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Summary. In this article, a theorem is proved asserting that any linear functional de-
fined on a JBW-algebra admits a Lebesgue decomposition with respect to any normal state
defined on the algebra. Then we show that the positivity (and the unicity) of this decom-
position is insured for the trace states defined on the algebra. In fact, this property can be
used to give a new characterization of the trace states amongst all the normal states.

Keywords: JBW-algebra; state, normal state, trace state, Lebesgue decomposition of a
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1. INTRODUCTION

The study of Jordan algebras has its origin in the mathematical foundation of
quantum physics where one of the natural axioms is that the observables form a
Jordan algebra. Furthermore, if we want the observables to satisfy the functional
calculus of spectral theory, we would assume them to form a JB-algebra. A JBW-
algebra is the Jordan analogue of an “abstract” von Neumann algebra, that is, a
C* algebra which is also a Banach dual .space. Von Neumann algebras have been
extensively studied in the literature. The main purpose of this paper is to investi-
gate the Lebesgue decomposition of linear functionals with respect to a given linear
functional in this setting of a JBW-algebra. o ,

A generalization of the classical theorem on the Lebesgue decomposltlon of a o-
finite mgned measure with respect to a a—ﬁmte measure on a a—a.lgebra is obtamed
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for the normal states of certain JBW-algebras A such as shown in [6] and [8]. In [6],
we suppose that A is the JBW-algebra of all self adjoint operators on a separable
Hilbert space of dimension at least three; in [8], we suppose that A is associative. In
the latter, the decomposition is positive. In this paper, we establish, in particular, a
similar theorem for any JBW-algebra.

This paper is divided into two main sections. The first presents facts and defi-
nitions needed later. Then, we state and prove the main theorem on the Lebesgue
decomposition of the linear functionals defined on a JBW-algebra A with respect to
a normal state on A. Then, we show that the positivity and unicity of this Lebesgue
decomposition is ensured in the case of the trace states. Moreover, this last property
can be used to give a new characterization of the trace states amongst all the normal
states on A. As an application of the aforementioned result, we obtain a character-
ization of associative JBW-algebras in terms of the “bigness” of the trace space of
the algebra.

2. PRELIMINARIES AND NOTATION

Let us begin with the definitions and basic facts from the theory of JBW-algebras
pertaining to this paper. For greater details, we refer the reader to Hanche-Olsen
and Stgrmer [5] ([1] and [9] are also examples).

A real algebra A, not necessarily associative, equipped with the product (a,b) —
ao b is said to be a Jordan algebra if the identities

aob="boa

ao(boaz)z(a.ob)oa2

hold true for any a, b€ A.
A Jordan algebra A is said to be a JB-algebra if it is also a Banach space with
respect to a norm [| - || satisfying, for any a,b € A,

lla o bi} < llall lol
lla?(l = llali?
lla?ll < lla® + &2|I.
We denote by A,
' - Ay :={a*;ac A)
the set of all the positive elements in A. A, is a generating cone in A, called the

positive cone of A. For our purposes, A is considered equipped with the partial vector

186



space order, denoted by <, induced by the cone A,. As usual, a linear functional
f: A — R will be said to be a positive linear functional if f(A4+) C Ry. A positive
linear functional such that ||f|]] = 1 is called a state on A.

A JB-algebra A is said to be monotone complete if each bounded increasing net
(aa) in A has a least upper bound a in A. A bounded linear functional f on A is
called normal if f(a,) — f(a) for each net (aq)as above. We will denote by S(A)
the set of the normal states en A. S(A) is referred to as the normal state space of A.
A is said to be a JBW-algebra if A is monotone complete and S(A) is a separating
family. According to theorem 4.4.16 of [5], this is equivalent to the fact that A is a
Banach dual space. This predual of A is unique and consists of the normal linear
functionals on A.

In all that follows, A will be a JBW-algebra A* and A, will denote, respectively,
the dual and the predual of A; ¢(A, A,) will denote the w*-topology on A determined
by A.. We will also consider A, to be imbedded into A* under the evaluation map.

For any a € A, the two operators T, and U, are defined for any b € A by:

Tub)=aob
Ua(b) = {aba}

where, for elements a, b, and ¢ in A, the Jordan triple product is defined by
{abc} =ao(boc)—bo(coa)+co(aobd).

