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Summary. For a certain class of functional differential equations with perturbations 
conditions are given such tha t there exist solutions which converge to solutions of the 
equations without perturbation. 
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0. INTRODUCTION 

Let 

A„x(t) = x(t) - x(t - a), 

a > 0 being a constant, and consider the neutral functional differential equation 

(A) -^ [A™x(t ) ] + / ( t , x ( g ( t ) ) ) = 0 , t > t 0 , 

where m >-1, n >-1, to > 0, and A™ is the m-th iterate of A;,, i.e. 

A-x(t) = £(- l ) i (^x( t - i C T ) . 
i=o > ' 

The conditions we always assume for / and g are as follows: 

(a) g: [to,oo) —> [0,oo) is continuous, and lim g(t) = oo; 

(B) (b) / : [to,oo) x R —> R is continuous and satisfies 

\}(t,x)\ <: F(t,\x\), (t,x) e [to.oo) x R, 

* This work was done while visiting the University of Saskatchewan as a visiting Professor 
of Mathematics. 
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for some continuous function F(t,u) on [t0,oo) x [0, oo) which is nondecreasing in u 

for each fixed t > t0. 

By a solution of (A) we mean a continuous function x: [Tx-ma, oo) -¥ R, Tx ^ to, 

such that A™a;(r.) is n-times continuously differentiable and satisfies the equation for 

t*^Tx. The solutions vanishing in a neighborhood of infinity will be excluded from 

our consideration. A solution is said to be oscillatory if it has an infinite sequence of 

zeros clustering at t = oo; otherwise a solution is said to be nonoscillatory. 

The objective of this paper is to develop an existence theory enabling us to con­

struct various types of oscillatory and nonoscillatory solutions of neutral equations 

of the form (A). We make use of the observation that the associated unperturbed 

equation -£^A™x(t) = 0 has the solutions 

(0.1) w f f(t)t j, j ' = 0 , l , . . . , m - l , 

(0.2) ctk, k = m,m + l,...,m + n - l , 

where ioa(t) is an arbitrary u-periodic function and c is an arbitrary constant, and 

intend to establish the existence of solutions Xj(t), Xk(t) of (A) which are asymptotic 

to the functions (0.1) and (0.2) in the sense that 

(I) Xj(t) =ua(t)t
j+o(l) as t -+ oo, j = 0, l , . . . , m - 1, 

(II) Xk(t) = ctk + o(l) as t -4 oo, k = m,m + 1,... ,m + n — 1. 

It is clear that the solutions of the type (II) are nonoscillatory whereas the solutions 

of the type (I) are oscillatory or nonoscillatory according to whether the periodic 

functions ioa(t) involved are oscillatory or nonoscillatory. 

The construction of solutions of types (I) and (II) of (A) is presented in Section 2. 

Our main tool is the Schauder-Tychonoff fixed point theorem applied to nonlinear 

operators formed by suitably chosen "inverses" of the differential operator -^ and 

the iterated difference operator A J1. Preliminary results needed in Section 2 are 

collected in Section 1. 

It seems that very little is known about the existence of solutions, oscillatory 

or nonoscillatory, of neutral equations whose leading parts contain the difference 

operator Aa and/or its iterate. To the best of the authors' knowledge Jaros and 

Kusano [2] and Naito [6] are the only references dealing with this subject for the 

case m = 1. For related results regarding neutral equations of the form (A) with Aa 

replaced by A^x, where 

Aa,xx(t) =x(t) - \x(t-a), A # l , 

we refer to Jaros and Kusano [1], Kitamura and Kusano [3], Naito [4, 5] and Ruan [7]. 
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1. PRELIMINARIES 

In this preparatory section we state some results which are crucial for proving the 

main existence theorems in the next section. 

