ASYMPTOTIC PROPERTIES OF SOLUTIONS OF FUNCTIONAL DIFFERENTIAL SYSTEMS

ANATOLIJ F. IVANOV, Kiev, PAVOL MARUŠIAK, Žilina

(Received December 5, 1990)

Summary. In the paper we study the existence of nonoscillatory solutions of the system
t_{i}^{(n)}(t) = \sum_{j=1}^{2} p_{ij}(t) f_{ij}(x_{j}(h_{ij}(t))), \quad n \geq 2, \quad i = 1, 2

with the property \(\lim_{t \to \infty} x_{i}(t)/t^{k_{i}} = \text{const} \neq 0 \) for some \(k_{i} \in \{1, 2, \ldots, n - 1\}, \quad i = 1, 2 \). Sufficient conditions for the oscillation of solutions of the system are also proved.

Keywords: Functional differential system, Schauder-Tychonov fixed point theorem, oscillatory solution, nonoscillatory solutions.

AMS classification: 34K25, 34K05

This paper is concered with the asymptotic properties of solutions of nonlinear functional differential systems in the form

\[
(S) \quad x_{i}^{(n)}(t) = \sum_{j=1}^{2} p_{ij}(t) f_{ij}(x_{j}(h_{ij}(t))), \quad t \geq t_{0} \geq 0, \quad i = 1, 2, \quad n \geq 2,
\]

under the following standing assumptions:

(1) \(p_{ij}, h_{ij} : [t_{0}, \infty) \to \mathbb{R} \) \((i, j = 1, 2) \) are continuous functions and \(\lim_{t \to \infty} h_{ij}(t) = \infty \)

as \(t \to \infty \) \((i, j = 1, 2) \),

(2) \(f_{ij} : \mathbb{R} \to \mathbb{R} \) \((i, j = 1, 2) \) are continuous functions and \(u f_{ij}(u) > 0 \) for \(u \neq 0 \)

\((i, j = 1, 2)\),

(3) \(f_{ij} (i, j = 1, 2) \) are nondecreasing functions.

For any \(t_{1} \geq t_{0} \) denote

\[
t_{2} = \min\{(\inf h_{ij}(t) ; t \geq t_{1}), \quad i, j = 1, 2\}.
\]
A function \(X(t) = (x_1(t), x_2(t)) \) is a solution of (S) if there exists a \(t_1 \geq t_0 \) such that \(X(t) \) is continuous on \([t_2, \infty) \), \(n \)-times continuously differentiable on \([t_1, \infty) \) and satisfies the system (S) on \([t_1, \infty) \).

By a proper solution of the system (S) we mean a solution \(X(t) \) of (S) such that \(\sup\{|x_1(t)| + |x_2(t)|: t \geq T\} > 0 \) for any \(T \geq t_0 \). Such a solution is called oscillatory if each of its components has arbitrarily large zeros. A proper solution of (S) is called nonoscillatory (weakly nonoscillatory), if each of its components (one component) is eventually of constant sign on \([T_x, \infty) \subset [t_0, \infty) \).

This paper has two parts. First we prove the existence of nonoscillatory solutions of the system (S) with the property \(\lim_{t \to \infty} x_i(t)/t^{k_i} = \text{const} \neq 0 \) for some \(k_i \in \{0, 1, \ldots, n-1\}, i = 1, 2 \). The asymptotic properties of solutions of this type of nonlinear differential equations of higher orders have been studied for example in the papers [1, 3-5].

Secondly, we establish criteria for oscillation of proper solutions of (S).

