Takasi Kusano; Pavol Marušiak
Asymptotic properties of solutions of second order quasilinear functional
differential equations of neutral type

Persistent URL: http://dml.cz/dmlcz/125952

Terms of use:
© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz
ASYMPTOTIC PROPERTIES OF SOLUTIONS OF SECOND ORDER QUASILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE

TAKAŠI KUSANO, Fukuoka, PAVOL MARUŠIAK, Žilina

(Received February 13, 1998)

Abstract. This paper establishes existence of nonoscillatory solutions with specific asymptotic behaviors of second order quasilinear functional differential equations of neutral type. Then sufficient, sufficient and necessary conditions are proved under which every solution of the equation in either oscillatory or tends to zero as $t \to \infty$.

Keywords: quasilinear differential equations of neutral type, oscillatory, non-oscillatory solutions, Schauder-Tychonoff fixed point theorem

MSC 1991: 34K40, 34K25

1. INTRODUCTION

We consider quasilinear differential equations of neutral type in the form

\[(E) \quad (L^+ \alpha x(t))' + f(t, x(g(t))) = 0, \quad t \geq a > 0,\]

where $\alpha > 0$ is a constant and $L^+ \alpha$ is a differential operator defined by

\begin{align*}
&L_0 x(t) = x(t) - p(t)x(h(t)), \\
&L^+ \alpha x(t) = r(t)|L_0^\alpha x(t)|^{\alpha-1} L_0^\alpha x(t).
\end{align*}

The conditions we always assume for (E) are listed below:

(C_1) $r: \lbrack a, \infty \rbrack \rightarrow (0, \infty)$ is continuous and

\[
\int_a^\infty (r(t))^{\frac{1}{\alpha}} \, dt < \infty;
\]

Research was supported by Slovak Grant Agency for Science 1/5254/98
(C2) \(p: [a, \infty) \to [0, \lambda] \) is continuous, \(0 < \lambda < 1 \);
(C3) \(h: [a, \infty) \to \mathbb{R} \) is continuous and strictly increasing, \(h(t) < t \) for \(t \geq a \) and \(\lim_{t \to \infty} h(t) = \infty \);
(C4) \(g: [a, \infty) \times \mathbb{R} \to \mathbb{R} \) is continuous, \(f(t, z) \) is nondecreasing in \(z \) and satisfies \(x f(t, x) > 0 \) for all \(x \neq 0 \) and \(t \geq a \).

Let \(t_1 \geq a \) be such that

\[
t_0 = \min \{ h(t_1), \inf_{t \geq t_1} g(t) \} \geq a.
\]

By a proper solution of \((E)\) we mean a continuous function \(z: [t_0, \infty) \to \mathbb{R} \) which has the property that \(L_0z(t) \) and \(L_2z(t) \) are continuously differentiable on \([t_1, \infty)\), and satisfies the equation \((E)\) at every point of \([t_1, \infty)\). The solutions which vanish for all large \(t \) will be excluded from our consideration. A proper solution of \((E)\) is said to be oscillatory if it has infinite sequences of zeros tending to infinity; otherwise a proper solution is said to be nonoscillatory.

In this paper we shall study the oscillatory and nonoscillatory behavior of proper solutions of the equation \((E)\). More specifically we first classify the set of nonoscillatory solutions of \((E)\) according to their asymptotic behavior as \(t \to \infty \) and present conditions for the existence of three types of nonoscillatory solutions of \((E)\) with specified asymptotic behavior. We then establish criteria for oscillation of all proper solutions of the equation \((E)\).

Equations of the form \((E)\) include as special cases the neutral equations of the type

\[
(r(t)z(t) - p(t)z(h(t)))' + f(t, z(g(t))) = 0, \quad t \geq a
\]

and the non-neutral equations of the type

\[
(r(t)z'(t))^{n-1} z'(t)' + f(t, z(g(t))) = 0, \quad t \geq a,
\]

both of which have been objects of intensive investigation in recent years. We refer to the papers [3, 5, 7, 16] and to [1, 2, 8-15, 17, 19, 20] for typical oscillation and nonoscillation results regarding \((E_1)\) and \((E_2)\), respectively.