If the operators T, and 7}, commute, the two elements a, b in A are said to operator
commule.
We denote by I(A) the collection of all idempotents of A,

I(4) = {p€ A; p* = p}
and, for any element ¢ in 1(A), we write
¢t=1-4

where 1 denotes the unit in algebra A whose existence is guaranteed by lemma 4.1.7
of [5]. : : :
Two elements p and g in I(A) are said to be orthogonal if p < ¢* (or equivalently
if pog = 0). It follows from lemmas 4.2.6. and 4.2.8. of [5] that (I(A), <, L,0,1)
is a complete orthomodular lattice (see [8], section two for the definition). If D is
a nonempty subset of I(A), we denote by VD (resp. by AD) the supremum of D
(resp. the infimum of D). When D = {p, ¢}, we will simply write VD = pV q and
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AD = pAq. We also denote by F(D) the collection of all finite subsets of D directed
by set inclusion. Given that D is an orthogonal subset of I(A) (that is, D is a family
of pairwise orthogonal idempotents of A), then

VD = o(A, A) - Fell}r.r(lp) Z p.

Without a doubt, the most important example of a JBW-algebra is the algebra
B(H),, of all self-adjoint bounded linear operators on a Hilbert space H equipped
with the operator norm and the product (a,b) — aob = 9—"—?—'1, where ab is the usual
operator composition. In this case, I( B(H),4) is the famous lattice of the closed sub-
spaces of H; this lattice plays a significant role, in particular in quantum mechanics.
A profound, celebrated theorem by Gleason [4] asserts that if H is separable and at
least tridimen.sional,-then there is a one-to-one correspondance between nonnegative
finite signed states on I(B(H),q) [such a state is called a Gleason measure] and the

positive semidefinite self adjoint operators of the trace class on H (see [4] for details).

3. THE LEBESGUE DECOMPOSITION

The purpose of this section is to show, in particular, that any linear functional on
a JBW-algebra admits a Lebesgue decomposition with respect to any normal state
on the algebra. We begin with the necessary definitions.

Let A be a JBW-algebra. For any linear functional f on A, we let

N(f) :={p€ I(A); f(g) =0 for any g in I(A) such that ¢ < p}.

Note that if f is positive, {p € I(A); f(p) = 0} = N(f). Given f and g, two
linear functionals on A, we say, as in the classic measure theory, that f is absolutely
continuous (resp. singular) with respect to g, and we write f < g (resp. f L g), if
N(g) € N(f) (resp. if there exists p € N(g) such that p* € N(f)). Then we say
that f admits a Lebesgue decomposition with respect to g if there exist two linear
functionals f; and f; on A such that:

f‘f-’f1+fz where fy € gand fo L g.

We say that this decomposition is bounded (resp. normal) (resp. positive) if f; and
fa belong to A* (resp. A.) (resp f1 and f, are posmve linear functionals on A).
We can now proceed to the main results :

Thaoram 1. Let A be a JBW-algebra and let g be a normal state on A. Then
any. linear functional f on A admits a Lebesgue decomposition with respect to g.



This decomposition is bounded (resp. normal) if belongs to A* (resp. if f belongs
to A.).

Proof. Letp:=VN(g). Itisobviousthat f= foTpr + foTy, foT,L g
and pt € N(f oT,). To complete the proof of the first part of the theorem, there
remains only to show that p € N(g).

To this end, let M be a maximal orthogonal subset of N(g) whose existence is

ensured by Zorn’s lemma and set ¢ := VM. This yields ¢ = 0(4, A.) - r l,i:'?M) s
€ s€EF

and, since g is positive and (A, A.)-continuous, we obtain ¢ € N(g), so ¢ < p.

We now want to establish that for any element s of N(g) we have s < ¢. Indeed,
forn=1,23,...ifweleta, =1~ (1- 1{—’-)", the sequence (a,,) is increasing
and bounded. Therefore, a := V{an: n > 1} exists and a = 0(A, A.) — nli_’ng0 a,. By

corollary 3.6.3 of [5], we have

o(a) = lim g(an) = lim kZ () (—%)kg((us)") =0.

On the other hand, a evidently belongs to I(A) and the equality ao (g +s) =q+s
holds true. Therefore, ¢ V s < a (lemmas 4.2.8 and 4.2.6 of [5]), so ¢ Vs € N(g) and
gt A(gVvs) € N(g). But MU{gt A(gqVs)} is an orthogonal subset. of N(g) containing
M and therefore, by the maximality of M, we conclude that ¢ A (g V s) = 0. From
this equality, we get ¢ Vs = ¢, so s £ ¢ for any element s of N(g).

We have thus shown that p = ¢ € N(g), proving the first part of the theorem.
The remaining part follows directly from the fact that, for any b € A, the operator
T} is bounded and (A, A.)-continuous (see corollary 4.1.6 of [5]). 0

Remarks.

