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Summary. Some properties of monotone type multivalued operators including accretive 
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spaces. 
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1. INTRODUCTION 

Lately, the theory of monotone and accretive operators has been intensively studied 
in connection with the solvability of nonlinear partial, ordinary differential and the 
Hammerstein and Uryson nonlinear integral equations. 

The properties of monotone type operators were studied by many authors, see for 
instance Phelps [23]. Fabian [7] proved that if X is a Banach space which admits an 
equivalent norm on X such that X* is a rotund and an (>7)-space in its dual norm, 
and T: X —• 2X* is a maximal monotone mapping with D = int D(T) £ 0, then the 
set C(T) of all points of D where T is simultaneously singlevalued and norm to norm 
upper semicontinuous is a dense G* subset of D. Using the method of selection, he 
in fact proved much more, since he characterized the set C(T) by the set of points of 
continuity of the function of the minimum modulus of T and by the set of points of 
continuity of an arbitrary selection of T (see also [18] for a simple proof of Fabian's 
theorem). 

Recall that Kenderov [15] proved the following important result: If X is a Banach 
space which admits an equivalent norm such that its dual norm on X* is rotund 
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and T: X -+ 2X* is maximal monotone with D = intD(T) / 0, then there exists 
a dense GtVsubset C(f) of D such that T is singlevalued at the points of C(/ ) , 
where C( / ) is the set of all points of D where the function / : D —• R+ defined 
by /(ti) = min{||ti*||}: u* £ T(ti)/}, ti € .0, is continuous. The proof depends 
on the following facts: (i) / is lower semicontinuous on D\ (ii) if u0 G C(f), then 
/(tin) = ||ti*|| for every u* 6 T(tio); (iii) the convex set T(u0) has at most one point 
of the minimum norm (compare also [16]). 

We prove (Theorem 1) that if X and X* are Frechet smooth, then the set of all 
points of W where a maximal accretive mapping A: X —• 2X with W = int D(A) ^ 0 
is singlevalued and norm to norm upper semicontinuous is equal to a dense G$ 
subset C(f) of W where the function of the minimum modulus of the operator A is 
continuous. A more general version of some lemmas allows to generalize the result 
of Theorem 1 [19], as we need not assume that X is uniformly Frechet smooth. A 
similar result to that of Theorem 1 is stated in Theorem 2 under rather different 
conditions. The proofs of Lemmas 1-4 rely on arguments similar to those of (i), (ii) 
and (iii) (see Kenderov [15] and Fitzpatrick [9]). The third result deals with the 
topological properties of the duality mapping in nonreflexive Banach spaces having 
smooth dual X*. Recall that the concept of the duality mapping is very useful in 
the theory of monotone type operators, solvability of operator equations, geometry of 
Banach spaces and the fixed point theory (see [1], [2] and [14]). The fourth assertion is 
connected with Theorem 3 [22] concerning the problem, when the Gateaux derivative 
of a weak* lower semicontinuous function, defined on K*, is weak* continuous. Using 
the argument of Davis and Johnson [3] we show that X is reflexive if and only if X 
admits an equivalent norm such that the weak* and weak topologies coincide on its 
second dual sphere of X** (compare also Giles, Gregory and Sims [12] and Remark 
2). 