We denote by S[T, oo) the set of all functions £ € C[T, oo) such that the sequence 

(ì.i) Ф) = Vj£(* + i<J)' tџт-ff, 

converges uniformly on any compact subinterval of [T — a, oo). We define ty to be the 

mapping which sends each £ e S[T, oo) to a function n(t) defined by (1.1). Further, 

let ^e denote the £-th iterate of * which is defined on the set 

Se[T, oo) = {£ 6 S M [ T , o o ) : # £ _ 1 £ 6 S [ T - ( « - l)<r,oo]}, £ = 1 , 2 , . . . , 

where it is understood that <&° = id (identity mapping) and S°[T, oo) = C[T, oo). 

Lemma 1. Let £ ^ 1 be an integer. If f e Se[T, oo), then * ' £ is a solution of the 

difference equation 

(1.2) A i * ( 0 = ( - l ) ' f ( t ) , t>T, 

and satisfies 

(1.3) *<f (t) = o(l) as t -> oo. 

P r o o f . Let I = 1. If £ € S[T,oo), then by (1.1) *£ solves the equation 

A„s( t ) = - f (t), t >- T, so that (1.2) holds for £ = 1. Let e > 0 be given arbitrarily. 

Since, by hypothesis, (1.1) converges uniformly on [T - a, T), there exists P 6 N 

such that 

(1.4) V J ?(* + ict) \ < e f o r a11 te[T-a, T) and p ^ P. 

Let t >- h = T + Pa and choose peN such that t - pa e [T - a,T). Then 

a a 

and so we have, in view of (1.4), 

|*£(*)| = | £ ? ( * + ^ ) | = | £ £ ( * - P * + ( ^ P M | 

= | V J ?(« - per + icr) < £ , 
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which implies that #£(£) -> 0 as t -> oo. Thus (1.3) holds for 1=1. The proof for 
a general £ ^ 1 is done by an inductive argument, and we leave the details to the 
reader. • 

L e m m a 2. Let I >. 1 be an integer. Let v e Se[T, oo) be nonnegative for t >. T 

and define 

(1.5) U = {u€C[T,oc):\u(t)\^v(t), t>-T}. 

Then the following statements hold. 

(i) tye is continuous on U in the C[T, oo)-topology. 

(ii) If U is locally equicontinuous on [T, oo), then &*(U) is locally equicontinuous 

on [T -la, oo). 

P r o o f . We give a proof for the case I = 1, 

(i) Suppose that v e S[T, oo). Let {u„} be a sequence in U converging to u € U in 

C[T, oo). Take an arbitrary compact subinterval / of [T - a, oo). Since v e S[T, oo), 

given any e > 0, there is p 6 N such that 

(1.6) VJ v(t + ia) < | , tel. 
i=P+i 

Since {u„} converges to u uniformly on / , there is v0 € N such that 

p 

V J |u„(t + iff) - u(t + Z<T)| < - , t g J . f ^ M Q , 

It follows that 

P oo oo 

|*u„( i ) - t f u ( t ) | s £ _^\u„(t + ia) - u(t + ia)\ + V J |u„(t + icr) |+ V J \u(t + ia)\ 
i = l i=p+ l i=P+l 

< - + 2 VJ u(t + ia) < s, t e I, v >- v0, 
i=P+l 

implying that *fu„(t) —> ̂ u(t) uniformly on / . Since / is arbitrary, this shows the 

convergence * u„ -> * u in the topology of C[T, oo). Thus * is a continuous mapping 

on U. 

(ii) Let I c [T — a, oo) be any compact interval. Let e > 0 be given. Choose p e N 

such that (1.6) holds. By hypothesis, U is equicontinuous on / , and so there is a 

constant 6 > 0 such that 

r £ _ 
V J |u(t + ia) - u(s + ia)\ < - for all u e U, 
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provided \t - s\ < S, t,s e I. Consequently, \t - s\ < S, t,s £ I, implies that in 

view of (1.6) 

p OO OO 

| $u( t ) - * u ( s ) | < V J |u(t + icr) - u(s + iff)| + V J |u(t + i c ) | + V J \u(s + ia)\ 
i= l t=p+ l i=p+l 

< | + V J t)(t + icr) + V J u(s + i<r) < e, for all (7, 
i=p+l i=P+l 

which shows that ^(U) is equicontinuous on 7. Because of the arbitrariness of I it 

follows that *(t7) is locally equicontinuous on [T - a, oo). • 

L e m m a 3. Let v £ C[T, oo) be a nonnegative function on [T, oo) satisfying 

(1.7) r tl+pv(t)dt<oo, 

where £ ^ 1 and p ^ 0 are integers. Then 

(1.8) r(s-t)pv(s)dseSe[T,oo) 

and 

(1.9) # £ ( [°°(s - t)pv(s) ds) ^ \ f (s-t)e+pv(s)ds, t ^ T - t a . 

