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Summary. We are interested in comparing the oscillatory and asymptotic properties 
of the equations _„ [x(t) - P(t) x(g(t))]'+ S f(t,x(h(t))) = 0 with those of the equations 
Mn[x(t)-P(t)x(g(t))]+SQ(t)g(x(r(t))) = 0. 
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1. INTRODUCTION 

We consider neutral differential equations of the form 

(A) Ln [x(t) - P(t)x(g(t))] +Sf(t,x(h(t))) = 0, 

where n ^ 2,S = +1 or—1 and the operator Ln is defined recursively by 

L0u(t) = u(t), Lku(t) = — — [LA_! u(t)]'', k = l,2,...,n, an = 1. 
«k(t) 

The following conditions are assumed to hold throughout the paper: 

(a) Oi e C[[<o,oo),(0,oo)],t0 > 0 and /o,( t )dt = oo, i = l , 2 , . . . , n - l ; 

(b) P £ C[[t0, oo), K] and satisfies \P(t)\ <_ A on [«0,oo) for some constant A < 1; 
(c) g G C[[t0, oo), (0, oo)] is increasing, g(t) < t for / > ,0 and lim g(t) = oo; 

(d) heC[[to,oo),(0,oo)] and lim h(t) = oo; 



(e) / 6 C[[/0,oo) x R, R] is nondecreasing in x for each t >- t0 and sgn/(/ , :r) = 
sgnz for (t,x) e [t0,oo) x R. 

By a solution of (A) we mean a continuous function x(i): [T^oo) —> R, Tx >- /0 

such that x(t) - P(t) x(g(t)) has continuous quasi-derivatives Li[x(t) - P(t) x(g(t))], 
0 5J i ^ n, and x(t) satisfies (A) for all sufficiently large / >. Tx. Our attention is 
restricted to those solutions x(t) of (A) which satisfy 

sup{|:r(/)|: / >. T} > 0, for any T >. Tx. 

Such a solution is said to be a proper solution. We make the standing hypothesis 
that (A) possesses proper solutions. A proper solution of (A) is called oscillatory if 
it has arbitrarily large zeros; otherwise it is called nonoscillatory. 

In recent years there has been a growing interest in the oscillation theory of func
tional differential equations of neutral type (see, for example, the papers [3-6, 8-10]). 
One of the first attempts at a systematic investigation of oscillatory properties of 
higher order neutral equations was the work of Ladas and Sficas [6]. 

The purpose of this paper is to obtain comparison theorems for (A). The results 
from the paper [1] are extended to neutral differential equations. 

2. CLASSIFICATION OF NONOSCILLATORY SOLUTIONS 

We classify the possible nonoscillatory solutions of (A) in a similar way as in the 
paper [5]. 

Let x(t) be a nonoscillatory solution of (A). From (A) and (e) it follows that the 
function 

(1) y(t)-x(t)-P(t)x(g(t)) 

has to be eventually of constant sign, so that either 

(2) x(t) y(t) > 0 

(3) x(t) y(t) < 0 

for all sufficiently large /. Assume first that (2) holds. Then the function y(t) satisfies 
6y(t) Lny(t) < 0 eventually and the well-known Kiguradze's lemma (see [5]) implies 
that there is an integer £ 6 { 0 , 1 , . . . ,n} and a tt >- t0 such that. (-l)n~e~lS = 1 and 
for every / >. /i 

y(t) Liy(t) > 0, 0<i^e, 

(-l)i-ly(t)Liy(t)>0, (<i.<n 

holds. 
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A function y(t) satisfying (4)e is said to be a nonoscillatory function of degree t 
The set of all solutions x(t) of (A) satisfying (2) and (4)e will be denoted by A"/. Now 
assume that (3) holds. Then y(t) satisfies (-S)y(t) Lny(t) < 0 for all large t and so 

it. is a function of degree (. for some ( 6 {0,1 ,n} with (-1)"~£<5 = 1. The totality 

of nonoscillatory solutions x(t) of (A) which satisfy (3) and (4)e will be denoted by 
A'f. Consequently, if we denote by At the set of all possible nonoscillatory solutions 
of (A), then (see [5]) 

A' = A/"+ U J V + U . . . U A/^li U Af0~ for S = 1 and n even, 

Ar = A/Q" UA"2
+ U . . . U/V+_| for S = 1 and n odd, 

A/' = A/"+ U A"2+ U . , . U Ar+ for 5 = - 1 and n even, 

Ar = A r + U Â "1" U . . . U A r + U A"0~ for 5 = - 1 and n odd. 