2. DEFINITIONS AND NOTATION 

Let X be a real normed linear space, .X* and X** its dual and bidual, ( , ) the 
pairing between X and .X*, Br(u) the closed ball centered at u G X and with a 
radius r > 0, Sr(u) its sphere. For a given set M C X, int M denotes the interior 
of M. B y r : X - - > X** we mean the canonical mapping while A denotes the image 
of A C X under r in X**? By B, R+ we denote the set of all real and nonnegative 
numbers, respectively; by the symbols a(X>X*) and <r(X*yX) we mean the weak 
and the weak* topology on X and X*, respectively. We use the standard notions 
for rotund (i.e. strictly convex) and uniformly rotund normed linear spaces and the 
Gateaux and Frechet derivatives of functional (see [1]). Recall that X is said to be 
(i) smooth (Frechet smooth), if the norm of X is Gateaux (Frechet) differentiate 
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on 5i(0); (ii) uniformly Frechet smooth, if the norm of X is uniformly Frechet 
differentiate on 5i(0); (iii) weakly locally uniformly rotund (WLUR [15]), whenever 
given (xn) C 5i(0) and xQ G S\(0) for which H*»+*°H —> 1, we have xn —• x0 weakly; 
(iv) and (//)-space (or X has the Kadec-Klee property), if for every (un) C X such 
that un —> u weakly in X, u G X, ||un || —• ||u||, we have un —• u in the norm of X, 
(v) a dual Banach space, if there is a Banach space Z such that X = Z* (in the sense 
of topology and the norm). We shall say that X* is a (w*H)-space, if for every net 
(u*) C X*, u*a — u* weakly* in X*, u* € X* and ||u*J| -> ||u*|| there is u* -> u* in 
the norm of X*. Let 2?, G, be topological spaces, .A: E —• 2G a multivalued mapping, 
D(A) = {u€E: A(u) / 0} its domain, G(A) = {(u, v) G ExGive A(u) for some 
u G -0(-4)} its graph in the space E x G and i?(-4) its image in G. A mapping A: 
E —• 2G is said to be (i) upper semicontinuous at uo G D(A), if for every open subset 
W of G such that .A(uo) C Ĥ  there exists an open neighborhood V of uo such that 
A(u) C W for every u G V O £(-4); (ii) locally bounded at uo G D(A), if there exists 
a neighborhood U of uo such that A(u) = (J {-4(u): u € U C\ D(A)} is bounded in 
X; (iii) closed at uo G #(-4), if (ua) is a net in D(A), utt —• uo, vtt G -4(ua), t>a —• t>o 
implies that vQ G -4(uo). Let X be a real normed linear space. The duality mapping 
j : x — u;x* is defined by J(u) = {u* G X*: (u*,u) = ||u||2, ||u*|| = ||ti||} for 
every u £ X. Recall [23] that J is norm to weak* upper semicontinuous on X and 
that J(u) is a nonempty convex and weakly* compact subset of X* for every u £ X. 
Moreover, X is smooth (Frechet smooth) if and only if J is singlevalued {continuous) 
on X (see [2]). 

By J* and J**, we denote the duality mappings on X* and X**, respectively. 
Recall that a mapping A: X —• 2X is said to be (i) accretive [14], if I + \A, where / 
is the identity mapping in X, is expansive for every A > 0, i.e. for every u, v G D(A) 
and every x G -4(u), y G -4(v), we have ||(u — v) -f \(x — y)|| > ||u — v|| for every 
A > 0, or equivalently, if for every u, t; G D(A) and every x G -4(u), y G -4(v) there 
exists x* G «/(u — v) such that (a? — y>x*) ^ 0; (ii) maximal accretive ([14]), if A is 
accretive and if given an element (u, x) G X x X such that for every v G -D(-4) and 
y G .A(v) there exists a point x* G J(u - v) such that (x - u, a:*) ^ 0, then u G -D(-4) 
and x G -4(ti). 

Let X be a normed linear space, Y a dual Banach space (i.e. there exists a normed 
linear space Z such that Y = Z*). We shall say that a mapping T: X -* 2 r has 
the property (P) at u0 G -9(-T) ([18]), if the following condition is satisfied: If 
(tier) C D(T) is a net and ua —• uo in the norm of X, ff« € -T(ua) is such that 
lll/a|| ^ C for some constant C > 0, then there exists a subnet (yai) of (yQ) with the 
c(Z*, Z)-Iimit point u0 such that uo € r(u 0 ) . 
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3. MULTIVALUED MONOTONE TYPE OPERATORS AND THE STRUCTURE 

OF BANACH SPACES 

Let X be a normed linear space, A: X —• 2X a mapping such that W = int D(A) £ 
0. Define a function / : W - • R+ U {00} by /(u) = int{||*||: x € A(u)}, ueW. 

Lemma 1. Let X be a dual Banach space (i.e. X = Z* for some Banach space Z), 

A: X —• 2X a mapping such that W = int D(A) £ 0. Suppose that A is norm to 

weak* closed on W and A(u) is bounded for every u € W. 

Then f is lower semicontinuous and finite on W. Moreover, there exists a dense 
Gs-subset C(f) ofW such that f is continuous at the points ofC(f). 