The oscillatory behavior of equations of the form \((E)\) was first studied in the paper [6] under the hypothesis that the function \(r(t) \) defining the operator \(LT \) satisfies \(\int_a^\infty (r(s))^{\frac{1}{2}} \, ds = \infty \). The purpose of this paper is to turn our attention to the equation \((E)\) with \(r(t) \) satisfying the condition \((C_1): \int_a^\infty (r(s))^{\frac{1}{2}} \, ds < \infty \) and develop an oscillation theory for it in the same spirit as in [6].
Extensive use will be made of the function $q_a(t)$ defined by

\begin{equation}
q_a(t) = \int_t^\infty (r(s))^{1/3} \, ds, \quad t > a.
\end{equation}

Note that $q_a(t) \to 0$ as $t \to \infty$ by (C1).

The following notation will be needed in the sequel:

\begin{align}
(1.5) \quad & h^0(t) = t, \quad h^k(t) = h(h^{k-1}(t)), \quad k = 1, 2, \ldots, \\
(1.6) \quad & P_0(t) = 1, \quad P_k(t) = \prod_{i=0}^{k-1} p(h^i(t)), \quad k = 1, 2, \ldots, \\
(1.7) \quad & \gamma(t) = \sup\{s \geq a; g(s) \leq t\}, \quad \gamma_\alpha(t) = \sup\{s \geq a; h(s) \leq t\}.
\end{align}

2. Classification of Proper Nonoscillatory Solutions

We begin by classifying the set of possible nonoscillatory solutions of the equation (E) according to their asymptotic behavior as $t \to \infty$.

Let N denote the set of all nonoscillatory solutions of (E). If $x \in N$ then it follows from (E) and the assumptions (C1)-(C5) that the function

\begin{equation}
L_0x(t) = x(t) - p(t)x(h(t))
\end{equation}

has to be eventually of constant sign, so that either

\begin{equation}
x(t)L_0x(t) > 0
\end{equation}

or

\begin{equation}
x(t)L_0x(t) < 0
\end{equation}

for all sufficiently large t.

We use the notation

\begin{align}
N^+ &= \{x(t) \in N : x(t)L_0x(t) > 0 \text{ for all large } t\}, \\
N^- &= \{x(t) \in N : x(t)L_0x(t) < 0 \text{ for all large } t\}.
\end{align}

If $x \in N^-$ then by Remark 2.1 in [18] $\lim_{t \to \infty} x(t) = 0$. Now in view of (C2), (C3), $\lim_{t \to \infty} L_0x(t) = 0$. From this we obtain
Remark 2.1. If \(x(t) \in N_0 \), then \(\lim_{t \to \infty} x(t) = 0 \). Let \(x(t) \in N^+ \) for \(t \geq t_1 \). Then from (2.1) we have

\[
x(t) = L_0 x(t) + p(t)L_0 x(h(t)) + P_2(t)x(h^{(2)}(t)), \quad t \geq t_2 \geq \gamma_0(t_1).
\]

From (2.4) in view of (C2) we get

\[
x(t) \geq L_0 x(t), \quad t \geq t_1.
\]

Repeating the application of (2.1) and (2.4) we obtain

\[
x(t) = \sum_{k=0}^{n(t)-1} P_k(t)L_0 x(h^{[k]}(t)) + P_{n(t)}x(h^{[n(t)]}(t)), \quad t \geq t_{n(t)} \geq \gamma_n(t_{n(t)-1}),
\]

where \(n(t) \) denotes the least positive integer such that \(h(t_1) < h^{[n(t)]}(t) \leq t_1 \).

Let \(K_x \) be a constant such that \(|x(t)| \leq K_x \) for \(t \in [h(t_1), t_1] \). If \(L_0 x(t) \) is non-decreasing on \([t_1, \infty)\), then (2.6) in view of (C2) and (1.6) yields

\[
|x(t)| \leq \frac{|L_0 x(t)|}{1 - \lambda} + K_x, \quad t \geq t_2 \geq t_1.
\]

Lemma 2.1. Let \(x(t) \) be a nonoscillatory solution of (E) on \([t_0, \infty)\). If \(x(t) \in N^+ \), then there exist positive constants \(c_1, c_2 \) and \(T \geq t_0 \) such that

\[
c_1 \leq \frac{|L_0 x(t)|}{1 - \lambda} \leq c_2 \quad \text{for} \quad t \geq T.
\]