The class A/Q~ must be removed from (5) provided if P(f) is either oscillatory or 
eventually negative, because in this case equation (A) cannot possess a nonoscillatory 
solution x(t) satisfying (3). 

It is now clear that the oscillation of all proper solutions of (A) is equivalent to 
the situation in which Af = 0. 

Defini t ion 1. Equation (A) is said to have property A if for S = 1 and n even 
all proper solutions are oscillatory while for ( 5 = 1 and n odd Af = Ar

0
+. 

Def ini t ion 2. Equation (A) is said to have property B if for <5 = — 1 and n 

even Af = AC1" U A r + while for 6 = - 1 and n odd Ar = A/It. 

3. COMPARISON THEOREMS 

We are interested in comparing the oscillatory and asymptotic properties of equa

tions (A) with those of the equations 

(B) Mn [x(t)-P(t)x(g(t))]+SQ(t)q(x(r(t))) = 0 , 

where n ^ 2, 6 = + 1 or - 1 , 

M0 u(t) = u(t), Mk u(t) = j \ - [A/fc-, u(t)}\ k = 1,2, . . . , n , 6n = 1 

and the following conditions are fulfilled: 

(a)] 6. €C[ [ t 0 , oo) , (0 ,oo) ] , i o ^ O a n d / 6,(t)di = oo, i = 1,2,...,n - 1; 
to 

(d)i Q,r eC[[i0,oo),(0,oo)] and lim r(t) = oo; 
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(e)i q e C[R, R] is nondecreasing, xq(x) > 0 for x / 0 and 

xyq(xy) ^ Kxyq(x)q(y) for each x,y (0 < A" = constant); 

(f) h(t) >- r(t) for t > t0; 

(g) Oi(t) > l>i(t) for t ^ t 0 , 1 < i < n - 1. 

The following notation will be needed: 

g~l(t) is the inverse function of g(t): 

s = max { l,Kq (^) }; 

a( t) = J ax(Zl) J a2(z2) ... J" an-i(zn-i)dzn-l...dzl; 
U, to to 

'(t) = J ai(zi) J a2(z2) ... "J3 a „ - 2 ( Z n _ 2 ) cb„_2 . . . d*x; 

K0 = ( -oo ,0 )U(0 ,oo) ; 

C(R) = { F : R -> R | F is continuous and ;t' F(x) > 0 for _ ^ 0}; 

Cp(R0) = { F e C(R) | E is of bounded variation on every iterval [a, d] C 1 0 } 

L e m m a 1. [9] Suppose that x(t) is a nonoscillatory solution of equation (B). 

i) Let P(t) be eventually positive and let x(t) y(t) > 0 ( y(t) is defined by (1)J. 

Then x(t) is a member of M^ if and only if y(t) is a solution of degree I of 

(6) [S Mn y(t) + Q(t) q{y(r(t))) } sgn y(t) ^ 0. 

whereby 

(7) |»(t)| < \x(t)\ for large t. 

ii) Let P(t) be eventually positive and let x(t)y(t) < 0. Then x(t) is a member of 

A/Q- if and only if v(t) = —y(t) is a solution of degree 0 of 

, (8) {~5Mnv(t) + SQ(t)q{v(g~l(r(t))))}sgnv(t) < 0, 

where 0 < S = Kq (^) = constant, whereby 

(9) jlzig-'^^Uit)] for large t. 

iii) Suppose that P(t) is eventually negative or that P(t) is oscillatory and satisfies 

(10) P(t) P(g(t)) > 0 for large t. 
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Then x(t) is a member of N^ with £ ^ 1 if and only if y(t) is a solution of degree (' 

of 

(11) {6Mny(t) + MQ(t)q(y(r(t)))}sgny(t)4 0, 

where 0 < M = K q(l — A)= constant, whereby 

(12) l*(OI > ( - - * ) lv(*)l for large/ . 