P r o o f . Assume that u0 € W, (un) € W, un - • u0 and let liminf f(un) < / (u 0 ) . 
ri—>oo 

Without loss of generality one can assume that there exist xn £ A(un) and a > 0 such 
that ||-cn|| < /(tio) — a. Since A(u) is bounded and weakly* closed for every u 6 W, 
A(u) is weakly* compact. As the norm ||.|| of X* is weak* lower semicontinuous, 
we have that / is finite on W, in particular, at UQ. Hence there exists a subnet 
(xna) of (xn) such that xna —• xo weakly* (i.e. in the <r(Z*, Z)-topology of Z*) 
in X for some xo € X. Since A is norm to weak* closed in W, we conclude that 
x9 € A(UQ). We have ||x0|| •$ liminf | |xnJ| 1$ /(uo) — at, a contradiction. Since / 

Or 

is lower semicontinuous and finite on W, there exists a dense Gj-subset C(f) of W 
such that / is continuous at the points of C(f). D 

L e m m a 2. Let X be a reflexive smooth Banach space, A: X —>2X an accretive 

mapping such that W = int D(A) £ 0. Assume that A is norm-to-weak closed at 

the points of W and that A(u) is bounded for every u € W. 
Then for every (fixed) u G C(f) there is f(u) = ||a:|| for every x € A(u). 

P r o o f . By Lemma 1, / is continuous at the points of dense G$-subset C(f) 
of W. Suppose that u € C{f), f is fixed. We have f(u) ^ \\y\\ for every y 6 A(u). 
Assume that there exists a point XQ E A(U) such that ||x0|| > /(u). We choose 
z* € X* such that ||z*|| = 1 and (z*,xQ) = ||ar0||. Let e > 0 be such that (z*,x0) > 
f(u) + e. Since X is smooth and reflexive, the duality mapping J: X —•> X* is 
singlevalued and surjective. Hence there is a point u0 6 X such that z* = / (u 0 ) 
and ||uo|| = 1. Since u € C(f), for a given e there exists a constant 6 > 0 such 
that u + *u0 € W and | /(u + 6u0) - f(u)\ < t. As the norm on X is weak lower 
semicontinuous and the values of A are weakly compact on W, we choose a point 
*\ € -4(u + Su0) such that f(u + 6u0) = \\xx\\. Then ||arx|| < f(u) + e < iz*,x0). By 
accretivity of A we get 

0 < (J(u + 6u0 - tt), xx -xo) = 6 (J(u0), xx -x0) = 6 (z*,xx - x0). 
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Hence (zm,xx) > (z*,x0) and \\xx\\ < f(u) + e < (z\xx) ^ ||-?*||.||*i||, which implies 
that ||z*|| > 1, a contradiction. 

S. Fitzpatrick [9] proved the following result: Let X be a Banach space, T' X <<+ 

2X* a maximal monotone mapping with D0 = intD(T) -̂ 0. Suppose that uo G f)o 

is a point of continuity of the function <p: D0 —* R+ defined by <p(u) = min{||ti*|| -

u* G T(ti)}, u G D0. If un G D0) un -> tx0, un G T(u n) , ti0 £ T(u0), then 

IKII-IKII- D 

The next lemma extends the corresponding Lemma 7 [19], where it is assumed that 
X is a uniformly Frechet smooth Banach space and its dual X* is Frechet smooth. 
However, the proof is rather different. 

Lemma 3. Let X be a reflexive smooth Banach space, A: X —* 2X and accretive 

mapping such that W = int D(A) ^ 0 . . Suppose that A(u) is bounded for every 

u € W and that A is norm to weak closed at the points ofW. Ifuo € C(f), un £ W, 

un —• w0 in the norm of X, xn £ A(un) and x0 G A(u0), then \\xn\\ —• ||-Co||-

P r o o f . Suppose that un —• u0, u0 G C( / ) , txn G W}xn G -4(txn), x0 G A(u0). 
First of all, show that ||x0 | | < liminf | |#n | | . Supposing the contrary, one can assume 

n—*oo 

without loss of generality that | |xn | | < ||x0 | | — a for some a > 0 and infinitely many 
indexes n. Since X is reflexive, there exists a subsequence of (xn) , say (xn), such 
that xn —• x weakly in X. As A is norm to weak closed at the points of W, we get 
that x G A(u0) and \\x\\ $ liminf ||-cn||. According to Lemma 2, we have ||x|| = ||ar0|| 

n—*oo 

and hence ||JC0|| ^ liminf | |xn | | :$ | |x0 | | — a, a contradiction. 
n—>oo 

According to Lemma 1, the set C(f) of all points of W where / is continuous is a 
dense G^-subset of W. Assume that ||x0 | | < limsup||xn | |. Without loss of generality 