Proof. Let \(x \in N^+ \). Without loss of generality we may suppose that \(x(t) > 0 \) and \(L_0 x(t) > 0 \) for \(t \geq t_0 \). In view of the assumptions (C1)-(C5) the equation (E) implies that

\[
L_0^2 x(t) = r(t)|L_0 x(t)|^{n-1} L_0^2 x(t)
\]

is decreasing for \(t \geq t_1 \geq \gamma(t_0) \). Hence in view of (C1) either \(L_0^2 x(t) > 0 \) for \(t \geq t_1 \) or there exists \(t_2 \geq t_1 \) such that \(L_0^2 x(t) < 0 \) for \(t \geq t_2 \).

1) Suppose that \(L_0^2 x(t) > 0 \) on \([t_1, \infty)\). Then with regard to (2.9) there exists a constant \(K_x^+ > 0 \) such that \(L_0^2 x(t) = r(t)|L_0 x(t)|^{n-1} L_0^2 x(t) \leq K_x^+ \) for \(t \geq t_1 \). From the last inequality we obtain \(L_0 x(t) - L_0 x(t_1) \leq K_x^+ \), which implies that

\[
L_0 x(t) \leq c_2, \quad t \geq t_1.
\]
where \(c_2 = L_0 x(t_1) + K_1 Q_a(t_1) \).

ii) Suppose that \(L_0^2 x(t) < 0 \) on \([t_2, \infty)\). Since \(L_0^2 x(t) = -r(t)(-L_0^2 x(t))^a \) is decreasing for \(t \geq t_2 \) we have

\[
- L_0^2 x(t) \geq (r(t_2))^{1/a} |L_0^2 x(t_2)| r(t_2), \quad t \geq t_2,
\]

from which via integration over \([t, \infty)\), \(t \geq t_2 \), it follows that

\[
L_0 x(t) \geq c_1 Q_a(t), \quad t \geq t_2,
\]

where \(c_1 = (r(t_2))^{1/a} |L_0^2 x(t_2)| \). Let \(T = \max \{t_1, t_2\} \). The desired inequality (2.8) follows from (2.12) and (2.10).

Using Lemma 2.1, (2.5) and (2.7) we obtain

\[
0 \leq \liminf_{t \to \infty} |x(t)|, \quad \limsup_{t \to \infty} |x(t)| < \infty.
\]

Then in view of the monotonicity of \(L_0 x(t) \) there exists a limit \(\lim_{t \to \infty} |L_0 x(t)| = \ell_0 < \infty \). Let \(\liminf_{t \to \infty} |x(t)| = 0 \). Then by Lemma 1 and Lemma 2 [16] we have

\[
\lim_{t \to \infty} |L_0 x(t)| = 0 \quad \text{and} \quad \lim_{t \to \infty} |x(t)| = 0.
\]

Combining Lemma 2.1 with (2.6), (2.7), we conclude that the following three types of asymptotic behavior are possible for nonoscillatory solutions \(x(t) \in N^+ \) of (E):

(I) \(0 < \liminf_{t \to \infty} |x(t)|, \quad \limsup_{t \to \infty} |x(t)| < \infty \),

(II) \(\lim_{t \to \infty} x(t) = 0, \quad \limsup_{t \to \infty} \frac{|x(t)|}{Q_a(t)} = \infty \),

(III) \(0 < \liminf_{t \to \infty} \frac{|x(t)|}{Q_a(t)}, \quad \limsup_{t \to \infty} \frac{|x(t)|}{Q_a(t)} < \infty \).

\[
\square
\]

203
3. EXISTENCE OF PROPER NONOSCILLATORY SOLUTIONS

In this section we establish criteria for the existence of nonoscillatory proper solutions of the equation (E) of type (I), (II) or (III) mentioned above.

Theorem 3.1. The equation (E) has nonoscillatory solutions of type (I) if and only if

\[
\int_{a}^{\infty} \left(\frac{1}{r(t)} \int_{a}^{t} |f(s, c)| \, ds \right)^{\frac{1}{2}} \, dt < \infty, \quad T \geq a
\]

for some constant \(c \neq 0 \).