Lemma 2. [7] Suppose F £ C(R). Then F e CP(R0) if and only if F(x) = 
G(x)H(x) for all x e Ro, where G: R0 -> (0, oo) is nondecreasing on ( -oo,0) and 
nouiucrcasing on (0, oo) and H: R0 —> R is nondecreasing on R0. 

R e m a r k . G, U are called a pair of continuous components of F. 

We also assume that there exists a continuous function Z: [t0,oo) -» [0,oo) and 

F € Cp(R0) such that 

(13) f(t,x) sgnx >- Z(l)F(s:) sgnx for (t,x) 6 [t0,oo) x R. 

In the following two comparison theorems we compare equation (A) with the 
special cases of equation (B), namely, when M„ = L„ and h = r. 

T h e o r e m 1. Let <5 = 1. Suppose that (13) holds and let G and H be a pair of 
continuous components of F with H being the nondecreasing one. 

i) Assume that P(t) is eventually negative or that P(t) is oscillatory and satisfies 

(10). Then the conditions 

(14) H((l - A) x) sgn.r >- q(x) sgn.r for x € R, 

(15) h(t) =cii(t), l < i < n - 1, 

(16) h(t) = r(t) , 

(17) Z(t) G( ± (1 - A) C Q ( / I ( / ) ) ) >. M (?(/.) for ever.)- large c > 0 and ail large t 

(where M = Kq(\ - \)) imply that equation (A) has property A if equation (B) 
lias property A. 

ii) Assume that P(t) is eventually positive. Then the conditions (15), (16) 

(18) H(x) sgn r > q(x) sgna for x e R, 

(19) Z(t) G( ± ca(/l(t))) 5: s Q(t) for every large c > 0 and ail large / 

imply that equation (A) has property A if equation (B) lias property A. 

185 



P r o o f . We present the proof for n even. 

i) According to (5),A/"£
+,/' S { 1 , 3 , . . . , n — 1} and .A/0~ arc the possible classes of 

nonoscillatory solutions of (A) with 5 = 1 and even n. In the case when P(t) is 

eventually negative or oscillatory, A/J- is necessarily empty. Suppose that A/"/ ^ 0 

for some £ € { 1 , 3 , . . . , n - 1} and let x G A/"+ be a solution of (A). Without loss of 

generality we may assume that x is eventually positive. Then from (4)( we observe 

that 

Ln-lV(t) > 0 and Lny(t) < 0 for all large t. 

Thus, 

L « - i y ( t K c i , C l > 0 

and hence there exists a c > 0 such that 

y(t) <. ca(t) for all large /. 

and in view of (d) we have 

y(h(t)) <. ca(h(t)) for all sufficiently large t. 

Now, by conditions (e), (12), (13), (14), (17) and Lemma 2 we get 

f(t,x(h(t))) >- f(t,(l-X)y(h(t))) >- Z(t)F((\ ~ \)y(h(t))) 

= Z(t)G((l-X)y(h(t))) ff((l - X)y(h(t))) 

>- Z(t)G((l-X)ca(h(t))) H((l - X)y(h(t))) 

> MQ(t)H((l - X)y(h(t))) ^ MQ(t)q(y(h(t))) 

and hence the function y which is of degree £ is a solution of the differential inequality 

(11), in which (15) and (16) hold. 

On the other hand, Lemma 1 implies that differential inequality (11), in which 

(15) and (16) hold, has a solution of degree £ ̂  1 if and only if equation (B) with 

Mn = Ln and h = r, namely, the equation 

(21) Ln[x(t)-P(t)x(g(t))] +SQ(t)q(x(h(t))) = 0, 

has a solution of degree I. We supposed 1 <. I ^ n - 1 and this contradicts the 

hypothesis that equation (21) is oscillatory. 

ii) Let A/"/ ^ 0 for some £ e { 1 , 3 , . . . ,n - 1}. Without loss of generality we may 

assume that x is eventually positive. Therefore similarly as above, by conditions (e), 

(7), (13), (18), (19) and Lemma 2 we get 

f(t,x(h(t))) >. f(t,y(h(t))) ^ Z(t)F(y(h(t))) 

= Z(t)G(y(h(t)))H(y(h(t))) 

>Z(t)G(ca(h(t)))H(y(h(t))) 

>Q(t)H(y(h(t)))2Q(t)q(y(h(t))). 
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One can see that the function y which is of degree i € { 1 , 3 , . . . , n - 1} is a solution 

of the differential inequality (C) in which Mn = Ln and r = h. 