n—*oo 

one can assume that | |xn | | > ||x0 | | + a for infinitely many indexes n and some a > 0. 
Let zn G X* be such that ||z*|| = 1 and (zn) xn) > \\xn\\ - 1/n for every n G N. As X 

is smooth and reflexive, J is singlevalued and surjective. Hence there exists zn G X 

such that zn = J(*n) and | |zn | | = 1 for every n G N. We have un + n~lzn G W for 
sufficiently large n. Choose yn G A(un + n"lzn) such that ||yn|| = f(un+n~lZn)' As 
un - • ti0, u0 G £ ( / ) , x0 G -4(u0), we have by Lemma 2 that ||yn | | —• f(u0) == ||*o||. 
Since A is accretive, we conclude that 

0 ^ (yn - *n, «/("n + n " 1 ^ - un)) = n - 1 (yn - xn, J(zn)) 

= n~l(yn-xn,zn). 
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Hence 

(*n,V*) > M'*") > H*"'1 ~ Z > M + a ~ ̂  

= /(«o) + a - i . 

On the other hand, (z*,yn) ^ ||yn|| < / ( « n + n~lzn) and therefore lim / ( « n + 
n—*oo 

n^Zn) ^ /(^o) + a, which contradicts the fact that / is continuous at UQ. This 
proves the assertion. D 

Lemma 4. Let X be a reflexive smooth and rotund Banach space, A: X —• 2X 

an accretive mapping with W = int -D(.A) ^ 0. Suppose that A is norm to weak 

closed at the points of W and that A(u) is a convex bounded set for every u £ W. 
Then A is singlevalued at the points of the dense Gs-subset C(f) ofW. 

P r o o f . It relies on Lemmas 1, 2 and the fact that a convex set in a rotund 
normed linear space has at most one point with the minimum norm. D 

Lemma 5. Let X, Y, be normed linear spaces, Y a dual Banach space, A: X —* 
2Y a mapping with D(A) C X. Suppose that A is locally bounded at UQ £ D(A) 
and possesses the property (P) (in particular, A is norm to weak* closed) at UQ. 

Then A is norm to weak* upper semicontinuous at UQ 

P r o o f . See [19, Lemma 1]. D 

Lemma 6. Let X be a Frechet smooth normed linear space, A: X —• 2X a 

maximal accretive mapping with D(A) C X. If A is locally bounded at UQ £ D(A), 

then A is norm to weak closed at UQ. 

P r o o f . Since X is Frechet smooth, the duality mapping J is singlevalued 
and norm to norm continuous on X. Let (ua,xa) 6 G(A) be a convergent net in 
(X, ||. ||) x (X,<r(X,X*)) such that ua —* UQ in the norm of X and xa —• XQ weakly 
in X. The accretiveness of A implies that (xa — x,J(ua — v)) ^ 0 for every fixed 
(v, x) € G(A) and every a. Since (xa) is bounded and J is norm continuous on X, we 
get that (x0 - X,J(UQ - v)) > 0 for every (v,x) 6 G(A). Consequently, xo € A(u0) 
by the maximality of A. . D 

Lemma 7. Let X be a reflexive Frechet smooth Banach spaces, A: X —> 2X a 

maximal accretive mapping such that A is locally bounded at UQ € D(A). 

Then A is norm to weak upper semicontinuous at tin. 

P r o o f . The assertion follows at once from Lemmas 5 and 6. D 
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Lemma 8. Let X be a Banach space, A: X —• 2X an accretive mapping such 

that W = int D(A) ^ 0. Let one of the following three conditions be satisfied: 

(-) ([10]) X* is uniformly rotund (i.e. X is uniformly Frechet smooth); 

(ii) ([24]) X is uniformly rotund; 

(iii) ([17]) both X and X* are Frechet smooth. 

Then A is locally bounded at every point ofW. 

Theorem 1. Let X be a Frechet smooth Banach space such that X* is Frechet 

smooth, let A: X —• 2X be a maximal accretive mapping such that W = 
intD(;4)^0. 

Tien the set C(A) of all points ofW where A is singlevalued and norm to norm 

upper semicontinuous, is equal to the dense Gs-subset C(f) of all points ofW where 

the function f of the minimum modulus of A is continuous. 

