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Summary. The purpose of this paper is to introduce a definition of cliquishness for 
multifunctions and to study the search for cliquish, quasi-continuous and Baire measurable 
selections of compact valued multifunctions. A correction as well as a generalization of the 
results of [5] are given. 
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Define a multifunction F: R —• R (ii-the real line with the usual topology) as 
follows: F(x) = {l/x} for x -̂  0 and F(0) = R. The multifunction F has no 
quasi-continuous selection. That means Theorem 2 of [5] is not valid. It is easy to 
see from the proofs of theorems of [5] that they are correct for a compact valued 
multifunction. 

The aim of this paper is to present new proofs of the theorems from [5]. Despite 
the fact that we consider compact valued multifunctions our assumptions on Y as 
well as the types of continuity are more general than those of the paper [5]. We hope 
the results presented here will give a correct and more comprehensive information 
concerning cliquish, quasi-continuous and Baire measurable selections. 

In what follows X is a Ti-Baire topological space while Y is a separable metrizable 
one. By [2, p. 328 Th. 3], there is a metric d for Y such that (y, d) is totally bounded. 
Let (Y°,d°) be a completion of (Y}d). By [2, p. 337, Corollary of Th. 19], Y° is 
compact. By S(eyA) (S°(e, A)) we denote an e-neighborhood of A C Y (A C Y°), 
i.e. S(e>A) = {y G y : d(y,A) < e} (S°(e,A) = {y € Y*: d*(yyA) < e}), e > 0. If 
A = {z} we write S(e, z) (S0(e1 z)). By int(B) we denote the interior of B C X. 

A multifunction F: X —f Jt{Y) is a set valued function which assigns to each 
element x of X a set F(x) £ -#(Y) = {A C Y: A is non-empty compact}. A 
selection of F is any function f:X->Y such that f(x) € F(x) for any x € X. 
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The upper (lower) inverse image F+(A) (F~(A)) is defined for any A C Y as 
F+(A) = {x £X:F(x) C A}y F~(A) = {x G X: F(x)nA^^}. 

Let Si be a family of subsets of .K such that *9 C Si C Sir where V = {A C X: 
A is non-empty open } and Sir = {A C X: A is of the second category having the 
Baire property}. The following definition introduces a notion of cliquishness of a 
multifunction. 

Definition 1. A multifunction F: X —• Jf(Y) is said to be ^-cliquish at a 
point p G X if for any £ > 0 and any neighborhood Uofp there is a set 5 € ^ such 
that f] S(e, F(-c)) ^ 0 . F is ^-cliquish if it is ^-cliquish at any point. 

xGB 

R e m a r k 1. (i) The condition f| 5(e, F(x)) £ 0 implies that there is a point 
y G Y such that S(e, y) n F(ar) ^ 0 for any x G # . 

(ii) If a single valued function / : X —• V is given, then under the natural inter­
pretation of f(x) as a one point set the above definition for Si -=. <& is equivalent to 
the usual definition of cliquishness of a function [1]. As we will show below a function 
/ : X —• Y is ^r-cliquish if and only i f / is Baire measurable (i.e. f~l(G) has the 
Baire property for any open set G C Y). 

(iii) The set of all points at which F is ^-cliquish is closed. Consequently, F is 
•^-cliquish if and only if it is ^-cliquish on a dense set. 

The next definition recalls a few known notions of continuity which are frequently 
used in this paper. 

Definition 2. A multifunction F: X —* J^(Y) is said to be u-#-continuous 
(/-^-continuous) at a point p G X if for any open sets V, U with p G t/, F(p) C V 
(F(p) n V £ 0) there is a set B G Si such that B C U C\ F+(V) (BcUn F~(V)). 
F is u-<3?-continuous (/-^-continuous) if it is u-^-continuous (/-^-continuous) at 
any point [4]. For Si = *& we have the well-known notion of upper (lower) quasi-
continuity [6]. 

F is said to be upper (lower) semi-continuous (briefly u.s.c. (l.s.c)) at a point pe X 
if for any open set V such that F(p) C V (F(p) C\ V # 0) we have p G int(F+(V)) 
(p€-int(F"(Vr))). F is said to be u.s.c. (l.s.c.) if it is u.s.c. (l.s.c.) at any point. 

If a single valued function / : X —• Y is given, then the notions of u-^?-continuity 
and /-^-continuity coincide and we simply refer to ^-continuity of / . The situation 
is analogous with quasi-continuity and continuity of / . 

Lemma 1. For any Si-cliquish multifunction F: X —» Jf(Y) there is a quasi-
continuous function f:X-+Y° and residual set S C X such that 

(i) for any x G S, f(x) G F(x) and f is continuous at x, 
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(ii) for any p G X} any neighborhood U of p and for any e > 0 there is a set 
Be&,BcU such that F(x) n S° (e, f(x)) -̂  0 for any x G B. 