(i) When A = B(H),a, H being a separable Hilbert space of dimension at least

three, theorem 1 includes theorem 1 of [6]. Also, example 1 of [6] can be used

to show that the positivity of the Lebesgue decomposition does not follow, in
general, from the positivity of the linear functional.

(ii) In the course of the proof of theorem 1, we have shown that any normal and
positive linear functional on A admits a support. This means that VN (g) belongs
to N(g) and this support is defined as (VN (g))*. In fact, the result of theorem
1 remains true under the sole hypothesis that g is a linear functional on A with
a support. : ) . ;

(iii) Recall that a function p: I(A) — Ris said to be additive if u(p+q) = p(p)+n(q)
for any p, ¢ in I(A) such that pog = 0 and it is said to be positive if u(1(A)) C
R,. In [3], it is shown that if A is a JBW-algebra without a type I part (see
[5) for the definition) and if u: 1(A) — R is additive and positive, then there
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exists a linear functional f on A which extends u. Therefore, if A: I(A) — R is
positive and additive with a support, then, again by theorem 1, we have that
any additive and positive function g on I(A) admits a Lebesgue decomposition
on I(A) with respect to A.

We now turn our attention to an important subspace of the normal state space of
A, the so-called trace space of A. We say that a normal state f on A is a lrace stale
if foU, = f for any s € A such that s> = 1. This definition is taken from [2]. We
set:

T(A) = {f € S(A); f is a trace state on A}

The next theorem gives, in particular, a characterization of the trace states on A
in term of their Lebesgue decomposition with respect to each normal state on A.

Theorem 2. Let A be a JBW-algebra and f be a bounded linear functional on A:
(i)If g is a linear functional on A with a support, then f admits at most one bounded
and positive Lebesgue decomposition with respect to g. (ii)f is a trace state on A if
and only if f is a normal state admitting a unique bounded and positive Lebesgue
decomposition with respect to any normal state g.

Proof. (i) Let g be a linear functional on A with a support pand f = fi+ fo a
bounded and positive Lebesgue decomposition of the linear functional f with respect
to g. Since fi < g, f2 L g, we have fi(pt) = fa(p) = 0. Therefore, by the positivity
of fi and f; and again by corollary 3.6.3 of [5], we get fi 0 T,» = fo0T, = 0. We
then have fo T, = fio T, + f20Tyr = fr0Tys = f> and similarly fo T, = f;.
The unicity of such a decomposition is thus established.

(ii) First, let us assume that f € T(A) and g € S(A). By theorem 1, we have
that f = foT, + f o T,., where p is the support of ¢, is a bounded Lebesgue
decomposition of f with respect to g. By [7, p. 371] this decomposition is positive
(and hence unique).

Now: we intend to establish that the condition is sufficient. Let us assume that
f € S(A) and that, for any g € S(A), there exist fy, fo € A*, positive linear
functionals, such that f = fi + f2, fi € g, and fo L g. The proof of part (i)
indicates that fi = foT, and f = f o T,. where p is the support of g. So far we
have shown that f(poa) > 0 for any a € A+ and any support p of an element of the
normal state space of A.

Now let ¢ be any element of I(A)\{0}. S(A) being a separating family, there exists
g € S(A) such that g(q) > 0. It follows from corollary 4.1.6 and proposition 3.3.6 of
[5] that the linear functional A = "("T g o U, is a normal state on A. Therefore:

= {3 s is a support of an element A in S(A) with h(q) = 1}
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is nonempty. We take M,, a maximal orthogonal subset of Dy, and assume that
r:= (VMg)t Ag # 0. Then, there exists an element h; of S(A) such that hy(r) = 1,
hence hy(g) = 1. If s denotes the support of h;, we have s < r < (VM,)%, so that
M,U{s} is an orthogonal subset of D, including, strictly, M,. This is in contradiction
with the maximality of M, and so r = 0. Since VM, < ¢, we have ¢ = VM,, so

g=0(AA) - FelJl'I(nM,),%:p s,goa=o0(A A) - Feg_r(an),gs oa for any a € A4

(again by the (A, A.)-continuity of the operator T,). It follows, from the preceeding
paragraph, that f(g oa) > 0 for any idempotent element q and any positive element
a of A.
Now let a € A4, a#0,b € A and € > 0. By proposition 4.2.3 of [5], there exist
n
n €N, p1, p2, ..., Pn € I(A) and oy, a3, ..., ap € R such "b— )> a,-p,-" < “%W An
i=1

analysis of the proof of proposition 4.2.3 of [5] shows that, since b € Ay, it is possible

n

aob—3" a,-p;oa" <E,
=1

we conclude that f(aobd) > —e. ¢ > 0 being arbitrary, we have f(aob) > 0 for

any a € A} and b € A;. It follows from [7, p. 371] that f € T(A). The proof is

complete. (]

to choose the a; in R;. From what preceeds and the inequality

We conclude this paper with an application of the obtained result to a character-
ization of associative JBW-algebras. '

We say that A, a subset of S(A), is unital if, for any p € I(A)\{0}, there exists
f € A such that f(p) = 1. In the proof of theorem 2, we have shown that S(A) is
unital.

