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Summary. It is shown that every von Neumann algebra whose centre determines the 
state space is already abelian. 
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The following question was posed in [4]: Is every von Neumann algebra with 

centrally determined state space abelian? The aim of this note is to establish a 

positive answer to this question. 

Let A be an arbitrary von Neumann algebra and let Z be its centre. Let V(A) and 

V(Z) stand for the orthomodular lattices of all projections in A and Z, respectively 

(see [6]), Let us call a mapping rj: A-+ Z a centre state if it is positive, r)(C) = C and 

t)(CA) = Ci)(A) for every C E Z and A E A (see [1]). Further, let us call a mapping 

s: V(A) - • (0,1) a state if s(I) = 1 (/ is an identity in A) and s( £ Pn) = 
Vn€lV I 

]C 5(-°n), whenever (Pn) is sequence of mutually orthogonal elements of V(A). 
n£N 

Finally, let us say that A has a centrally determined state space (see [2, 3]) if states 
«i and «2 on V(A) coincide whenever they agree on V(Z). 

Theorem. A von Neumann algebra A has a centrally determined state space if 

and only if it is abelian. 

P r o o f . The sufficiency is obvious. Let us take up the necessity. Suppose that 
A is not abelian. Looking for a contradiction let us assume that A has centrally 
determined state space. Let us choose A E A \ Z. According to [1, Lemma 8.2.3, 
p. 512] A admits an ultraweakly continuous centre state 17: A —» Z, that is, A admits 
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such a central state r\ which is additive with respect to any system of mutually 

orthogonal projections. Then, obviously r\(A) ^ A. Let a/ be a normal state of A 

such that u(r)(A)) ^ w(A). Put w = wo j | . Then Q is a normal state of A again and 

we have u)\Z = Q\Z, u(A) 9-. u(A). However, using the spectral theorem, we see that 

u and Q do not coincide on V(A). We have obtained two distinct states u\V(A) and 

Q\V(A) which coincide on the centre V(Z). This is a contradiction and the proof is 

complete. • 

It is easy to observe that the latter theorem holds even in more general situation, 

i.e., for instance it holds for any C*-algebra A whose projections generate a dense 

subspace in A. It should be also noted that our result may be relevant to the 

noncommutative measure theory on von Neumann algebras. Namely, our theorem 

complemented with results in [2, 3] implies that the classical version of the Radon-

Nikodym theorem holds exactly in the classical (i.e. commutative) case (compare 

also with [5]). 
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S o u h r n 

CENTRÁLNĚ DETERMINOVANÉ STAVY NA VON NEUMANNOVÝCH 

ALGEBRÁCH 

JAN HAMHALTER 

Je ukázáno, že každá von Neumannova algebra, jejíž centrum určuje stavový prostor, je 
abelovská. 
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