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Summary. It is proved that every real cliquish function defined on a separable metrizable
space is the sum of three quasicontinuous functions.
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In this paper I show that every cliquish function f: X — R, where X is a separable
metrizable space, is the sum of three quasicontinuous functions. ‘

In what follows X denotes a topological space. For a subset A of a topological space
denote by Cl A and Int A the closure and the interior of A, respectively. The letters
N, Q and R stand for the set of natural, rational and real numbers, respectively. Cy
denotes the set of all continuity points of f: X — R. The terminology concerning
topology comes from [3].

Recall (e.g. [4]) that a function f: X — R is cliquish at a point z € X if for each
¢ > 0 and each neighbourhood U of z there is a nonempty open set G C U such that
|[f(y) — f(2)] < € for each y,z € G. A function f: X — R is said to be cliquish if it
is cliquish at each point z € X. A

A function f: X — R is quasicontinuous at a point z € X if for each neighbour-
hood U of z and each neighbourhood V of f(z) there is a nonempty open set G C U
such that f(G) C V. Denote by Q; the set of all points at which f is quasicontinuous.
If @7 = X, then f is said to be quasicontinuous.

It is easy to see that if f,g: X — R are cliquish, then f + g is cliquish ([6))-
In [2] it is shown that every cliquish function f: R — R is the sum of four quasicon-
tinuous functions. In [5] it is proved that every cliquish function f: R™ — R is the
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sum of six quasicontinuous functions. And in [6] it is shown that every cliquish func-
tion f: X — R is the sum of four quasicontinuous functions provided X is a Baire
separable metrizable space without isolated points. In this paper I show that such
a function is the sum of three quasicontinuous functions. Moreover, the assumption
“X is Baire without isolated points” may be omitted.

Lemma 1. ([6; Theorem 3]) Let X be a Baire separable metrizable space without
isolated points. Let w: X — R be a cliquish function such that w='(0) is dense in
X. Then there exist quasicontinuous functions s,t: X — R such that w = s +t.

Lemma 2. Let X be a Baire separable metrizable space without isolated points.
Then every cliquish function f: X — R is the sum of three quasicontinuous functions.

Proof. Denote A = {z € X:wy(z) > 1} (wy is the oscillation of f). The
cliquishness of f yields that A is nowhere dense. Since Cy is dense ([1]) in X we may
define g: X - R as

: limsup f(u), forze X - A,
g(z) = { u—z,u€Cy
f(z) for z € A.
Evidently
(1) f(z) = g(z) for each z € C;.

Let z € X—A. Let U be a neighbourhood of z and € > 0. Then there is u € CyNU
such that |f(u) — g(z)| < %. There is an open neighbourhood G C U of u such that
|f(u)— f(y)] < § for each y € G. Hence for each y € G we have |f(u)—g(y)| < § and

therefore |g(z) — 9(y)| < l9(z) ~ f(u)| + |f(u) — 9(y)| < €. This yields X — A C Q,
and

@) | X — Q, is nowhere dense.

Since X — Q, is nowhere dense, C, is dense and hence g is cliquish ([1]). Then
h = f — g is cliquish and by (1) the set h=!(0) is dense in X. According to Lemma
1 there are quasicontinuous functions s,¢: X — R such that h = s + ¢.

Let & be a countable base in X. Put & = {B € #: CIB C IntQ,}. Then
& = {Ay,As,...}. Let W C X —IntQ, be a countable dense subset of X — Int Q,.
Then W = {w;}iem, where w; # wjfori # jand M =0or M = {1,2,...,n} or
M=N.

‘Since s and g are cliquish, the set C, NC, is dense in X and by virtue of (2) also
IntQ, NC, NC, is dense in X.
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Let i € M. Since X — |J Cl A; is an open neighbourhood of w;, there is a sequence
k=1

(v}); of points such that v} € (IntQ, NC, NCy) - 0 Cl Ap and (v}); converges to
k=1

w;. Put
E={vi:ie M,jeN}.