Proof. (The “only if” part.) Let \(x(t) \) be a nonoscillatory solution of (E) of type (I) on \([t_0, \infty)\), \(t_0 \geq a \). We may suppose that \(x(t) \) is eventually positive. Then there exist positive constants \(c, c_1 \) and \(t_1 \geq t_0 \) such that

\[
(3.2) \quad c \leq x(g(t)) \leq c_1 \quad \text{for} \quad t \geq t_1.
\]

In view of \((C_4), (C_5)\) and \((3.2)\) we see from (E) that

\[
(3.3) \quad (L_0^t x(t))^{' \prime} \leq -f(t, c), \quad t \geq t_1.
\]

The last inequality implies that \(L_0^t x(t) = r(t)|L_0^t x(t)|^{\alpha-1} L_0^t x(t) \) is decreasing on \([t_1, \infty)\). Then in view of \((C_1)\), there exists a \(t_2 \geq t_1 \) such that \(L_0^t x(t) \) is either positive or negative for \(t \geq t_2 \).

i) Suppose that \(L_0^t x(t) > 0 \) on \([t_2, \infty)\). Then, integrating \((3.3)\) over \([t_2, t]\) we have

\[
\int_{t_2}^{t} f(s, c) \, ds \leq L_0^t x(t_2), \quad t \geq t_2,
\]

which implies because of \((C_1)\) that

\[
\int_{t_2}^{\infty} \left(\frac{1}{r(t)} \int_{t_2}^{t} |f(s, c)| \, ds \right)^{\frac{1}{2}} \, dt < \infty.
\]

This shows that \((3.1)\) is valid.

ii) Suppose that \(L_0^t x(t) < 0 \) on \([t_2, \infty)\). Integration of \((3.3)\) over \([t_2, t]\) gives

\[
r(t)|L_0^t x(t)|^{\alpha} \geq \int_{t_2}^{t} f(s, c) \, ds
\]
or

$$-L_0 x(t) \geq \left(\frac{1}{r(t)} \int_{t_2}^t |f(s, c)| \, ds \right)^{\frac{1}{2}}, \quad t \geq t_2.$$

Integrating the above inequality over \([t_2, \infty)\) and noting that \(x \in N^+\) we see that (3.1) holds.

(The “if” part.) Suppose that (3.1) holds for some constant \(c > 0\). The case of a negative \(c\) can be treated similarly. Let \(b\) and \(d\) be positive constants such that \(0 < d < \frac{b}{1 + \lambda^2}\) and \(\frac{b + d}{1 + \lambda} \leq c\), where \(\lambda\) is as in (C\(_2\)). Take \(T \geq a\) such that

(3.4) \[T_0 = \min \{h(T), \inf_{T \leq t \leq T^*} g(t) \} > a \]

and

(3.5) \[\int_T^{\infty} \left(\frac{1}{r(t)} \int_T^t f(s, c) \, ds \right)^{\frac{1}{2}} \, dt < \frac{d}{2}. \]

Let \(C[T_0, \infty)\) be the locally convex space of all continuous functions defined on \([T_0, \infty)\) which are constant on \([T_0, T]\) with the topology of uniform convergence on any compact subinterval of \([T_0, \infty)\).

Define a closed convex subset \(Y\) of \(C[T_0, \infty)\) by

(3.6)

\[
Y = \{ y \in C[T_0, \infty); \ b - d \leq y(t) \leq b + d \text{ on } [T, \infty) \}
\]

and \(y(t) = y(T)\) on \([T_0, T]\).

Using (2.5) we can associate to each \(y \in Y\) the function \(\hat{y}: [T_0, \infty) \to \mathbb{R}\) defined by

(3.7) \[
\hat{y}(t) = \sum_{n=0}^{n(t)-1} \frac{\int_T^t P_k(s) \hat{y}(h(s)) \, ds}{1-P_k(h(T))}, \quad t \geq T,
\]

\[
\hat{y}(t) = \frac{y(T)}{1-P(T)}, \quad t \in [T_0, Y],
\]

where \(n(t)\) denotes the least positive integer such that \(T_0 \leq h^{(n(t))}(t) \leq T\).

