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KYBERNETIKA-VOLUME 27 (1991), NUMBER 5 

SOLUTION OF THE MARGINAL PROBLEM 
AND DECOMPOSABLE DISTRIBUTIONS1 

RADIM JIROUSEK 

A well-known Iterative Proportional Fitting Procedure proposed to construct a probability 
distribution with given marginals is of exponential space and time algorithmical complexity. 
Nevertheless, study of the case in question may make possible to reduce its complexity by de­
composition of the problem as it is showed in [61. Further reduction of the time complexity is 
probably impossible but, in some cases, the space-consumption can be reduced by taking ad­
vantage of possibility to represent decomposable distributions in an economical way. 

1. INTRODUCTION 

In probabilistic models of expert systems partial (input, or expert) knowledge is, 
usually beforehand, transformed into a form of probability distributions of small 
dimensions. Total knowledge of the area of interest is then represented by a multi­
dimensional distribution whose marginal distributions coincide with the input 
distributions, or, in other words, by a distribution which is a solution of the given 
marginal problem. As a rule, there exist infinitely many of distributions meeting 
this condition and thus it is quite natural to seek for the distribution which is the 
best one in a sense. Construction of this optimal distribution is called the knowledge 
integration process. 

Probably the most often used criterion for a comparison of multidimensional 
distributions coming into consideration is the maximum entropy principle. Accord­
ing to it, the distribution with the highest value of the Shannon entropy is preferred. 
Though there are serious objections against this criterion (cf. e.g. [4]), it will be con­
sidered also in this paper as the studied Iterative Proportional Fitting Procedure 
yields distributions optimal in this sense. 

The method was published by Deming and Stephan as early as in 1940 [2]. It is 

1 This is an extended version of the lecture presented at the Symposium on Distributions 
with Given Marginals, Rome, April 4—7, 1990. 
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known that it is of extremely high algorithmical complexity and so it can be used 
for a limited number of dimensions only. Nevertheless, in some cases it is possible 
to reduce this complexity in the way proposed by Malvestuto [6]. The presented 
paper shows another possibility how to decrease the space complexity of the algo­
rithm. 

2. ITERATIVE PROPORTIONAL FITTING PROCEDURE 

In accordance with most of papers dealing with probabilistic approaches to expert 
systems, a finite model will be considered. 

Let Xt, ...,XN be random variables taking their values from finite sets X^ ..., X^ 
each of them containing at least two elements. Input (expert) knowledge is assumed 
to have been transformed into a system 9 of marginal distributions 9 = {PSl,..., PSK}, 
where each the subset Sk <= {Xx,...,XN] (k=l,...,K)determines variables for which 
the distribution PSfc is defined. If P is an N-dimensional probability distribution 
of variables Xx, ..., XN and S a {Xx, ..., XN] then Ps denotes the marginal distribu­
tion of P defined for variables from S only. 

In other words, P is defined on 
N 

X, x X2 x ... x XN = X X , 
i = l 

whereas Ps is defined on 

X X, . 
i:XteS 

For S = 0 let Ps = 1 for any distribution P. 

The goal of the knowledge integration process (under the assumption of acceptance 
of the maximum entropy principle) is to construct the N-dimensional distribution 

Pgene = {P: PSfc = PSfc for all k = 1, ...,K} 

for which 
H(pe) = ~ I P9(x1,...,xN)logPe(x1,...,xN) = max(H(P)). 

(x1,...,xN)eX1x...xX„ Perio 

The distribution Pe can be obtained by the Iterative Proportional Fitting Procedure 
which is based upon the recurrent computation of N-dimensional distributions 
Pl3 P2, ... according to the following formula 

P^P^,-^- for j=((i- l)modK) + l . 