Denote

\[
\gamma_{ij}(t) = \sup\{s: h_{ij}(s) \leq t\}, \quad t \geq t_0,
\]

\[
\gamma(t) = \max(\gamma_{ij}(t); i, j = 1, 2), \quad t \geq t_0.
\]

Theorem 1. Let the conditions (1)–(3) hold and let \(k_i \in \{1, 2, \ldots, n-1\}, i = 1, 2 \). If

\[
(4) \quad \int_{\gamma(t_0)}^{\infty} t^{n-k_i-1} \sum_{j=1}^{2} |p_{ij}(t)|f_{ij}(a_j(h_{ij}(t))^{k_j}) \, dt < \infty, \quad i = 1, 2
\]

for some \(a_j > 0, j = 1, 2 \), then for any couples \((k_1, k_2), (k_i \in \{1, 2, \ldots, n-1\}) \) and \((c_1, c_2) (c_i > 0, i = 1, 2) \) there exists a nonoscillatory solution \(X(t) = (x_1(t), x_2(t)) \) of the system (S) such that

\[
(5) \quad \lim_{t \to \infty} x_i(t)/t^{k_i} = c_i, \quad i = 1, 2,
\]

\[
\lim_{t \to \infty} x_i^{(m_i)}(t) = 0 \text{ for } m_i = k_i + 1, \ldots, n - 1, \quad i = 1, 2.
\]

Proof. Let \(a_i \ (i = 1, 2) \) be positive numbers such that (4) holds and \(k_i \in \{1, 2, \ldots, n-1\}, i = 1, 2 \). We put \(b_i = a_i/3, i = 1, 2 \). In view of (2) there exists a \(T \geq \gamma(t_0) \) such that

\[
(6) \quad \int_{T}^{\infty} t^{n-k_i-1} \sum_{j=1}^{2} |p_{ij}(t)|f_{ij}(a_j(h_{ij}(t))^{k_j}) \, dt < b_i, \quad i = 1, 2.
\]
Let $T_0 = \min\{\inf h_{ij}(t): t \geq T\}, i, j = 1, 2 \geq t_0$. We denote by $C([T_0, \infty))$ the locally convex space of all vector continuous functions $X(t) = (x_1(t), x_2(t))$ defined on $[T_0, \infty)$ which are constant on $[T_0, T]$ with the topology of uniform convergence on any compact subinterval of $[T_0, \infty)$.

We consider a closed, convex subset Y of $C([T_0, \infty))$ defined by

\[Y = \{X = (x_1, x_2) \in C([T_0, \infty)); x_i(t) = 2b_i \frac{T^{k_i}}{k_i!}, t \in [T_0, T]: b_i \frac{T^{k_i}}{k_i!} \leq x_i \leq 3b_i \frac{T^{k_i}}{k_i!}, t \geq T, i = 1, 2\}. \]

We define a mapping $F = (F_1, F_2): Y \rightarrow C([T_0, \infty))$ by

\[(F_iX)(t) = \begin{cases}
2b_i \frac{T^{k_i}}{k_i!}, & t \in [T_0, T], \\
\frac{2b_i t^{k_i}}{k_i!} + (-1)^{n-k_i} \int_T^t \frac{(t-s)^{k_i-1}}{(k_i-1)!} \int_s^\infty \frac{(u-s)^{n-k_i-1}}{(n-k_i-1)!} \\
\times \sum_{j=1}^2 p_{ij}(u) f_{ij}(x_j(h_{ij}(u))) \, du \, ds, & t \geq T, \quad i = 1, 2.
\end{cases} \]

We shall show that F is a continuous operator which transforms Y into a compact of Y.

Ad 1. We prove that $F(Y) \subset Y$. From (8) in view of (3), (6), (7) we have

\[(F_iX)(t) \leq \frac{2b_i t^{k_i}}{k_i!} + \int_T^t \frac{(t-s)^{k_i-1}}{(k_i-1)!} \int_s^\infty \frac{(u-s)^{n-k_i-1}}{(n-k_i-1)!} \\
\times \sum_{j=1}^2 |p_{ij}(u)| f_{ij}(a_j(h_{ij}(u)))^{k_j} \, du \, ds \\
\leq \frac{2b_i t^{k_i}}{k_i!} + b_i \int_T^t \frac{(t-s)^{k_i-1}}{(k_i-1)!} \, ds \\
\leq \frac{3b_i t^{k_i}}{k_i!}, \quad t \geq T, \quad i = 1, 2. \]
\[(10_i) \quad (F_t X)(t) \leq \frac{2b_i t^{k_i}}{k_i!} - \int_T^t \frac{(t-s)^{k_i-1}}{(k_i-1)!} \int_s^\infty \frac{(u-s)^{n-k_i-1}}{(n-k_i-1)!} ds \times \sum_{j=1}^2 |p_{ij}(u)|f_{ij}\left(a_j h_{ij}(u)^{k_j}\right) du ds \]
\[\geq \frac{2b_i t^{k_i}}{k_i!} - b_i \int_T^t \frac{(t-s)^{k_i-1}}{(k_i-1)!} ds \]
\[\geq \frac{b_i t^{k_i}}{k_i!}, \quad t \geq T, \quad i = 1, 2.\]