It is easy to verify that

(3.8) \[y(t) = \hat{y}(t) - P(t)\hat{y}(h(t)), \quad t \geq T_0, \]

and

(3.9) \[b - d \leq y(t) \leq \hat{y}(t) \leq b + \frac{d}{1-\lambda}, \quad t \geq T. \]
We now define an operator \(T: Y \rightarrow C[T_0, \infty) \) by
\[
(F_y)(t) = b + \int_T^t \left(\frac{1}{r(s)} \int_T^s f(s, y(g(s))) \, ds \right) \frac{dx}{dr}, \quad t \geq T,
\]
\[
(F_y)(T) = (F_y)(T), \quad T_0 \leq t \leq T.
\]
If \(y \in Y \), then using (3.9), (3.5) and (C5) we obtain
\[
|(F_y)(t) - b| \leq \int_T^t \left(\frac{1}{r(s)} \int_T^s f(s, b + d) \, ds \right) \frac{dx}{dr} < d,
\]
which shows that the operator \(F \) maps \(Y \) into \(Y \). It is a matter of routine calculation to verify that \(F \) is a continuous mapping and that \(F(Y) \) is relatively compact in the topology of \(C[T_0, \infty) \). Therefore, the Schauder-Tychonoff fixed point theorem ensures the existence of an element \(y_0 \in Y \) such that \(Fy_0 = y_0 \) and \(y_0 \) satisfies the integral equation
\[
y_0(t) = b + \int_T^t \left(\frac{1}{r(s)} \int_T^s f(s, g(s)) \, ds \right) \frac{dx}{dr}, \quad t \geq T,
\]
where \(y_0(t) = y_0(t) - y_0(h(t)), t \geq T \).

Differentiating (3.10) we obtain that \(y_0(t) \) is a nonoscillatory solution of (E) of type (I).

This completes the proof.

Theorem 3.2. The equation (E) has nonoscillatory solutions of type (III) if and only if
\[
\int_0^\infty |f(t, c_0 x(t))| \, dt < \infty, \quad T \geq a.
\]

for some constant \(c \neq 0 \).

Proof. (The “only if” part.) Let \(x(t) \) be a type (III)-solution of (E) on \([t_0, \infty), t_0 \geq a\). We may suppose that \(x(t) \) is eventually positive. Then there exist positive constants \(c, c_1 \) and \(t_1 \geq t_0 \) such that
\[
c_0 x(t) \leq x(g(t)) \leq c_1 x(t) \quad \text{for} \quad t \geq t_1.
\]

In view of (3.12), (C4) and (C5), the equation (E) yields
\[
(L_0^x x(t))' \leq -f(t, c_0 x(t)), \quad t \geq t_1.
\]
The last inequality implies that $L_f^2 x(t) = r(t)|L_0^2 x(t)|^{n-1} L_0^2 x(t)$ is decreasing on $[t_1, \infty)$. Then in view of (C_1) there exists a $t_2 \geq t_1$ such that $L_0^2 x(t)$ is either positive or negative for $t \geq t_2$.

i) If $L_0^2 x(t) > 0$ on $[t_2, \infty)$, then integrating (3.13) over $[t_2, \infty)$ we have

$$\int_{t_2}^{\infty} f(t, c_\xi(t)) \, dt \leq L_0^2 x(t_2) < \infty.$$

ii) If $L_0^2 x(t) < 0$ on $[t_2, \infty)$, then, in view of the monotonicity of $L_f^2 x(t) = -r(t)L_0^2 x(t)$, we have

$$-L_0^2 x(s) \geq \left(\frac{r(t)}{r(s)}\right)^{\frac{1}{n}} |L_0^2 x(t)|, \quad s \geq t \geq t_2.$$

Integration of the last inequality over $[t, \infty)$ gives

$$(3.14) \quad L_0 x(t) \geq (r(t))^{\frac{1}{n}} |L_0^2 x(t)| c_\xi(t), \quad t \geq t_2$$

which, combined with the inequality following from the integration of (3.13), yields

$$(3.15) \quad \left(\frac{L_0 x(t)}{c_\xi(t)}\right)^{\alpha} \geq r(t)|L_0^2 x(t)|^{\alpha} \geq \int_{t_2}^{\infty} f(s, c_\xi(s)) \, ds.$$

Combining (3.15) with (2.6) and (3.12) shows that (3.11) holds as desired.