P r o o f . We prove the lemma for the case 1=1. The proof for the general 

follows by induction. Suppose that (1.7) holds for 1 = 1. Then 

ф ( / (s " t)pv(s) ds) = V / (s-t- ia)pv(s) ds 
V Jt ' i = 1 Jt+ia 

ш t+(j+l)т 

< > , ( V J / (s - t)pv(s) ds ) , t^T-a. 
=í Jt+i" 

Interchanging the order of summation in the last term above and noting that 

} ^ S - ^ - if se [t+ja,t + (j + l)a], 
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we find 

rt+(j+l)a 3 

0
,00 J ~ ft+(3 + l)<r J 

(s-t)'v(s)ds)=Ş2 E ( s - ŕ ) M * ) d S 

t > j=1Jl+ja i = 1 

00 ľt+(j + l)a 

= E / j(s-t)'v(s)ds 
__ Jt+ia 
1 ™ ŕt+ L t+(j+l)a 

(s-t)p+1v(s)ds 

= - / (s-tf+1v(s)ds, t>-T-a, 
°~ Jt+a 

which shows that (1.9) holds for I = 1. ' • 

2. EXISTENCE OF SOLUTIONS 

The main results of this paper are as follows: 

Theorem 1. Let j £ {0,1, . . . , m — 1} and Jet _•-(<) =j£ 0 be a continuous periodic 
function of period a. If there is a constant a > 0 such that 

(2.1) /°° tm + n - 1F(t ,o[ . ( t ) ] i )d . < co, 
Jto 

then (A) has a solution x(t) satisfying 

(2.2) _(t) = cwa(t)tj + o(l) as t -> 00 

for some nonzero constant c. 

Theorem 2. Let k € {m,m + l , . . . ,m + n - l } and suppose that there is a 
constant a > 0 such that 

(2.3) /°°tm+n-1F(t,a[<;(t)]*)dt<oo. 
Jto 

Then (A) has a solution x(t) satisfying 

(2.4) _(t) = ctk + o(l) as t -+ 00 

for a nonzero constant c. 
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P r o o f of Theorem 1. Choose c > 0 such that c (max |_vWI + l ) ^ a. Let 

T > t0 be large enough so that 

(2.5) Tt = min {T - ma, inf g(t)} >- max{.0 ,1} 

and 

(2.6) J™ .m+"-1F(. , a[g(t)Y) < c<7m 

Let X and y stand for the sets defined by 

(2.7) X = {xeC[Tt,oo):\x(t)\^atj, t>-Tt}, 

y = { y € C [ T , o o ) : | v ( . ) | < _ ( . ) , 

| . ( - ) - _ ( - ) K M - ) - _ ( - ) ! , . , - > T } , 

where 

(2.8) _(_) 
- / • 

(f - 0" -
( n - 1 ) ! 

-E ( s , a [ S ( s ) ] j )d s , í ^ Г . 

Define F i : y -. C[T t , oo) to be a mapping which assigns to each y e Y a function 

x(t) given by 

(2.9) 
_(t) = a . - ( í ) ť + ( - l ) m * m j / ( í ) , t>-T-ma, 

_(.) = _(T - mu) ,T*mt7)s, T,^t^T-ma, 

and define E2 : -^ —> C[T, oo) to be a mapping which assigns to each i . I a function 
y(t) defined by 

(2.10) y(t) = ( - 1 ) " " ' / ° ° ^ j 1 " 1 / ( - , - ( . ( - ) ) ) d,, t > T . 