P r o o f . Since X* is Frechet smooth, we have that X is a reflexive, rotund and 
(H)-space. As X is smooth, we conclude that A(u) is convex for every u G D(A) 
(see [1] and [14]). By Lemma 8 (iii), A is locally bounded on W and hence A(u) 
is bounded, u E W. By Lemma 6, A is norm to weak closed on W. In view of 
Lemma 1, the function / is lower semicontinuous and finite on W and therefore 
there exists a dense G^-subset C(f) of W such that / is continuous at the points 
of C(f). Let u0 £ C(f) be arbitrary; we will show that ti0 € C(A). According to 
Lemma 4, A is singlevalued at the points of C(f) and by Lemma 5, v4 is norm to weak 
upper semicontinuous on W. Suppose that (un) C W, un —> u0, z n € A(un). Then 
*n —• £o = A(uo)y weakly in X. By Lemma 3 we have that ||#n|| —* ||x0|| and since 
X is an (H)-space, we conclude that xn —• x0 in the norm of X. Hence u0 6 C(A) 
and we have proved that C(f) C C(A). Suppose now that tin € C(A). Since / is 
lower semicontinuous on VV, it is sufficient to prove that / is upper semicontinuous 
at UQ. Assume that (un) C W, un —> u0, xn 6 A(un). Since ti0 E C(A), for a given 
e > 0 there exists an integer n0 such that ||xn - .rt(u0)|| ^ e for every n ^ UQ. By 
the definition of the function / and the fact A is singlevalued at ti0 we conclude that 
/(no) =" ||-4(tio)|| and f(un) ^ \\xn\\. Therefore / (u n ) ^ ||xn|| -< |H(ti0)|| + c = 
/ ( u 0 ) + £ for every n ^ no, which proves that ti0 G C(f) and therefore C(A) C C(f). 
Hence C(A) = C(f) and Theorem 1 is proved. D 

Analyzing the proof of Theorem 1 and the previous lemmas, we get 

Theorem 2. Let X he a smooth Banach space such that X* is Frechet smooth, 

let A: X —• 2X be an accretive mapping such that W = int D(A) £ 0. Assume that 

A is locally bounded and norm to weak closed at the points of W and that A(u) is 

convex for every u E W. 
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Then the set C(A) of all points ofW where A is singlevaiued and norm to norm 

upper semicontinuous is equal to the dense Gs-subset C(f) of all points ofW where 

the function f of the minimum modulus of A is continuous. 

R e m a r k 1. It is known (see Phelps [23], §6]) that if X is a normed linear space, 
M C X an open nonvoid subset, T: M —> 2X* a monotone and norm to weak* upper 
semicontinuous mapping on M and T(u) is nonempty convex and weak* closed for 
all u 6 A/, then T is maximal monotone on M. 

Using similar arguments as in [23, §6] one can prove the following result: Suppose 
that X is a reflexive smooth and rotund Banach space, M C X an open nonvoid 
subset, A: M —:• 2X an accretive and norm to weak upper semicontinuous mapping 
on M. If T(u) is nonempty convex and closed for every u £ M, then A is maximal 
accretive .on M. 

If X is a uniformly Frechet smooth Banach space and A: X —* 2X is a maximal 
accretive mapping with W = int D(A) ^ 0, then there exists a dense Gj-subset Wo 
of W such that A is singlevaiued and norm to norm upper semicontinuous at the 
points of Wo (compare [20]). This result was extended to a reflexive Frechet smooth 
Banach space in [26], while the resolvents and selections of accretive and maximal 
accretive multivalued mappings were studied in [21]. 

Theorem 3. Let X be a Banach space, J and J* the duality mapping on X and 
X*, respectively. Then 

(i) ifX is nonretiexive and X* is smooth, then the graph G(J*) of J* is not closet 

in (X*,v(X*,X)) x (X**,c(X**,X*)); 

(ii) ifX* is smooth, then J* is weak* to weak* continuous on R(J) at u0 £ R(J) 

if and only if J"1 is weak* to weak continuous at tij. 

P r o o f . First of all, if X* is smooth, then X = J*(R(J)). If X is arbitrary, we 
always have X C J*(R(J)). Indeed, if u0* = tco E X for some uo G X\ we choose 
u*0 e JU(u0). Then u0 € J*(u*0) CJ*(J(u0)) C J*(R(J)). Hence X C J*(R(J))< 

Suppose now that X* is smooth and v0* € J*(R(J)). Then there exists a point 
*o € R(J) and Vo £ X such that z0 € J(vo) and v0* = J*(ZQ) in view of the 
smoothness of X*. Hence v0* = vo, which proves that J*(R(J)) C X. 