Remark. Whenever a ratio of distributions P/Q appears in this paper, the distribu­
tion P is always absolutely continuous with respect to Q (P <̂  Q). Therefore ex­
pressions a/0 for a =f= 0 are out of question. The expression 0/0 is always assumed 
to be 1. 
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Csiszar in [1] showed that if IJg 4= 0 then beginning with the uniform distribution 

Po = Ixl Ixl 
l ^ i l • • • I^JVI 

this recurrent procedure converges and its limit distribution P* = P0. (More pre­
cisely, it follows immediately from his result that P* is an /-projection of P0 on H0 

and from the fact that this specific choice of P0 implies I(P |j P0) = H(P0) — H(P).) 

3. DECOMPOSABLE DISTRIBUTIONS 

Let C be a system of J (J ^ 1) subsets R,- _ {Xu ...,XN} such that they can be 
ordered in such a way that the sequence (R l5 ..., R.) fulfill the following running 
intersection property: 

V/ = 2, ...,J 3i,l ^ i<j(Rjn(\JRi)c:Rt). 
i = i 

Notice that any system consisting of one or two subsets meets the running inter­
section property. 

Definition. A probability distribution P (defined for all variables {Xly ...,XN}) 
is called decomposable with respect to the system £ = {Rl5 ..., R.} if 

p _ pRiVpRi\pR2r\Rxl rpRjjpRjr\(Riu...uRj-i)-i 

The decomposability is defined only for systems meeting (after reordering, if 
necessary) the running intersection property. Evidently, the above equality implies 

[JRj = {X1,...,XN}. 
i = i 

Moreover, if there exists one ordering of subsets from £ meeting the running inter­
section property such that this equality holds then it holds also for any other order­
ing with this property [5] . 

In addition to some theoretical reasons, decomposable distributions are of great 
practical importance. They are namely advantageous from the point of view of 
economical representation in a computer memory. To store a general N-dimensional 
distribution one needs 

IX I lY I \Y I > ?N 
I 'M! • | A 2 | ••• |-*JV| = z 

numbers whereas when representing a decomposable distribution, storage demands 
depend mainly on dimensionality of the sets Rj e £. Such a distribution can be easily 
recorded with the help of 

E n i*,i 
j = l i-.XieRj 

numbers. 
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Some of theoretical characteristics of the decomposable distributions, which will 
be used in the sequel, are summarized in the following assertion. 

Lemma 1. Let £— {Ru ..., Rj} be a system of subsets of (X_,. . . ,XN) . Let 
(P_, . . . ,P /} be a system of probability distributions such that for each j = 1, ... 
..., J Pj is a |Rj|-dimensional distribution defined for variables from R,- and for 
each couple of indices i,je{l,...,J} 

pRtnRj __ pRinRj 

Let H? denote the set of all N-dimensional distributions having (P_, ..., P,} as margi­
nals, i.e. 

ff_ = {Q- QRJ - Pj for a l l ; = 1, ..., J} . 

If there exists a permutation cr(l),..., <r(J) of integers 1, ..., J such that (R^ . ) , . . . 
..., Rrf(j)) meets the running intersection property then 

(1) there are many of such permutations; namely, for any j e {l, ..., J} there exists 
a permutation cr(l) , . . . , Gj(J) such that (R f f (1),..., R^.^) meets the running 
intersection property and <7j(i) = j , 

(2) for all permutations a, for which (R_»(_), ..., R^j)) meet the running intersection 
property, the expressions 

p _ p Yp /pR<T(2)nRCT(i)-| Tp /pRCT(j)n(RCT(i )u...u«CT(j-i))-| 
r a - -rcr(l)L-rct(2)/^<T(2) j • • ' Lr<-(")/1«(i~) J 

define the same probability distribution from H? for which 

H(P„) = max(H(Q)). 
_>6i7? 

Proof. Lemma 1 is a summarization of well-known facts. 

The existence of the permutation o-y follows from the fact that a system with the 
running intersection property can be represented by a triangulated graph, or equi­
valent^, by a hypertree. The problem of finding a respective ordering can be solved 
with the help of a restricted maximum cardinality search on an acyclic hypergraph 

[«]• 
The statement that Pa e TI^ was proved in [5]. 