Corollary 3. Let A be a JBW-algebra. Then, A is associative if and only if its
trace space is unital.

Proof. If Ais associative, T(A) = S(A) is unital. :

Conversely, assume that T'(A) is unital. Let p € I(A)\{0}, s the support of an
element g of S(A), and suppose that r := pA(pA sV pAst)t #0. By hypothesis,
there exists f € T(A) such that f(r) = 1 and, by the preceeding theorem, there exist
a1, az € Ry, f1, fo € S(A) such that f = a1fi + azf2, a1fi € g and az2fz L g.
If oy # 0 we have f; < g and rt € N(f1). Let r; denote the support of f;. Then
r1 € r and r; < s. This implies that r; < (pA s)t and r; < pAs. It follows that
ry = 0, a contradiction, and so a; = 0 and f L g. If o denotes the support of f, we
then have o < r and ¢ < 5%, 50 o < (PA s1)L and ¢ < p Ast. We thus have ¢ =0,
again a contradiction. Therefore, r = 0 and p = pAsVpAst = pAs+pAst. So far,
we have shown that if the set T'((A) is unital, then Ups = T,s for any p € 1(A)\{0}
and any s, the support of an element of S(A).
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Now let ¢ denote any element of I(A)\{0}. Exactly as in the proof of theorem

2, we have ¢ = 0(4, A.) — Fe!?l'l(n és where M, is an orthogonal subset of I(A4)
q s

whose elements are the supports of elements of S(A). We deduce that, for any
p € I(a)\{0}, we have:

Uyq=0(A,A) - lim Uys =0(A,A.)— lim Tps =T,
ba = 0(4,4.) M,;» (4,4.) ,Wz b

It follows, by lemma 2.5.5 of [5], that any p € I(A) and ¢ € I(A) operator commute
and, by lemma 4.2.5 of [5], that p and a operator commute (for any p € I(A) and
any a € A).
To complete the proof, we now let a € A, a #0,b€ A and € > 0. Let n € N, oy,
oz, ..., an €R, p1, ..., pn € I(A) such that "b - En: a;p,-" < gy Based on the
- i=1

preceding:

ITaTs -

~na(Lit) + (o)~
(5= Soit)| + (5 - L o)

o | < 2lall e - S aumll < e
t=1

€ > 0 being arbitrary, we have T, T, = T}T, for any a € A, b € A and so, A being
commutative, A is associative. _ ‘ 0

Rc]enences

(1] E. M. Alfaen and F. W. Shultz: On Non-commutative Spectra.l Theory and Jordan
Algebras, Proc. London Math. Soc. 38 (1979), 497-516.

[2] 5. A. Ajupov: A New Proof of the Existence of Traces on Jordan Operator Algebras

- and Real von Newmann Algebras, J. of Functional Analysis 84 (1989), 312-321.

[3] L. J. Bunce and J. D. Wright: Continuity and Linear Extensions of Quantum Measures
on Jordan Operator Algebru Preprint. To appear in Math. Scandinavia.

[4] A. M. Gleason: Measures on the closed subspaces of a Hilbert space, -J. Math. Mech. 6
(1957), 885-893.

[5] H. Hanche-Olsen and E. Stﬂrmer Jordm Operator Algebras, Pitman, Boston, 1984.

[6] V. Palko: On the Lebesgue Decomposition of Gleason Measures, Casopis pro péstovini
“'Mat. 112 no. 1 (1987), 1-5.

m G. K. Pederson and E. Stgrmer: Traces on Jordan Algebtu, Can. J. Math. 34 (1982),
370-373. .

192



[8] G. T. Riittimann and C. Schindler: The Lebesgue Decomposition of Measures on Or-
thomodular Posets, Quart. J. Math. Oxford 37 no. 2 (1986), 321-345.

[9] F. W. Shultz: On Normed Jordan Algebras Which Are Banach Dual Spaces, J. Funct.
Analysis 31 (1979), 360-376.

_ Author’s address: Département de mathématiques et d’informatique, Université de
Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1.

193



		webmaster@dml.cz
	2020-07-01T11:23:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