Assume on the contrary that G(J*) is closed in (X*,<r(X*,X)) x (X**, 
tr(X**,X*)). We find nets (vp) C X, (v*,) c X* and points u*0 € X* and u*0* € X** 

such that vj —* tig weakly* in X*, vp = J*(i/*j) and t)̂  —• u0* weakly* in X** and 

Since X is nonreflexive, we have X** ^ .R(J*). Indeed, if R(J*) = K**, then 
using the James theorem we see that X* is reflexive and hence X would be reflexive, 
a contradiction. Hence there exists a point u0* 6 X** such that u0* £ R(J*). By 
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the Goldstine theorem there exists a net (ua) C X such that | | t i« IU | | < | | and 
ua -+ u*Q* in the (7(X**,^*Hopology of X**. Since X = J*(R(J)), there exists 
u*a G R(J) such that Ua = J*«)- N o w t h e boundedness of (u<*) implies that 
« ) is bounded in X* and hence there exists a subnet (u*afi) = (t£) of (u*a) such 
that ti*^ —> tij in the <r(-K*,.K)-topology of X*. Now, if G(J*) were closed in 
(X*}a(X*,X)) x (X**,<r(X**,X*)), then t£ - tij weakly*, v0 = J > ; ) - < 
weakly* would imply, that UQ* = «J*(t*o). Hence u*,* G .ft(J*), a contradiction 

(ii) Suppose that X* is smooth. Then X is rotund and .K = J*(R(J)). Hence 
there exists J""1 and it is singlevalued and norm to weak continuous from R(J) 

into X. Moreover, J"*1 is weak* to weak continuous at UQ if and only if J* is 
weak* to weak* continuous on R(J) at 11$ € # ( J ) . This follows at once from the 
facts that J " 1 = r~"lJ*\R(J) (compare [4]) and that r is a homeomorphism from 
(X,a(X,X*)) into (JV**, *(.***, X*)), which concludes the proof. • 

R e m a r k 2 . Note that the duality mapping J : £p - • tq(p € (l,oo)) is se
quentially weak to weak continuous, while the duality mapping on Lp, p G (l ,oo), 
p ^ 2, is not sequentially weak to weak continuous. If X is a Banach space such 
that there is a selection of the duality mapping J : X —• 2X* which is sequentially 
weak to weak* continuous, then X has the Opial property, i.e. if xn —> x0 weakly in 
X, then liminf \\xn — x\\ > liminf ||a:n — xo\\ for every x £ a?o, x G X. If A" has the 

n—•oo n—>oo 

Opial property, then K has the Brodskij-Milman property (see [13]). 

Note that if X* is a smooth Banach space, then J " 1 is singlevalued and norm to 
weak continuous from R(J) into X. 

Using the higher dual technique, Giles, Gregory and Sims [12] have proved the 
following result. Let X be a Banach space which can be equivalently renormed 
so that there exists a constant k (0 < k < 1) such that for every x G Si(0) and 
x*x G J(x) and x*x + xL G J**(x), where xL G XL, we have \\xL\\ ^ *, then X is 
an Asplund space. In particular, if X can be equivalently renormed such that the 
weak* and weak topologies coincide on J(5i(0)) , then X is an Asplund space. It is 
remarked that its proof shows that given a Banach space X whose dual X* satisfies 
the condition of the above assertion or its consequence, then X is reflexive ([12]). 

The proof of the next assertion is based on the Eberlein-Smulian theorem, on the 
argument due to Davis and Johnson [3]. 

Theorem 4. Let X be a Banach space. 
Then X is reflexive if and only if X admits an equivalent norm such that the 

weak* and weak topologies coincide on its second dual unit sphere of X**. 