Finally, define a mapping f : X x 7 - > C[T», oo) x C[~, oo) by 

(2.11) F(x, y) = (FlV, F2x), (x, y) & X xY. 

We want to verify that F maps X x Y, which is a closed subset of the Frechet space 
C[T», oo) x C[T, oo), into a relatively compact subset of X x Y. 

(i) We first show that F maps X x Y into itself. To this end it suffices to show 
that Fi(Y) C X and F2(X) C Y. Let y 6 Y. Applying Lemma 3 to _{.) given by 
(2.8), we see that y e S m [ r , o o ) and 

| (_ l )~$~j , (* . ) | <C \_mu;(.) <J - L /" (s - . ) m + n ~ 1 E ( s ,a [< j ( s ) ] j ) ds 
< 7 ' Jt+mtr 

< — / ( s - 0 m + n _ 1 E ( . 5 , a b ( s ) ] j ) < c , t > r - m . , 
<7m . T 
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where (2.6) has been used. Hence, from the first equation in (2.9) we have, in view 

of the choice of c, 

\F\y(t)\ sC cmax | ^ ( i ) l < j + C < atj, t^T - ma. 

Since the above inequality implies \F\y(T-ma)\ sC a(T-ma)j, the second equation 

in (2.9) shows that \F\y(t)\ ^ atj for T» < t < T-ma. This proves that F\ (Y) C X. 

Now let x e X. Since \f(t,x(g(t)))\ si F(t,a\g(t)]j), t > T, it follows from (2.10) 

and (2.8) that |E 2x(<)| ^ u;(t) for t ^ T. Further, if n > 2, then noting that 

(F2x)'(t) = ( - l ) - - ^°° itZ^lf(s,x(g(s))) ds, t > T, 

we obtain 

\F2x(t)-F2x(s)\-\J(F2x)'(r)dr\ 

^J^f{j(^r\f^49(m^dr 

* SIT ( g ( n " - 2 ) 7 f ' ( g ' a [ g ( g ) l J ) d g d r 

= | t t ) ( t ) - t o ( s ) | for t ^ s > T . 

If n = 1, then for « ^ s ^ T 

| F 2 x W - F 2 x ( 5 ) | = | | / ( r , x ( f f ( r ) ) ) d r | 

sC J F(r,a[g(r)Y)dr = \w(t)-w(s)\. 

Thus we conclude that F(X) C Y. 

(ii) Now we show that F is continuous. Let {(xv,yv)} be a sequence in X x Y 

converging to (x,y) e X x Y in the topology of C[T», oo) x C[T,oo). The Lebesgue 

dominated convergence theorem then implies that the convergence 

f {j=^«°Mm) «* - f {j^-«°M9(s))) Лs 

is uniform on compact subintervals of [T,oo), which means that F2xv —> F2x in 

C[T, oo). That F\yv —> F\y in C[T»,oo) is an immediate consequence of the first 

statement of Lemma 2. This proves the continuity of F on X x Y. 
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(iii) Finally, we show that F(X x Y) is relatively compact in C[T„, oo) x C[T, oo). 

To this end it suffices to verify that Ei(K) and F2(X) are relatively compact in 

C[Tt, oo) and C[T, oo), respectively. The relative compactness of F2(X) in C[T, oo) 

is obvious, since by (2.10) and (2.8) 

\(F2x)'(t)\ ^ \w'(t)\, t >- T 

On the other hand, in view of (2.7) we see that the set Y is locally equicontinuous on 

[T, oo). Therefore \I>m(Y) is equicontinuous on [T - ma, oo) by the second statement 

of Lemma 2. This fact combined with (2.9) defining Ei then shows that Fi(Y) is 

locally equicontinuous on [T - ma, oo). Thus all the hypotheses of the Schauder-

Tychonoff fixed point theorem are satisfied, and so there exists an element (x, y) € 

X x y such that (x,y) = F(x,y), or x = Fty, y = F2x, which implies 

(2.12) x(t) = aj„(t)tj+ (-l)m<Zmy(t), t>-T, 

(2.13) y(t) = (-I)-1/0" ^'^/^(g^ds, t>T. 