Ad 2. We prove that \(F \) is continuous. Let \(X_k = (x_{1k}, x_{2k}) \in Y, \ k = 1, 2, \ldots, \) and \(x_{ik} \to x_i \ (i = 1, 2) \) for \(k \to \infty \) in the space \(C([T_0, \infty)) \). From (8) we than have
\[
|(F_t X_k)(t) - (F_t X)(t)| \leq \int_T^t \frac{(t-s)^{k_i-1}}{(k_i-1)!} \int_s^\infty \frac{(u-s)^{n-k_i-1}}{(n-k_i-1)!} \times \sum_{j=1}^2 |p_{ij}(u)|f_{ij}\left(x_{jk}(h_{ij}(u)) - f_{ij}\left(x_j(h_{ij}(u))\right)\right) du ds \leq \frac{t^{k_i}}{T} \int G_i^k(u) du,
\]
where we set
\[
G_i^k(u) = u^{n-k_i-1} \sum_{j=1}^2 |p_{ij}(u)|f_{ij}\left(x_{jk}(h_{ij}(u)) - f_{ij}\left(x_j(h_{ij}(u))\right)\right).
\]

It is easy to see that \(\lim_{k \to \infty} G_i^k(u) = 0 \) and \(G_i^k(u) \leq M_i(u), \) where
\[
M_i(u) = 2u^{n-k_i-1} \sum_{j=1}^2 |p_{ij}(u)|f_{ij}\left(a_j h_{ij}(u)^{k_j}\right).
\]

Using the fact that \(\int_T^\infty M_i(u) du < \infty \) and the Lebesgue dominating convergence theorem, from (11_i) we get \((F_t X_k)(t) \to (F_t X)(t) \) for \(k \to \infty \) \((i = 1, 2)\) in \(C([T_0, \infty)) \). This implies the continuity of \(F = (F_1, F_2) \).

Ad 3. We prove that \(F(Y) \) has a compact closure. From (8), in view of (6), for any \(X \in Y \) we have
\[
|(F_t X)'(t)| \leq \frac{3b_i}{k_i-1} t^{k_i-1}, \quad t \geq T, \quad i = 1, 2.
\]
Hence \(F(Y) \) is equicontinuous on any compact subinterval of \([T_0, \infty)\). Since \(F(Y) \subset Y \), \(F(Y) \) is uniformly bounded on such subintervals. Therefore by the Arzela-Ascoli theorem \(F(Y) \) has a compact closure.

By the Schauder-Tychonov fixed point theorem there exists an \(\bar{X} = (\bar{x}_1, \bar{x}_2) \) such that \(F \bar{X} = (F_1 \bar{X}, F_2 \bar{X}) = \bar{X} \). The function \(\bar{X} \) satisfies (8) in which \(F_i \bar{X} = \bar{x}_i \) \((i = 1, 2)\).

Differentiating (8) in which \(F_i \bar{X} = \bar{x}_i \) \((i = 1, 2)\) \(m_i\)-times, \(m_i = k_i, \ldots, n - 1 \), for \(X = (x_1, x_2) = \bar{X} \) we obtain

\[
\begin{align*}
(12) \quad x_i^{(k_i)}(t) & = 2b_i + (-1)^{n-k_i} \int_t^\infty \frac{(u-t)^{n-k_i-1}}{(n-k_i-1)!} \\
& \times \sum_{j=1}^2 p_{ij}(u) f_{ij}(x_j(h_{ij}(u))) \, du, \quad t \geq T, \quad i = 1, 2,
\end{align*}
\]

\[
(13_{m_i}) \quad x_i^{(m_i)}(t) = (-1)^{n-m_i} \int_t^\infty \frac{(u-t)^{n-m_i-1}}{(n-m_i-1)!} \sum_{j=1}^2 p_{ij}(u) f_{ij}(x_j(h_{ij}(u))) \, du,
\]

\[
t \geq T, \quad m_i = k_i + 1, \ldots, n - 1, \quad \text{(if } k_i < 1), \quad i = 1, 2,
\]