P r o o f . Let p G X. Define A(p) C Y° as follows: A(p) = {z G K°: for any 
open sets (7, K(K open in Y°) with p G C/, z G K there is a set B G SI, B C U such 
that F(x) n V ^ 0 for any x € B). We will show that A(p) is non-empty. Let 
€n > 0, en —* 0 and let ^ ( p ) be a complete system of neighborhoods of p. Since F is 
^-cliquish at p, for any n = 1, 2, . . . and any U € ^ (p ) there is a set B(n, U) € # , 
B(n,(/) C U and a point y(n,U) € y such that F(x)C\S(en,y(n,U)) £ 0 for any 
x G #(n, ^0- Since Y° is compact, there is a point y £Y° which is an accumulation 
point of the net {y(n, U): n = 1 ,2 , . . . , U G ^ ( p ) } . It is clear that y £ .A(p). 

Since A(p) is closed in y ° , we can define a compact valued multifunction A: 
X —* JT(y°) assigning to each point p G -X the set -4(p). We will show that A is 
u.s.c. Suppose that A is not u.s.c. at a point p. That means there is an open set 
V D A(p) (V open in Y°) such that for any U G ^ (p ) there is a point p(U) G U 
such that A(p(U)) \ V £ 0. Let y(£/) G A(p(t/)) \ V. Since y° is compact, there is 
a point y €Y° \V which is an accumulation point of the net {y(U): U G ^ ( p ) } . 
Since y ^ K, y £ -4(p). On the other hand, it is easy to see that y G A(p)> which is 
a contradiction. 

Now we will show that A(p) C F(p) for any p £ P where P is residual. Define 
a property i / + of F at a point x € X as follows: F has the property i / + at a 
point x if for any open set V D F(x) there is a neighborhood U of x such that 
F+ (K) C\U 0 H is of the second category for any non-empty open set H C U (see 
[4]). By [4, Remark 1.1] there is a residual set P C X such that F has the property 
J/+ at any point of P. Suppose that there is y G A(p) \ F(p), pE P. Let G, # be 
open disjoint and such that y £ G> F(p) C V. Since F has the property H+ at p, 
there is a neighborhood U of p such that F+(V)C\UC\H is of the second category for 
any non-empty open set H C U. On the other hand y G -4(p), hence there is B G «#, 
B C U such that F(x) n G ^ 0 for any i G f l . Since X is Baire and B is of the 
second category having the Baire property, Bf\F+(V) is of the second category. For 
xeBHF+(V) we have F(x) C V and F(x)C\G # 0, which contradicts K n G = 0. 

By [4, Corollary 1 of Th. 5.3] there is a quasi-continuous selection f:X —• Y° 
of A. By [6, Th. 3.1.1], the set Q of points where / is continuous is residual. Let 
S = PC\Q. S is residual and for any x G S the condition (i) holds. Since f(p) G -4(p) 
for any p£ X, the condition (ii) is fulfilled. • 

Theorem 1. A multifunction F: X —> Jt(Y) is &-cliquish if and only if F has 
a selection which is 39-continuous at any x G S where S is a residual set. 

257 



Proof. It is evident that if F has a selection being ^-continuous on a residual 
set, then F is ^-cliquish on a dense set. By Remark 1 (iii), F is ^-cliquish. 

Now suppose F is ^-cliquish. By Lemma 1, there is a function / : X —• Y° 
satisfying the conditions (i) and (ii) of Lemma 1. 

Define a multifunction G: X -+ Y° as follows: G(p) = cl (S°(e(p)J(p))) n 
F(p) where e(p) = d°(f(p),F(p)) and cl (S°(e(p)J(p))) is the closure in Y° of 
S°(e(p)J(p)). Since F(p) is compact, G is a non-empty and compact valued multi­
function. Moreover, G(p) = {/(p)} C F(p) for any p G S by Lemma 1 (i). 

We will show that G is u-^-continuous at any p G S. Let K D G(p) = {/(p)} 
be open in Y° and let £1 be a neighborhood of p. Since / is continuous at p, there 
is an open set H C U, p G H and there is e > 0 such that f(x) G S°(e/4J(p)) C 
S*(eJ(p)) C V for any * G i/. By Lemma 1 (ii), there is a set B G Sl% B C H 
such that F(x)nS*(e/4J(p)) £ 0 for any x G B. Hence d° (/(*), F(a:)) < e/2 
for x G -S: Since G(s) = cl(50(d°(/(x),F(a:)),/(a:))) fl F(x) C S°(e/2J(x)) n 
-F(*) C 5° (e, /(p)) H F(x) C V for any x G fl, G is u-^-continuous at p. Since 
G(a?) C F(s) C y for any * G X, G is ti-#-continuous at p as a multifunction from 
X into y. 