Suppose H(P<,) < H(Q) for some Q e H?. Then, using conditional entropy as 
introduced e.g. in [3], one can express the Shannon entropy in the form of a sum 

jT_YP \ — Jj(pR<rO>\ _j_ j_YpR<r(2)|Rcr(l)\ _|_ ^ _|_ ^/ 'pR<T (J)|(Rcr(l)U...uJ?CT(J-l ))\ 

and also 

H(Q) = H(QR_(1)) + H(QRa(2^Rcr0)) + ... + H(QR<r<J>l(i?ff<1>u-"ui?°-<J-1))). 

Therefore, for at least one j, 1 _ j < J 

J_rCP«T(;)l(R<T(1)U...uKCT(j_1))\ < ^QRcrO)l(Rcr(l)U...uJ?CT(j-l))N 
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which contradicts with 

J^7pK<T(./)l(RCT(i)U...uRCT(j-i))\ _ jy/pRCT(i)l«<T(j)n(RCT(i)U...uRCT(j-i ))\ __ 

= jj(0Rc'a^R'7U)n^R'T(1'>u'"uRaO~i'>)) > H(QRaU:'^Ra"-1'>u'"^R<ra~1^) 

where the former equality holds because of the definition of Pff and the latter one 
follows from Q e Hc. Thus, H(Pa) _ H(Q) for any Q e H? and therefore 

H(Pff) = max(H(Q)). 
Qenz 

Being a strictly convex function, Shannon entropy takes its maximum value in one 
point of H^ and therefore all the considered permutations a define the same prob­
ability distribution. • 

4. SOLUTION OF THE PROBLEM 

The goal of this section is to show that a result of the knowledge integration 
process, i.e. the distribution Pg, can be sought in a class of probability distributions 
decomposable with respect to some systems of subsets. 

Theorem 1. Let a system 9 = {PSl, ...,PSK} (Sk <= {Xt, ...,XN}) be such that 
IJ6 =# 0 and Pe be the distribution from IIe maximizing the Shannon entropy. Then 
Pe is decomposable with respect to any system {Rl5 ...,Rj} (Rj <= {Xu ...,XN}, 
j = 1, ..., J) fulfilling the following two conditions: 

(1) there exists a permutation a such that (R^i), ..., R«r(j)) meets the running inter­
section property, 

(2) for every k = 1, ...,K there exists j e {1, ..., J} such that Sk c Rj. 

Proof. Let a system {R1? ..., Rj} fulfill the conditions (1) and (2). Without loosing 
generality one can assume that the subsets are ordered in the way that (R l5 ..., R,) 
meets the running intersection property. Consider P0 e ITg for which 

H(P9) = max H(P). 
Peng 

The goal is to show that Pe = P4 where 

p _ pRirpR2/pR2n«i- | rpRj/pRjn(Riu. . .uRj-!)- | 

The system (R1} ...,Rj) and the system if distributions (PRl, ...,PRj) fulfill all 
assumptions of Lemma 1 and therefore the distribution P^ maximizes Shannon 
entropy within the class 

n? = {Q: QRj = PRj for all j = 1, ..., J} . 

From the condition (2) it follows immediately that H^ c= FFe. It is selfevident that 
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Pg belongs to H^ and since the distribution Pd maximizes Shannon entropy within 

Ffe the same must hold also for H^. Thus 

H(P0) = maxH(Q)) = H(P?) 
Qei7§ 

and, therefore P? = Pe. • 

Remark. Notice that if the system 6 is rich enough then it may happen that condi­
tions (1) and (2) are met only by the system containing the set R = {Xt, ...,XN}. 
It happens for example when 9 contains all two-dimensional distributions. In these 
cases, the presented method cannot be effectively used. 

5. IPFP AND DECOMPOSABLE DISTRIBUTIONS 

Being decomposable, the multidimensional distribution which is a result of the 
knowledge integration process can be economically stored in a computer memory. 
Does it also mean that all distributions Px, P2,... which are computed when per­
forming the Iterative Proportional Fitting Procedure are also decomposable and that 
it makes possible to reduce the space complexity of the process? The answer to this 
question is a subject of the present paragraph. 