Differentiating \((13_{n-1})\) we get the system \((S)\). This implies that \(\bar{X} = (x_1, x_2) = \bar{X} \) is a nonoscillatory solution of \((S)\). From \((12), (13_{m_i})\) in view of \((4)\) we get \(\lim_{t \to \infty} x_i^{(k_i)}(t) = 2b_i, \lim_{t \to \infty} x_i^{(m_i)}(t) = 0 \) for \(m_i = k_i + 1, \ldots, n - 1, \quad i = 1, 2 \). This is equivalent to \((5)\), where \(c_i = 2b_i \) \((i = 1, 2)\).

Theorem 2. Let the conditions \((1)-(3)\) hold and let

\[
\int_0^\infty t^{n-1} \sum_{j=1}^2 |p_{ij}(t)| \, dt < \infty, \quad i = 1, 2.
\]

Then for any couple \((c_1, c_2) \) \((c_i > 0, \quad i = 1, 2)\) there exists a nonoscillatory solution of the system \((S)\) such that

\[
\lim_{t \to \infty} |x_i(t)| = c_i, \quad \lim_{t \to \infty} x_i^{(k)}(t) = 0, \quad k = 1, 2, \ldots, n - 1, \quad i = 1, 2.
\]

Proof. Let \(c_i > 0 \) \((i = 1, 2)\) and \(0 < \delta \leq \min(c_1, c_2) \). In view of \((2)\) there exists a \(K > 0 \) such that for all \((u_1, u_2)\): \(|u_i - c_i| \leq \delta \) \((i = 1, 2)\) we have

\[
|f_{ij}(u_j)| \leq K, \quad i, j = 1, 2.
\]
With regard to (14) there exists a $T \geq \gamma(t_0)$ such that
\begin{equation}
\int_T^\infty t^{n-1} \sum_{j=1}^2 |p_{ij}(t)| \, dt \leq \frac{\delta}{K}, \quad i = 1, 2.
\end{equation}

Let T_0 and $C([T_0, \infty))$ be the same as in the proof of Theorem 1. We consider a closed, convex subset Y_1 of $C([T_0, \infty))$ by
\[Y_1 = \{ X = (x_1, x_2) \in C([T_0, \infty)): |x_i(t) - c_i| \leq \delta, \ t \geq T, \ i = 1, 2 \}. \]

We define a mapping $F = (F_1, F_2): Y_1 \rightarrow C([T_0, \infty))$ by
\begin{align*}
(F_1X)(t) &= c_i + \frac{(-1)^n}{(n-1)!} \int_T^\infty (s-t)^{n-1} \sum_{j=1}^2 p_{ij}(t)f_{ij}(x_j(h_{ij}(s))) \, ds, \\
& \quad t \in [T_0, T], \\
(F_2X)(t) &= c_i + \frac{(-1)^n}{(n-1)!} \int_T^\infty (s-t)^{n-1} \sum_{j=1}^2 p_{ij}(t)f_{ij}(x_j(h_{ij}(s))) \, ds, \\
& \quad t \geq T, \ i = 1, 2.
\end{align*}

If we proceed analogously as in the proof of Theorem 1 we can prove without difficulty that F maps Y_1 into itself, F is continuous and $F(Y_1)$ has a compact closure. Therefore there exists an $\bar{X} = (\bar{x}_1, \bar{x}_2) \in Y_1$ such that $F\bar{X} = (F_1\bar{X}, F_2\bar{X}) = \bar{X}$. The function \bar{X} satisfies (18) in which $F_iX = x_i (i = 1, 2)$. We can easily verify that $X = (x_1, x_2) = \bar{X}$ is a nonoscillatory solution of \mathcal{S} with the asymptotic behavior (15). \hfill \Box

