in $[zu Z2, •••, z„], where 

AR = [1 + ZiZi] 

BR = 
Zí 

Z2 + Z4. — Z1Z3 — Z1Z4 + ZiZ2Z$ + Z\Z2ZA.^ 

give rise to the same invariant polynomials (i1 = 1, i2 = (2 + Zi) (2 + z2)). 
Whenever the AL and BL are zero coprime (as in Example l) then one can assign 

any invariant polynomials and choose any CL. In particular, all the invariant poly­
nomials can be taken units by setting CL = I. This choice results in the so called 
deadbeat controller [3, 9] which for the given data reads 

**'\ 1 ?1 
[_Z2Z3 + Z2Z4. - Z3 ~ ZA. 1J 

QR = [~z2 0] 
In fact, this is rather typical situation for AL and BL are generically left zero coprime 
whenever I ^ n (see [5]). 

When, on the contrary, AL and BL have some (left) zeros in common then these 
zeros must occur in every choice of the resulting invariant polynomials with the 
right multiplicities. This is now well understood in scalar 2-D systems [7] where 
such common zeros are usually called the fixed poles of the system. 

Example 2. Consider now 

(14) AL = 
1 1 + Zt 

0 ]• 4.: • l - * i 

and, at the moment undeterminate, a right side matrix 
z2 

C Ł -Һ Ҹ 
LC3 C 4 j 

In such a case, the algorithm from [8] yields directly a parametrization of all accept­
able right hand sides. In fact, here the equation (11) is solvable iff (2 + z2) divides 
both cjA + Zi) + c3 and c2(l + Zi) + c4 at the same time. So for 

the solution exists being, e.g., 

P 

and 

1 L- 1 -*! 2 +*J 
ri -( i + *i)(2 + «ayi 

«~ L °
 2 + Z2 J 

QR = [0 -2*1 - zY] 
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c, = 

but 
- i 0 "I 

0 2 + z2\ 
makes (11) unsolvable. 

This is rather surprising for Cx and C2 have not only the same invariant poly­
nomials but they are even strictly equivalent: 

cx = uc2 
where 

U = [-'-
Further studies will be sure useful to explain (system theoretically) why (11) pos­

sesses no solution for CL = C2 even if its invariant polynomials (ii = 1, i2 = 2 + z2) 
can be easily assigned to the given system (6), either by employing CL = Cx or by 
using, from the very beginning, another matrix fraction representation for the plant, 
say AL = U~XAL and BL = U~XBL (here clearly A~XBL = A£XBL). 

Let us note that the same situation may happen in 1-D if AL and BL are not coprime 
and also there it is not yet understood. However, in 1-D one can always pre-cancel 
the fraction (6) to result in coprime left side of (11) before a CL is chosen which is 
not the case in n-D (for n ^ 2). 

Fortunately, when using the method [8] to solve (11), one can calculate a para-
metrization of all acceptable right sides before choosing CL (as in the Example 2). 
Such a way, all the problems above are overcome. 

Example 3. As another example, consider an unstable delay-differential plant 
with the transfer matrix 

(15) AllBL 
S 1 + 5 
0 5 

exp (— hs) 
1 

Using again the method of [7], we first solve (.11) for CL = I to get (substituting for 
brevity d = exp ( — hs)) 

м [;т][v - 1 d - d2 

- d + [-5 1 + ds] = 
1 0 
0 1 

and the right side fraction for (15) as a by-product 

/.7x ~ .- i i - 1 - s + sd 
BRAГ = [.»]-

It is easy to see from (16) that the fraction (15) is zero coprime. As a consequence, 
any stable invariant polynomials can be assigned to stabilize the plant (15). 

However, the solution appearing in (16) can not be used directly as det P = 0. 
In such a case, one must apply (13) to get a suitable solution. 

In practical cases one usually wishes to design a proper controller. Clearly, the 
controller made directly from (16) is an improper one but this is just a preparatory 
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step. It is well known that, to get a proper controller, the degrees of CL must be 
sufficiently high. Applying the result of [10], one must take the first-row-degree 
of CL to be the first-row-degree of the matrix \AL BL~\ plus the maximum degree of 

[ R minus one which here equals 2. Similarly, the second-row-degree of CL must be, 
BRJ 

at least, 2 as well. For example, 

M> C - [ ( 1 V ) 2 ( 1 + V ] 
will do the job. Using now the algorithm [7], we obtain the controller (7) with 

_ [~1 + s + exp ( — hs) 1 + s — exp (— hs) — exp (—2hs)~\ 
R~\_ 1 &xp(-hs)-s J 

QR - [-s 1 + s(2 + exp (-hs))] 

This proper retarded controller stabilizes the plant (15) by assigning (18), i.e. the 
finite number of poles characterized by the invariant polynomials it = i2 = (1 + s2). 

Finally, recall that if the system (6) is strictly causal (i.e., AL(0) is invertible and 
BL(0) = 0) then every solution of (11) is causal (PR(0) is invertible) for a causal CL. 
Otherwise, noncausal solutions also exist and if a causal one is desired then (13) 
can be used if necessary. 

(Received October 21, 1988.) 
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