<# 
Lemma 2. The uniform distribution 

1 

\X I IX I I 'M! •• • |A/v| 

is decomposable with respect to any system meeting the running intersection property. 

Proof. This simple assertion follows immediately from the definition of the 
uniform distribution: 

1 
PR _ 

П [x,| 
l:X,єR 

for any R a [Xx, ..., XN} and therefore 

p R i r p R 2 / p R 2 n R i - | r p R j / p R j n ( i ? 1 u . . . u R j _ 1 ) - j __ 

1 1 

П |x,| П |x,|... П |x,| 
l:X,єRy l:XiєR2-Ri l-.XiєRj-Riv.-.uRj-1 пw 

Q 

Theorem 2. Let 0 = {PSl, ..., PSK} (Sk c [Xu ..., XN}) be a system of distributions 
such that n0 =1= 0. Let {R l5 ..., Rj} meet the conditions (l) and (2) from Theorem 1 
and let P0 be such an N-dimensional distribution that PSk <^ Pok for all k = 1, ... 
...,K. IfPo is decomposable with respect to the system {R l5 ...,Rj} then all the 
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distributions P„ i — 1,2, ... defined by the formula 

P ^ P , . . - ^ - for j = ( ( / - l ) m o d K ) + l 

are decomposable with respect to {R_,..., R,}, too. 

Proof. In the sequel, let {R_,..., Rs} be a system meeting the required conditions 
(1) and (2) from Theorem 1. The proof will be performed by the induction for i = 
= 1, 2, .... Assume that Pf_,- is decomposable with respect to {R1? ..., Rj}. Accord­
ing to Lemma 1 there exists a permutation <r(l), ..., <r(J) such that (R<r(i)5 •••> R<r(j)) 
meets the running intersection property and R&w ~ Sjfotj = ((/ — 1) modK) + 1. 

p. = p. , -____. _= 
• • • 1 P & 1 

p 
_ Z'pR<T(i)rpR<T(2)/pR<T(2)nR-(i)-Tj rpR<T(J)/pR<T(j)o(R-(i)U...uR-(j_i))-|

s\ ______ _ 
M - 1 

[ pR<r(i)-j 
p ______ rpR<r(2)/pR<r(2)r1R-(1)-| rpR<T(.r)/pR<r(j)ri(R-(i)u...uR<,(j-i))"j 

P(il J 

Since Rtf(1) c_ Sy it is clear that 

P*„<.> __ pjpf^D/i-f/j 
and for all/ = 2 , . . . , J 

pR<T(.)/pR<r(J)(-l(R<T(l)U...uR-(i- i>) __ pR-(.)/pR<r(I)r .(R<T(l)-'-"- lR-(.-i )) 

which finishes the proof. • 

The last two assertions bring immediately a positive answer to the question asked 
at the beginning of this section. Moreover, the computations performed in the proof 
give also an instruction how to realize a respective algorithm. A brief description 
of it is a content of the next section. But first, a simple condition is presented 
which makes possible to decompose the knowledge integration process in some cases. 
In graphical terms, this condition is also presented in [6] where it is used as a basis 
of a decomposition algorithm. 

Theorem 3. Let 6 = {PSl, . . . ,PS„} (Sk c [Xx, ...,XN}) be a system of marginal 
distributions and 9t c 9,62 cz 9 such that 9t u 92 = 9. Denote R£ (i = 1, 2) 
the sets of variables included in the subsystems 9t 

Rt= U S,. 
l-.PsteOi 

If Rt n R2
 — 5fc for some /c 6 {1, ..., K} then 

_ P„.P„, 
pRinR 2 
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Proof. Denote 