Applying Lemma 1 and noting that Am(cuia(t)t
j) = 0, we see from (2.12) that 

Amx(t) = y(t), t>.T and x(t) - cua(t) = o(l) as t -> oo. 

Combining this with -^y(t) = -f(t, x(g(t))) which follows from (2.13), we conclude 

that the function x(t) is a solution of the neutral equation (A) having the required 

asymptotic property (2.2). This completes the proof of Theorem 1. • 

P r o o f of Theorem 2. The proof is essentially the same as that of Theorem 1, 

and so we only give a brief sketch of it. Take c > 0 such that 2c ^ a and let T > t0 

be such that (2.5) holds and 

/ ; tm+n-1F(t,a[g(t)]k)dt^cam. 

Define the sets X C C[T„ oo) and Y C C[T, oo) by 

X= { i f C[Tt,oo): \x(t)\^atk, t>T,}, 

Y={ye C[T,oo): \y(t)\ ^ w(t), \y(t)-y(s)\ < \w(t) - w(s)\, t,s >- T}, 

and the mappings Fl:Y ^ C[Tt, oo) and F2 : X -+ C[T, oo) by 

J FlV(t) = ctk + (-l)m<Hmy(t), t>-T-ma, 
\Fly(t) = Fly(T-ma)w^, T^t^T-ma, 

65 



and j 

F2x(t) = ( - I ) " " 1 ^ {3
(~_\y f(s,x(g(s)))ds, t>-T. 

Then the mapping F: X x Y -> C[T„ oo) x C[T, oo) defined by 

F(a,y) = (Fiy,F2a:), (z,j/)eXxF 
can be shown to be continuous and sends X x Y into a relatively compact subset of 
X x Y. Let (a,»/) e X x y be a fixed point of F. Then 

(2.14) x(t) = ctk + (-l)mymy(t), t>-T-mo 

and 

y(t) = (-!)-» jf00 {\~T^ /(«.«(g(»))) d*, t > r. • 

Let A m operate on both sides of (2.14). Using Lemma 1, we find that 

y(t)=Amx(t)+pkym(t), t>-T, 

where Pfc,m(*) is a polynomial in t of degree k - m. It follows that 

~y(t) = ^[A>(*)] = - / M s ( t ) ) ) , t > T, 

which shows that a;(t) is a solution of (A) for t >• T. The asymptotic behavior (2.4) 
of x(t) follows from (2.14) and Lemma 1. This sketches the proof of Theorem 2. • 

R e m a r k 1. The solutions constructed in Theorem 2 are all nonoscillatory, 
whereas those obtained in Theorem 1 are oscillatory according to whether the peri­
odic functions uja(t) are oscillatory or nonoscillatory. Since u}„(t) does not appear 
explicitly in (2.1), Theorem 1 asserts that the integral condition (2.1) is sufficient for 
the equation (A) to possess both oscillatory and nonoscillatory solutions. Thus one 
can easily speak of the phenomenon of coexistence of oscillatory and nonoscillatory 
solutions for neutral equations. This is an aspect which is not shared by non-neutral 
equations of the form -^x(t) + f(t,x(g(t))) = 0. 

R e m a r k 2. Suppose that there is a constant a > 0 such that 

(2.15) f tm+n-lF(t,a[g(t)]m+'l-1)dt<oc. 
J t0 

Then Theorems 1 and 2 imply that (A) possesses oscillatory solutions Xj (t) which are 
asymptotic to ua(t)t

3, j = 0 , 1 , . . . , m — 1, u„(t) being any given oscillatory periodic 
function, in the sense that 

Xj(t) = aja(t)t
J +o(l) as t _> oo, j = 0 , l , . . . , m - l , 
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for some constant c ^ 0, as well as nonoscillatory solutions xk(t) which are asymp­

totic to tk, k = 0 , 1 , . . . , m + n - 1, in the sense that 

xk(t) = ctk + o(l) as t -> oo, k = 0 , 1 , . . . , r n + n — 1, 

for some constant c ^ 0. Simple examples of <Jff(t) are cos 2 ^ and sin 2 ^ , p = 
1 ,2 , . . . . 

