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NOTE ON GRAPHS COLOURING 

DANUT MARCU, Bucharest 

(Received September 24, 1990) 

Summary. In this paper, we show that the maximal number of minimal colourings of a 
graph with n vertices and the chromatic number k is equal to kn~ , and the single graph 
for which this bound is attained consists of a k-clique and n — k isolated vertices. 
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The graphs considered here are finite, undirected and simple (without loops or 
multiple edges), [1] being followed for terminology and notation. Let G = (V, E) be 
a graph with V the set of vertices and E the set of edges. A colouring of G is a 
partition of V such that every class of the partition induces a subgraph consisting 
only of isolated vertices. We denote by C(G) the number of minimal colourings of G. 

Obviously, if j(G) is the chromatic number of G, then 7(G) represents the minimal 
number of classes of a colouring of G. 

In the sequel, we suppose that G has n vertices and 7(G) = Ar, and we prove the 

following 

Theorem. C(G) ^ kn~k, and the single graph G for which this upper bound is 

attained consists of a k-clique and n — k isolated vertices. 

P r o o f . We shall prove this result by induction on n. Obviously, for n = 1,2 
the result is true. So, suppose that the result is true for all graphs with at most n — 1 
vertices, and let G be a graph with n vertices and the chromatic number 7(G) = k, 

1 ^ k ^ n. Let v be an arbitrary vertex of G and G - v the subgraph obtained from 
G by deleting v. If y(G — v)zzk, then, by induction hypothesis, we have 

C(G) ^ kC(G - v) $ k • kn-k-x = i f t-*, 
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the equality holding only iff? is an isolated vertex and G — v has the maximal number 
of minimal colourings, since v may be added to a minimal partition of G — v in at 
most .t different ways. 

If 7(6* — v) = k — I, then a minimal colouring of G is {v}, 1i, F>, . . . , /fc-i, where 
/ j , I2> • • •> -'fc-i &re independent sets and there exist vertices v\ 6 /-, v2 6 I2, . . . , 
ffc-i € Ifc-i which are joined by an edge with v since, otherwise, 7(G) = k — 1. 

Obviously, every minimal colouring of G has a class which contains v and a subset 
of V — {vi,i?2,... , Ufc-i}. However, |lf — {t;, vi, i>v,..., ffc-i}| = w — k and, therefore, 
the number of minimal partitions of V which contain in the same class the vertex v 
together with r vertices from V — {t>, v\, v2i..., t^^i}, 0 t$ r ^ n. — fc, is less than or 
equal to (ri7*)(fc — l)n~ f c~ r . Indeed, r vertices may be chosen from a set of n — k 
vertices in (n~k) different ways, and the maximal number of minimal partitions of 
a graph H with n — k — r vertices and 7(H) = k — 1 is equal to (k — l)ri~ fc~r, by 
induction hypothesis. Hence 

n-fc 
!*'* — fc C(G)*t,(П-к)(к-lГ-'-

the equality holding only if {v, v\,v2y..., t'fc-i} induces a fc-clique and the remaining 

vertices are isolated. Thus, the theorem is proved. • 

Corollary. The maximal number of minimal colourings of a graph with n vertices 

is equal to 

max (r"- r ). 

where x is the real number which verifies the equation x(i -f Inar) = n. 

P r o o f . By the above theorem, the maximal number of minimal colourings of 

a graph with 11 vertices is equal to 

max (kn-k), 

and the equation x(\ -f Ins) = n is obtained by equalizing to zero the derivative of 

the function xn~x. • 
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