P = thth 
nRir\R2 

P is a probability distribution (this is a trivial consequence of Rt n R2 <=z Sk and 
pRinR2 = pRinR2 = pRi^ fromH0 because any PSi e d belongs either to 0X or0 2and 
therefore Ps

e[ or p £ equals Ps,. 
Consider any distribution Q e IIe 

v i w — \ QRmRzJ I pRinR2 

= H(QRl) + H(QR>) - H(P£^) = H(P9l) + H(P02) - (JF*-**) = H(P) 

and therefore H(P) = max (H(Q)) which implies P = Pe. • 
Qe/7 e 

6. DESIGN OF AN ALGORITHM 

First step of any algorithm realizing the Iterative Proportional Fitting Procedure 
should be the test whether the problem can be simplified by the way proposed by 
Malvestuto [6], i.e. by repeated application of the following two operations: 
(a) delete a variable that belongs to exactly one distribution PSfc e 6, 
(b) remove a distribution PSfc that is a marginal of another (i.e. 3 PS( e 9: Sk c ,$,), 
and by application of the decomposition algorithm. This algorithm realizes the idea 
of decomposition of the problem which is presented here as Theorem 3. 

Algorithm. 

Input. A system of marginal distributions 6 = {PSl, •••>PsK} which cannot be 
further decomposed. 

Output. System of marginal distributions {PRl, ..., PRj} such that (Ru ...,Rj) 
meets the running intersection property and 

PRIPRJPR^1] - . [PJP*?*^*'-*] 
defines P0. 

I. Initial phase. Find a system (Rlt ...,Rj) fulfilling the conditions (1) and (2) 
from Theorem 1. This can be done very easily with the help of a fill in algorithm 
[8] by adding some edges to the graph G(V, E) 

V={XU...,XN} 

E = {{Xi,XJ}:3k€{l,...,K}(Xi,XjeSk)} 
to make the graph triangulated; maximal cliques then define sets Rj. It is, however, 
desirable to construct such a system (R1? ..., Rj-) with minimum possible value 

i ni*.l-
/ = 1 l-.XieRj 

Some ideas how to achieve this optimal solution are in [7]. 
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II . Iterative phase. Define 

1 
P<),Rj — 

П |*,| 
l:XtєRj 

for ally = 1,..'., J, 

For i = 1, 2, . . . (until it converges) perform the following procedure: 

(i) Choose any permutation a(l), ..., a(J) such that ( R r f ( 1 ) , . . . , Rtf(/)) meets 

the running intersection property and RaW => Sj for j = ((i — 1) m o d K ) + 1. 

As mentioned above, it can be done by the restricted maximum cardinality 

search cf. [8] . 

(ii) Compute 

Pi,Ra(D ~ PsjL™i-l>Ra(l)ri-l,Ra(i)] 

(iii) For / = 2, . . . , J compute the following two distributions: 

(a) marginal distributions of the distribution 

n — V> T P lpRa{2)(^Ra(i)-\ | - p / p R , ( i - i ) n ( J ? , ( i ) U . . . u J ? , ( i - 2 ) ) - | 

\Li,l — ri,Ra(i)Lri,Ra(2)lri,Ra(2) J ••• Lri,Ra(i-i)lx i,Ra(i-i) J 

for variables R^D n (R<t(i) u . . . u R^i-1)) only and 

(b) 
p _ ,nRff(i)i~>(R, ( i)U...uR, ( i_i))rp / p R , ( i ) n ( R , ( i ) U . . . u R , ( , _ i ) ) - ] 

ri,Ra(D ~ Ui,l Lri-l,Ra(i)lri-l,Ra(i) J 

Remark. Notice that implementation of the last step of the process is not so 

difficult because 

T p /pR,( i) i~>(R,( i)U.. .uR, ( i - 1 ) )- | _ r p / p R , ( i ) n ( R , ( i ) U . . . u R , ( , _ i ) ) - i 

L-r'',R,(i)/-ri',R<r(i) J ~ Lri-l,Ra(i)lri-l,Ra(i) J 

for a l l / = 2, . . ., J. 
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