Since E N A is finite for each k €N, E C G Ai and X is Hausdorff, the set E is
k=1
discrete. Let E = {ay,a3,...} (where a, # a, for r # s).
(<2
Let (Dp)n be a sequence of open sets in X such that CIE = (| D, and Cl D41 C

D,, for each n € N. n=t

Let n € N. Since E is discrete, there is an open neighbourhood V,, of a, such
that V, N E = {an}. Then also V, NCIE = {a,)}. (Indeed, if d € V, NCIE and
d # ap, then V,, — {a,} is a neighbourhood of d and hence (V, — {a,})NE # 0, a

contradiction.) Let W, be a neighbourhood of a,, such that Cl W, C V,ND,. Then
1
H, =W, - nU C1W; is a neighbourhood of a,,.
j=1

Denote G, = Hpn —{an}. Then G, = H, — C1 E. There is a one-to-one sequence
(b2 )x of points in G, converging to a,. Denote

F = {by:n, ke N}.

It is easy to see that b} # b} for (n, k) # (r, s) and that F is discrete. We shall show
that
CIF = FUCIE.

Evidently F C C1F,CIE C CIF. Let z € CIF. If z ¢ CI E, then there is n € N such
that z ¢ Cl Dp41. Then X —Cl Dy 41 is a neighbourhood of z and there is a sequence
(z&)x in F — Cl Dp41 converging to x. Then, with respect to the construction of F,
for each k € N there are p(k),r(k) € N such that p(k) < n+1 and z;; = bfgg
Hence there is p < n + 1 such that z; = bf(k) for infinitely many k. Thus we
obtain a sequence in F NG, converging to z. However, the set F NG, has a unique
accumulation point ap € E and z ¢ E, hence this sequence is constant except for
finitely many members. This yields z € F and CI1 F = FUCIE.

Hence we get C1 F N (X — C1E) = FN(X — CIE). Therefore the set F is closed
in X —CIE. Let Q = {q1,¢2,...} (one-to-one sequence). Let x: N — Q x N be a
bijection (i.e. #(n) = (g-,)) and let x: Q x N — Q, (g, 5) = g-.

Define a function p: F — R by:

P(b}) = w(x())-
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Since F is dicrete, p is continuous on F. Since F is closed in X — C1 E, there is a
continuous function k: X — CIE — R such that k(z) = p(z) for each z € F.
Now define a function m: X — R by:

k(z), ifze X-CIE,
m(z) =
0, ifze€CIE.

Further, define functions fi, f2, f3: X — R as:

jl=g—m1
f2=3+m1
fa=1t.

Then f; + fa+ fs = f. We shall show that f; (i = 1,2,3) are quasicontinuous.
Since m is continuous on X — CI1E and g is quasicontinuous on X — CIE, f; is
quasicontinuous on X — C1 E.

Let z € CI1E. Let U be a neighbourhood of z and let € > 0. Then there is n € N
such that a, € U. Since a, € Cy, there is an open neighbourhood V of a,, such that
lo(t) — 9(an)l < § for each £ € V. Let j € N be such that |g(as) — 9(z) — ¢;| < §-
Then there is ko € N such that b7 € V for each k 2 k.

Let r > ko be such that x(x(r)) = g;. Since b} € X — CIE, there is an open
neighbourhood H C V of b} such that |m(t) — m(b7)| < £ for each ¢ € H. Therefore
for each t € H we have

11(t) = £1(2)] = lat) - m(t) - s(z)| <
19(¢) — 9(an)] + 19(an) — 9(2) = g1 + lgj — mE?)| + Im(b2) - m(t)] < €.

Hence f; is quasicontinuous at z. Similarly we can prove that f; is quasicontinuous.
’ (m]

Lcmma 3. Let X be a Baire separable metrizable space. Then every cliquish f:
X — R is the sum of threé quasicontinuous functions.

Proof. Let D be the set of all isolated points of X and let B = X —Cl D. Then
9 = fis is cliquish and according to Lemma 2 there are quasicontinuous functions
91,92,93: B — R such that ¢ = g; + g2 + 93. Let W C C1D — D be a countable
dense subset of CI1D — D. Then W = {w;: i € M), where w, # w, for r # s
and M C N. For each i € M there is a sequence (v;), in D converging to w; such
that v # o for (i,5) # (r,5). Let Q = {q1,92,--.} (one-to-one sequence) and
L={24,8,...,2j,..).
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Let : L — Q x N be a bijection (i.e. x(2j) = (g,,5)) and let x: @ x N = Q,
x(gr,8) = g. Define functions f1,f2, f3: X — R by:

x(%(25)), if z = vi;,
fi(z) = { 51(2), ifz€ B,
I(z), otherwise,
f(t) - ”('(2].))’ ifz= v;j!
fr(z) = { 92(2), if z € B,
0, otherwise,
_ J 9s(=), if z € B,
fal=) = {0, otherwise.