Let g: X —• Y be a selection of G. Since G(ar) C F(«) for any x G X, y is a 
selection of F. G: X —* y is u-.#-continuous at any x G 5 and G(x) = {/(x)} on 
5, £ is ^-continuous on the residual set 5. D 

Corollary 1. For a function f: X -+Y the following conditions are equivalent: 
(i) f is £9-cliquish, 
(ii) the set of 39-continuity points of f is residual, 
(iii) the set of 3-continuity points of f is dense. 

By [3], / is if-cliquish iff the set of continuity points of / is residual. Thus we 
have 

Corollary 2. The following conditions are equivalent: 
(i) / is 9-cliquish, 
(ii) the set ofquasi-continuity points off is residual, 
(iii) the set of quasi-continuity points off is dense, 
(iv) the set of continuity points off is residual. 

By [4, Th. 3.3], / : X —* Y is Baire measurable iff the set of &r-continuity points 
of / is residual. Consequently, we have 

Corollary 3. Let f\X^Y. The following conditions are equivalent: 
(i) / is &r-cliquishf 
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(ii) the set of 38r-continuity points of f is residual, 

(ii) the set of SSr-continuity points of f is dense, 

(iv) / is Baire measurable. 

Corollary 4. If F: X —* Jf(Y) is 1-39-continuous on a dense set, then it has 

a selection f which is Si-continuous on a residual set. Consequently, if F is lower 

quasi-continuous on a dense set (F is lower-Baire measurable, i.e. F~(G) has the 

Baire property for any open set G C Y), then F has a <&-cliquish (Baire measurable) 

selection. 

P r o o f . It follows from the fact that if F is /-^-continuous at x, then it is 
^-cliquish at x. Proof of the existence of a Baire measurable selection follows from 
[4, Th. 3.3]. D 

Definition 3. A multifunction F: X —• Jt{Y) is u-.^-continuous at a point 
p G X if for any open sets V, U with F(p) C V, p G U there is a set A C U 
of the second category such that A C U C\ F+(V). F is u-0-continuous if it is 
u-^-continuous at any point. 

R e m a r k 2 . Since the set of ti-.^-continuity points is a subset of the set of 
points at which F has the property / /+ , by [4, Remark 1.1] any compact valued 
multifunction is u-.^-continuous on a residual set. 

Theorem 2. Let F: X —• Jt(Y) be a u-&-continuous multifunction. F has a 
quasi-continuous selection if and only if it is 39-cliquish. 

P r o o f . It is clear that if F has a quasi-continuous selection, then F is &-
cliquish. Now suppose that F is ^-cliquish. By Lemma 1, there is a quasi-continuous 
function / : X —• Y° such that f(x) G F(x) and / is continuous at x for any 
x G S where 5 is a residual set. Define a multifunction A: X —> Jf(Y°) as follows: 
A(p) = {y e y ° : for any open sets U, V (V open in y° ) with y G U, p € V 
there is a set H € ^, H C U such that f(H) C V}. Since / is continuous on S, 
A(x) = {/(*)} for any x G 5. Similarlly as in the proof of Lemma 1, we can show 
that A is u.s.c. and a non-empty and compact valued multifunction. 

Now we will show that any selection of A is quasi-continuous. Let g be a selection 
of A and let p G X and U, V be open (V open in Y°) with p G U, g(p) G V. Since 
9(P) € A(p), there is H G ^ such that H C U and f(H) C V. A(x) = {g(x)} = 
{f(x)} for any x G S, hence g(Hf)S) C V. Thus g is #r-continuous. By [4, Th. 2.5], 
g is quasi-continuous. 

Now it is sufficient to show that A(p) H F(p) £ 0 for any p G X. Suppose that 
A(p) n F(p) = 0. Hence there are open disjoint sets G, W such that G D A(p) and 
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W D F(p). Since A is u.s.c, p € int(A^(G)). F is u-®-continuous at p, hence there 
is a set T of the second category such that T C (int(j4+(G))) H F+(W). Thus for 
ar £ T O S we have A(x) = {/(a?)} C G and F(ar) C W\ Since GH W = 0, we have 
a contradiction to the fact that /(a?) € -F(ar) for x € S. O 

Corollary 5 . If F : .X —• Jf(Y) is u-3-continuous, then it has a quasi-continuous 

selection. 

P r o o f . By [4, Th. 2.1], F is Ls.c. except for a set of the first category. Hence 

F is ^-cliquish and the proof follows from Theorem 2. D 
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