Theorem 3. Suppose that (1)-(3) hold and
\begin{equation}
p_{ij}(t) = \sigma_i q_{ij}(t), \quad \sigma_i \in \{-1, 1\}, \quad q_{ij} : [t_0, \infty) \rightarrow (0, \infty), \quad i, j = 1, 2.
\end{equation}

Let (k_1, k_2) be an arbitrary couple of integers $k_i \in \{0, 1, \ldots, n-1\} (i = 1, 2)$. Then there exists a nonoscillatory solution (x_1, x_2) of the system (S) such that
\begin{equation}
\lim_{t \to \infty} \frac{x_i(t)}{t^{k_i}} = c_i > 0, \quad i = 1, 2,
\end{equation}
if and only if
\begin{equation}
\int_{\gamma(t_0)}^\infty t^{n-k_i-1} \sum_{j=1}^2 q_{ij}(t)f_{ij}(a_j(h_{ij}(t))^{k_j}) \, dt < \infty, \quad i = 1, 2.
\end{equation}
for some constants \(a_j > 0, j = 1, 2 \).

Proof. Let \(X = (x_1, x_2) \) be a nonoscillatory solution of (S) which satisfies (20). Without loss of generality we suppose that \(x_j(h_{ij}(t)) > 0 \) for \(t \geq T_1 \geq t_0, i, j = 1, 2 \). Then in view of (2) \(f_{ij}(x_j(h_{ij}(t))) > 0 \) for \(t \geq T_1 \). From (20) we obtain

\[
\lim_{t \to -\infty} x_i^{(k_i)}(t) = c_i k_i! > 0, \quad i = 1, 2,
\]

\[
\lim_{t \to -\infty} x_i^{(m_i)}(t) = 0, \quad m_i = k_i + 1, \ldots, n_1, \quad i = 1, 2.
\]

Then integrating the system (S) \((n - k_i - 1)\)-times (if \(k_i < n - 1 \), \(i = 1, 2 \), from \(t \geq T_1 \) to \(\infty \) and using (22) we have

\[
x_i^{(k_i+1)}(t) = (-1)^{n-k_i-1} \sigma_i \int_t^{\infty} \frac{(s-t)^{n-k_i-2}}{(n-k_i-2)!} \sum_{j=1}^2 q_{ij}(s) f_{ij}(x_j(h_{ij}(s))) \, ds,
\]

\[
t \geq T, \quad i = 1, 2.
\]

Integrating the last equation from \(T_1 \) to \(\infty \) and using (20), after some modifications we obtain

\[
\int_{T_1}^{\infty} s^{n-k_i-1} \sum_{j=1}^2 q_{ij}(s) f_{ij}(x_j(h_{ij}(s))) \, ds < \infty, \quad i = 1, 2.
\]

On the other hand, by virtue of (20) there exist constants \(a_j > 0 (j = 1, 2) \) and \(T_2 \geq T_1 \) such that \(x_j(h_{ij}(t)) \geq a_j(h_{ij}(t))^{k_j} \) for \(t \geq T_2 \) \((i, j = 1, 2) \). Then the last inequality, (3) and (23) imply (21).

The "if" part follows from Theorem 1 a Theorem 2.

Oscillation criteria

Now we consider the system (S) in the form

(A) \(x_i^{(n)}(t) = \sigma_i q_i(t) f_i(x_{3-i}(h_{3-i}(t))) \) \(t \geq t_0, i = 1, 2, \) where \(\sigma_i \in \{-1, 1\} \).

(24) \(q_i : [t_0, \infty) \to (0, \infty), i = 1, 2 \) are continuous functions,

(25) \(h_i \) and \(f_i, i = 1, 2 \) satisfy (1) and (2), respectively,

(26) for any \(b > 0 \) there exists \(\delta > 0 \) such that

\[
\inf\{f_i(u) ; |u| \geq b\} \geq \delta, \quad i = 1, 2.
\]

In the sequel we use Kiguradze’s lemma. \(\square \)