Applying Lemma 1 we conclude that (21) has a solution of degree (.. This is a 

contradiction. 

Suppose that M0~ i=- 0. In this case x(t) y(t) < 0. Because 0 < A < 1 and H is 

nondecreasing, from (18) we obtain 

(23) H (- x ) sgn x >- q(x) sgn x. 

Next, without loss generality, we may assume that x is eventually positive. Then, 
because ( = 0, we observe from (4)« that 

L0y(t) < 0 and Lcy(t) > 0 for all large t. . 

Thus, 

y(t) >- -c, c> 0, 

or 

-y(1) = V(t) <. c for all large t. 

Now, by conditions (a), (e), (9), (13), (19), (23) and Lemma 2 we get 

f{t,x(h(t))) >- /(t.ivOrHAft)))) ^ i?(*)l!,(i«(jj-1W*)))) 

= 2 ( t ) G ( i u ( f l - 1 ( A ( t ) ) ) ) ^ ( i ^ ( S - 1 ( A ( t ) ) ) ) 

> 2 ( t ) G ( c a ( A ( t ) ) i / ( i « ( i / - 1 ( A ( t ) ) ) ) 

> SQ(t)H[jv(y-l(h(t)))) >. 5Q(t)fy(»;(.<7-'(/»W))) 

for sufficiently large t. Therefore similarly as above, applying Lemma 1 we get a 

contradiction. The proof in the case when n is odd is similar and will be omitted. 

D 

T h e o r e m 2. Let 5 = — 1. Suppose that (13) holds and let G and H be a pair of 

continuous components of F with H being the nondecreasing one. 

i) Assume that P(t) is eventually negative or that P(t) is oscillatory and satisfies 
(10). If (14), (15), (16) and 

(25) Z(t) G(±(l - A) Cj3(h(t))) >- M Q(t) for every large c> 0 and all large t 
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hold, then equation (A) has property B if equation (B) has property B. 

ii) Assume that P(t) is eventually positive. Then the conditions (15), (16). (18) 
and 

(26) Z(t) G( ± c/3(h(t))) >- s Q(t) for every large c > 0 and aii large t 

imply that equation (A) has property B if equation (B) has property B. 

P r o o f of Theorem 2 is similar to that of Theorem 1 and will be omitted. D 

The following theorems are intended to relax conditions (15), (16) in the previous 

result. 

Theorem 3. Let S = 1 and let G, H be a pair of continuous components of F 

with H being the nondecreasing one. Suppose that (13), (14) hold. 

i) Assume that P(t) is eventually negative or that P(t) is oscillatory and satisfies 

(10). Then the condition (17) implies that equation (A) has property A if equation 

(B) has property A. 

ii) Assume that P(t) is eventually positive. Then the condition (19) implies that 

equation (A) has property A if equation (B) has property A. 

P r o o f . Let n be even, i) Let equation (B) have propery A. By Lemma 1 

inequality (11) has property A and by Theorem 1 in [11] inequality (11) with A/„ = 

L„ and r = h has property A as well. Theorem 1 now shows that equation (A) has 

property A. 

The proof in the other cases can be done in an analogous way, so we omit it. D 

Theorem 4. Let S = -I and let G, H be a pair of continuous components of F 
with H being the nondecreasing one. Suppose that (13), (14) hold. 

i) Assume that P(t) is eventually negative or that P(t) is oscillatory and satishes 
(10). Then the condition (25) implies that equation (A) has property B if equation 
(B) has property B. 

ii) Assume that P(t) is eventually positive. Then the condition (26) implies that 
equation (A) has property B if equation (B) has property B. 

P r o o f of Theorem 4 is similar to that of Theorem 3 and we omit it. D 
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