Then f = fi + f2+ fs.

We shall show that f; (i = 1,2,3) are quasicontinuous. It suffices to verify that
fi is quasicontinuous at z € CID — D. Let £ € ClD — D, let U be an open
neighbourhood of z and £ > 0. Then there is m € N such that |gm — f(z)] < €. Let
i € M be such that w; € U and j € N such that v}; € U and x(x(2j)) = gm. Then
{vg,-} is a nonempty open subset of U and hence f; is quasicontinuous at z. (m]

Lemma 4. Let X be a topological space, let D be a dense subset of X. Let f:
D — R be a cliquish function. Then there is a cliquish function g: X — R such that
9p =f.

Proof. Denote A= {z € X: limsup f(u) € {—00,00}}.

u—z,u€D

Let B be an open nonempty set in X. Then there is 2 € BN D and the cliquishness
of f at z yields that there is an open nonempty set G in X such that f is bounded
on GND. Then GN A = 0 and A is nowhere dense. '

Define g: X — R by:

limsup f(u), forz e (X -A)-D,
u—+z,u€D ‘

9(z) = § f(=), for z € D,
0, forz € A- D.

Then g;p = f. We shall show that g is cliquish . Let z € X — A, let U be an open
neighbourhood of z and € > 0. Then there is z € UN D and the cliquishness of f at 2
implies that there is an open nonempty set H such that H C U and |f(t)- f(s)| < §
for each s,t € H N D. Thus there is a € R such that f(t) € (a — §,a + §) for each
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t € HND. Then limsup f(2) € [a—%,a+§] for each y € H and hence |9(y) —al < §

— D
foreachye H —‘D.’ 'gvidently lo(y) —al < §alsoforye DNH.
Let 5,t € H. Then |g(s) — 9(t)| < |9(s) — a] + |9(t) — a| < . Hence g is cliquish at
z. Since A is nowhere dense and the set of all cliquishness points of g is closed ([4]),
g is cliquish on X. a

Remark 1. If X is a Baire separable metrizable space and f: X — Ris a
cliquish function in the Baire class a, then it is the sum of three quasicontinuous
functions in the Baire class a.

Proof. If fis a cliquish function in the Baire class a, then by [6; Corollary 1]
the functions s, ¢ in Lemma 1 are in the Baire class a. Since the function g is in the
Baire class a as well, the functions f;, f2, f3 in Lemma 2 are in the Baire class a.
It is easy to see that then also the functions fi, f2, fs in Lemma 3 are ih the Baire
class a. O

Theorem. Let X be aseparable metrizable (= T3 second countable) space. Then
every cliquish f: X — R is the sum of three quasicontinuous functions.

Proof. Let d be a metric which metrizes the space X and let (X ,J) be the
completion of (X,d). Then X is a Baire separable metrizable space. According
to Lemma 4 there is a cliquish function g: X — R such that gx = f. Accord-
ing to Lemma 3 there are quasicontinuous functions g;, g2, 9s: X — R such that
g9 = g1+ 92+ g3. Denote f; = (9i);x (i = 1,2,3). Since the restriction of a qua-
sicontinuous function on a dense subset is quasicontinuous, f; are quasicontinuous
functions. Evidently f = fi + f2 + fs. O

Remark 2. The assumption “X is T3 second countable” cannot be replaced
by “X is normal second countable”. The space X = R with the topology 7, where
A€ Ziff A=0or A= (a,o0) (where a € R) is normal second countable, every
quasicontinuous function on X is constant, however there are nonconstant cliquish
functions. '

Problem. Is every cliquish function f: X — R (X as in Theorem) the sum of
two quasicontinuous functions?
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Sihrn
SUCTY KVAZISPOJITYCH FUNKCI{
JAN Borsik

V prici je dokdzané, ze kazda reilna klukati funkcia definovani na separabilnom met-
rizovatelnom priestore je si¢tom troch kvazispojitych funkcii.
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