Lemma [2]. Let \(u \in C^n[t_0, \infty) \) be such that \((-1)^\nu u(t)u^{(n)}(t) < 0 \) for \(t \geq t_0, \) \(\nu \in \{1, 2\} \). Then there exist an integer \(\ell \in \{0, 1, \ldots, n\} \), where \(\ell + n + \nu \) is odd, and \(T \geq t_0 \) such that

\[
u(t)u^{(k)}(t) > 0 \text{ for } k = 0, 1, \ldots, \ell, \quad t \geq T,
\]

\[
(-1)^{\ell+k} u(t)u^{(k)}(t) > 0 \text{ for } k = \ell + 1, \ldots, n, \quad t \geq T.
\]
Remark. Let \(X = (x_1, x_2) \) be a weakly nonoscillatory solution of (A). Then in view of (24), (25) it follows, from (A) that \(X \) is a nonoscillatory solution.

Theorem 4. Suppose that \(\sigma_1\sigma_2 = -1 \) and

\[
(27) \quad \int_{t_0}^{\infty} q_i(t) \, dt = \infty, \quad i = 1, 2.
\]

Then every proper solution \((x_1(t), x_2(t))\) of (A) is oscillatory when \(n \) is odd, and for \(n \) even it is either oscillatory or \(x_1(t)x_2(t) < 0 \) and, moreover, for \(\sigma_j = 1, \sigma_{3-j} = -1 \) \((j = 1, 2)\) \(|x_j(t)|\) is increasing while \(x_{3-j}^{(k)}(t)\), \((k = 0, 1, \ldots, n)\) tend monotonically to zero as \(t \to \infty \).

Proof. Suppose that the system (A) has a weakly nonoscillatory solution \((x_1(t), x_2(t))\). Then in view of Remark it is a nonoscillatory solution. Without loss of generality we suppose that \(\sigma_1 = 1, \sigma_2 = -1 \).

I. Let \(n \) be odd. 1) Suppose that \(x_1(t) > 0, x_2(t) > 0 \) for \(t \geq t_1 \). (The proof in the case \(x_1(t) < 0, x_2(t) < 0 \) is similar.) Then from the system (A) with regard to (24), (25) we obtain \(x_1^{(n)}(t) > 0, x_2^{(n)}(t) < 0 \) for \(t \geq t_2 \geq \gamma(t_1) \). Then by Lemma we get \(x_1'(t) > 0 \) and then \(x_1(t) > b_1 \) for \(t \geq t_3 \geq t_2 \) and some \(b_1 > 0 \). Therefore in view of (26) there exists \(\delta_1 > 0 \) such that \(f_2(x_1(h_1(t))) \geq \delta_1 \) for \(t \geq t_4 \geq \gamma(t_3) \). Then from (A) we get \(x_2^{(n)}(t) \leq -\delta_1 q_2(t), t \geq t_4 \). From the last inequality, in view of (27) we obtain \(x_2^{(n-1)}(t) \to -\infty \) as \(t \to \infty \). The inequalities \(x_2^{(n)}(t) < 0, x_2^{(n-1)}(t) < 0 \) for \(t \geq t_5 \geq t_4 \) imply that \(x_2(t) < 0 \) for all large \(t \). This contradicts the assumption \(x_2(t) > 0 \) for \(t \geq t_1 \).

2) Let \(x_1(t) > 0, x_2(t) < 0 \) for \(t \geq t_1 \). (The proof in the case \(x_1(t) < 0, x_2(t) > 0 \) is similar.) Then the system (A) in view of (24), (25) implies \(x_1^{(n)}(t) > 0, i = 1, 2, t \geq t_2 \geq \gamma(t_1) \). Because \(x_2(t)x_2^{(n)}(t) > 0 \) for \(t \geq t_2 \), by Lemma we get \(x_2'(t) < 0 \) and then \(x_2(t) \leq a_2 \) for \(t \geq t_3 \geq t_2 \) and some \(a_2 > 0 \). Therefore in view of (26) there exists \(\delta_2 > 0 \) such that \(f_1(x_2(h_2(t))) \leq -\delta_2 \) for \(t \geq t_4 \geq \delta(t_3) \). Then from (A) with regard to (27) we get \(x_1^{(n-1)}(t) < 0 \) for \(t \geq t_5 \geq t_4 \). From \(x_1^{(n)}(t) < 0, x_1^{(n-1)}(t) < 0 \) for \(t \geq t_5 \) we obtain \(x_1(t) < 0 \) for all large \(t \). This contradicts the assumption \(x_1(t) > 0 \) for \(t \geq t_1 \).