P r o o f . First of all assume that the condition is satisfied and X is not reflexive. 
Then the unit ball B*(0) of X* is <r(X*,.K)-compact but not <r(.K*, A c c o u n t a b l y 
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compact. Indeed, if B*(0) were <r(.K*, X**)-countably compact, then B*(0) would 
be also <r(X*,.K**)-compact by the Eberlein-Smulian theorem, which is impossible, 
because the cr(X* yX**)- and the <r(.K*,.X)-topologies agree on X* if and only if 
X is reflexive. As -B*(0) is not <r(.K*,K**)-countably compact, there is a sequence 
« ) C B*(0) having no <r(X*,K**)-convergent subnet. Since B*(0) is a(X*yX)-
compact, there is a subnet (u*) of (u*) and a point u* E B* (0) such that u* —> u* 
in the <r(.K*,.K)-topology. Put W = spSl{(ii*) U {w*}}. Then W is a norm-closed 
separable subspace of X* y and for every fixed u 6 X we have (&, u*) —> (tx,ii*). 
Since (ti*) is a subnet of (n*) and (n*) contains no <r(K*, JV**)-convergent subnet, 
we conclude that (u*) does not converge to u* in the <r(K*,X**)-topology of X*. 
Since <r(X* yX**)\W = <r(VV, W*) by the Hahn-Banach theorem, there exists a point 
UQ* € W* such that the net ((ti*>*,ti*)) fails to converge to (uQ*yu*). Hence UQ* is 
not <r(.K*, .^-continuous, i.e. n*,* £ X. By the Goldstine theorem, we have 

~ < T ( A — , J V ) 

u*Q* £X**=X 

There exists a net (ti^) in X such that up —> UQ* in the <r(K**,K*)-topology of X** 
and | u ^ | -̂  |n*>*|, where 1.1 denotes the second dual norm of X** associated with 
the equivalent norm 1.1 on X. Now we have 

\U*Q*1 ^ liminf |u;jS = liminf | u ^ | ^ limsup | ^ | ^ %U*Q*%. 
P P p 

Hence |ti/?| = |ii/?| —• |iio*|- Since UQ* £ Xy there exists an index /?o such that 
up ^ 0 for every 0 > fl>. Put vp = uplupl~\ v? = ng*!^*!"1- T h e n Ifyl = 
|i>g*| = 1 and vp —• VQ* in the a(X**yX*)~topology of X**. Since the weak* and 
weak topologies agree on the unit sphere Sjj(O) = {u** £ X**y |n**| = 1} of X**, 
we have that vp —• VQ* weakly in .K**. As vp € X and X is weakly closed in X**y 

we have vj$* 6 X and therefore njj* = |no*|v5* € .K, a contradiction which proves 
that X is reflexive. Let X be reflexive. Since X* is also reflexive, we have that the 
^ X ^ A ^ - t o p o l o g y and the <r(.K**,X***)-topology coincide on X**. Hence, if 1.1 
is an arbitrary equivalent norm in Xy then the weak* and weak topologies coincide 
in its second dual unit sphere of X**, which concludes the proof. • 

Corollary 1. Let X be a Banach space such that X admits an equivalent norm 
whose second dual norm on X** has the (w* H)-property in nets. Then X is reflexive. 

G. Emmanuele [6] proved that if X is a weakly compactly generated Banach 
space, then X can be equivalently renormed in such a way that .K* is weak* locally 
uniformly rotund. As a consequence of this result (see also [6, Theorem 2]) he stated 
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the following assertion: For a Banach space X, the following are equivalent: (i) X is 

reflexive, (ii) X** can be renormed in an equivalent weakly locally uniformly rotund 

manner. 

Note that if X* is (WLUR) and (x*n) C 5*(0), x*Q £ S*(0) are such that x*n — x*0 

weakly* in X*, then x*n -> x j weakly (see [5, §2]). Hence if X* is (WLUR), then the 

weak* and weak convergences of sequences agree on 5*(0). Theorem 4 is connected 

with the following result (see [22, Theorem 3]): Let X be a dual Banach space (i.e. 

X = Z* for a Banach space Z), M C X* a convex open subset, tio £ M, where 

UQ G M, where u 0 is a canonical image of UQ E 2? in X*. Let / : M —• R be a weak* 

lower semicontinuous convex functional having the Gateaux derivative f'(uo) at tin-

Then /'(tin) G X, i.e. f'(uo) is a weak* continuous linear functional on X*. 
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S o u h r n 

SOME PROPERTIES OF MONOTONE TYPE MULTIVALUED 

OPERATORS IN BANACH SPACES 

JOSEF KOLOMÝ, PRAHA 

Jsou vyšetřeny některé vlastnosti mnohoznačných zobrazení monotónního typu (akre-
tivní operátory, zobrazení duality) v souvislosti s geometrickou strukturou Banachových 
prostorů. 
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