R e m a r k 3. It would be of interest to discuss the existence of solutions for a 
class of "singular" equations of the form (A) including 

^ [ A > ( t ) ] + q(t) [*(<?«)] " 7 = 0, t 2 to 

as a special case, where 7 > 0 is a constant and q: [t0,oo) -> I is a continuous 

function. It is to be noted that only positive solutions are admitted for such solutions. 

A close look at the proofs of Theorems 1 and 2 enables us to prove the following 

existence theorem for the equation (A) in which f(t,x) is subject to the condition 

(bs) / : [to, 00) x (0,oo) -> R is continuous and satisfies 

| / ( t , r r ) | <. F(t,x), (t,x) G C[t0,00) x (0,oo), 

where F(t,x) is a continuous function which is nonincreasing in x for each fixed 

t>.t0. The equation (A) which is singular in this sense is referred to as (A s). 

T h e o r e m 3 . Let m, n, a, t0 and g(t) be as in Theorems 1 and 2. Let k £ 

{ 0 , 1 , 2 , . . . , m + n — 1} and suppose that there is a constant a > 0 such that 

/ ; 
t m + n - 1 F ( t , o [ 5 ( t ) ] f c ) d i < o o . 

Then (As) has a positive solution x(t) satisfying 

x(t) = ctk + o(l) a s t - > o o 

for some positive constant c. 

Note that , in view of the nonincreasing property of F, the condition 

/ tm+n-iF(t^ 0 ) d i < oo for s o m e a > 0 

/to 

ensures the existence of positive solutions of (As) which are asymptotic to all the tk, 

k = 0 , 1 , . . . , m + n — 1, as t -> 00 in the above sense. 
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E x a m p l e . For illustration of our results consider the neutral equation 

(2.16) ~ [x(t) - 2x(t - 1) + x(t - 2)] + q(t)\x(t - 3) | 7 sgna;(t - 3) = 0, t >- t0, 

where 7 > 0, to > 3, and q: [to,00) -» R is continuous. This is a special case of (A) 

in which m = 2, a = 1, g(t) = t - 3 and /( t , : r) = q(t)\x\7 s g n i , and the conditions 

(B) are satisfied with F(t,u) = \q(t)\uJ. Note that the conditions (2.1) and (2.3) 

written for (2.16) reduce, respectively, to 

(2.17) [°° t"+1+7J'|g(t)| dt < 00, je {0,1}, 
J to 

and 

(2.18) / t n + 1 + T * | g ( t ) | d t < o o , fce{2,3>...,n + l } . 
Jt0 

From Theorems 1 and 2 it follows that if (2.17) holds, then, for any given cr-periodic 

function _v(t) ^ 0, (2.16) has a solution x(t) such that 

(2.19) x(t) = ou„(0 + o(l) as t - > 00, j G {0,1}, 

for some constant c ^ 0, and that if (2.18) holds, then (2.16) has a solution x(t) such 

that 

(2.20) x(t) = ctk + o(l) as t - > o o , ke { 2 , 3 , . . . , n + 1}, 

for some constant c ^ 0. If in particular 

rv+7)(n+i>i<Kt)idt<oo, 
!to 

then (2.16) has all the solutions listed in (2.19) and (2.20); see Remark 2. 

We next apply Theorem 3 in Remark 3 to the singular equation 

(2.21) ^-[xit)-2x(t-l)+x(t-2)]+q(t)[x(t-3)]-~' = 0, t>-t0, 

where 7 and q(t) are as in (2.16). The conclusion is that if 

J tn+1-<k\q(t)\At< 00, fee {0,l , . . . ,n + l}, 
J to 

then (2.16) possesses a positive solution x(t) such that x(t) = ctk + o(l) as t -> 00 
for some c ^ 0. In particular, there exist such positive solutions for all k e { 0 , 1 , . . . , 
n + 1} provided 

/ t " + 1 |<z( t ) |d t<co . 
J to 
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