II. Let \(n \) be even. 1) Suppose that \(x_1(t) > 0, x_2(t) > 0 \) for \(t \geq t_1 \). (The proof in the case \(x_1(t) < 0, x_2(t) < 0 \) is similar.) Then in view of (24), (25) the system (A) implies \(x_1^{(n)}(t) > 0, x_2^{(n)}(t) < 0 \) for \(t \geq t_2 \geq \gamma(t_1) \) and by Lemma \(x_2'(t) < 0 \) and then \(x_2(t) \geq b_3 \) for \(t \geq T_2 \geq t_2 \) and some \(b_3 > 0 \). Therefore in view of (26) there exists \(\delta_3 > 0 \) such that \(f_1(x_2(h_2(t))) \geq \delta_3 \) for \(t \geq T_3 \geq \gamma(T_2) \). Then from (A) with regard to (27) we get \(x_1^{(n-1)}(t) \to -\infty \) as \(t \to \infty \). Therefore in view of (26) there exists \(\delta_4 > 0 \)
such that \(f_2(x(h_1(t))) \geq \delta \) for \(t \geq T \geq \gamma(T_3) \). Further we proceed analogously as in the case 1-1) we obtaining \(x_2(t) < 0 \) for large \(t \), which contradicts \(x_2(t) > 0 \) for \(t \geq t_1 \).

2) Suppose that \(x_1(t) > 0, x_2(t) < 0 \) for \(t > t_1 \). (The proof in the case \(x_1(t) < 0, x_2(t) > 0 \) is similar). Then in view of (24), (25) from (A) we get \(x_1^{(n)}(t) < 0, i = 1, 2, \) for \(t \geq t_2 = \gamma(t_1) \). Using Lemma, we have \(x_1'(t) > 0 \) and either i) \(x_2'(t) < 0, x_2'(t) < 0, \) or ii) \(x_2'(t) > 0 \) for \(t \geq t_3 \geq t_2 \). In the case i) we proceed in the same way as in the case 1-2), obtaining a contradiction to the assumption \(x_1(t) > 0 \) for \(t \geq t_1 \). Now we consider the case ii). The component \(x_2(t) \) is increasing and \(\lim_{t \to \infty} x_2(t) = -b \leq 0 \). If we suppose that \(b > 0 \), we proceed in the same way as in the case i) arriving at a contradiction. Therefore \(b = 0 \), i.e. \(\lim_{t \to \infty} x_2(t) = 0 \). This in view of Lemma implies \(\lim_{t \to \infty} x_2^{(k)}(t) = 0 \) for \(k = 0, 1, \ldots, n \).

The proof of Theorem 4 is complete. \(\square \)

Acknowledgement. The authors wish to thank the referee for his helpful suggestions.

References

[2] I. T. Kiguradze: On the oscillation of solutions of the equation \(d^n u/dt^n + a(t)|u|^{\alpha} \times \sgn u = 0 \), Mat. Sb. 65 (1964), 172-187. (In Russian.)
Súhrn
ASYMPTOTICKÉ VLASTNOSTI RIEŠENÍ
FUNKCIONÁLNO-DIFERENCIÁLNYCH SYSTÉMOV
ANATOLIJ F. IVANOV, PAVOL MARUŠIAK

V práci je študovaná existencia neosilatorických riešení systému

\[x_i^{(n)}(t) = \sum_{j=1}^{2} p_{ij}(t) f_{ij} \left(x_j \left(h_{ij}(t) \right) \right), \quad n \geq 2, \quad i = 1, 2, \]

s vlastnosťami \(\lim_{t \to \infty} x_i(t)/t^{k_i} = \text{const.} \neq 0 \) pre nejaké \(k_i \in \{1, 2, \ldots, n - 1\}, \quad i = 1, 2 \). Dalej sú dokázané postačujúce podmienky pre to, aby systém mal oscilatorické riešenie.