(The "if" part.) Suppose that (3.11) holds for some nonzero constant c. We may suppose that c is positive. Let b and d be such that $0 < d < \frac{1}{1 + \lambda}$, $\frac{1}{1 + \lambda} \leq c$, where λ is as in (C_2). Take $T \geq a$ such that (3.4) holds and

$$(3.16) \quad \int_{T}^{\infty} f(s, c_\xi(s)) \, ds < d.$$

We define Y to be the closed convex subset of $C[T_0, \infty)$ as follows:

$$Y = \{ y \in C[T, \infty) : (b-d)^{\frac{1}{n}} c_\xi(t) \leq y(t) \leq (b+d)^{\frac{1}{n}} c_\xi(t) \quad \text{on } [T, \infty) \}$$

$$\text{and } y(t) = c_\xi(T) \quad \text{on } [T_0, T].$$

With each $y \in Y$ we associate the function \tilde{y} defined by (3.7). Then it can be shown that the operator $F: Y \to C[T_0, \infty)$ defined by

$$(Fy)(t) = \int_{T}^{\infty} \left(\frac{1}{r(\tau)} \left(b + \int_{\tau}^{\infty} f(s, \tilde{y}(g(s))) \, ds\right)^{\frac{1}{2}}\right) \, d\tau, \quad t \geq T,$$
and

$$(\mathcal{F}y)(t) = (\mathcal{F}y)(T), \quad T_0 \leq t \leq T$$

is a continuous mapping which sends Y into a relatively compact subset of Y. By the Schauder-Tychonoff fixed point theorem there exists an element $y_0 \in Y$ such that $\mathcal{F}y_0 = y_0$. This function $y_0 = y_0(t)$ satisfies the integral equation

$$y_0(t) = \int_t^\infty \left(\frac{1}{r(T)} \left(b + \int_T^t f(s, y(g(s))) \, ds \right)^{\frac{1}{2}} \right) \, d\tau, \quad t \geq T,$$

where $y_0(t) = \hat{y}_0(t) - \hat{y}_0(h(t)), t \geq T$.

Differentiating (3.18) we conclude that $\hat{y}_0(t)$ is a nonoscillatory solution of (E) of type (III).

Let us turn to the solutions of type (II) of (E). Unlike the solutions of types (I) and (III) we have been unable to characterize the existence of this type of solutions.

Theorem 3.3. The equation (E) has nonoscillatory solutions of type (II) if

$$\int_0^\infty \left(\frac{1}{r(t)} \int_0^\infty |f(s, c)| \, ds \right)^{\frac{1}{2}} \, dt < \infty,$$

for some constant $c \neq 0$ and

$$\int_0^\infty |f(t, k\varphi_k(t))| \, dt = \infty$$

for any $k \neq 0$.

Proof. Suppose that (3.19) holds for some constant $c > 0$. A parallel argument holds for the case of negative c. Let T be so large and d be such that $0 < d\varphi_k(T) < c$ and

$$\int_T^\infty \left(\frac{1}{r(t)} \left(d\varphi_k(T) + \int_T^\infty f(s, c) \, ds \right)^{\frac{1}{2}} \right) \, dt < d\varphi_k(T).$$

We define a closed convex subset Y of $C[T_0, \infty)$ and a mapping $\mathcal{F} : y \to [T_0, \infty)$ as follows:

$$Y = \{ y \in C[T_0, \infty) : d\varphi_k(t) \leq y(t) \leq c \text{ on } [T, \infty) \}$$

and $y(t) = y(T)$ on $[T_0, T]$.

$$F(y)(t) = \int_t^\infty \left(\frac{1}{r(T)} \left(d\varphi_k(T) + \int_T^\infty f(s, \hat{y}(g(s))) \, ds \right)^{\frac{1}{2}} \right) \, dt, \quad t \geq T,$$

$$(\mathcal{F}y)(t) = (\mathcal{F}y)(T), \quad T_0 \leq t \leq T.$$
where \(\hat{y}(t) \) denotes the function associated with \(y(t) \) via (3.7). Observe that
\[
d_0(t) \leq y(t) \leq \hat{y}(t) \leq \frac{c}{1-\lambda}
\]
for \(t \geq T \). It is a matter of routine calculation to verify that \(\mathcal{F} \) is a continuous
mapping and \(\mathcal{F}(Y) \) is relatively compact in the topology of \(C[T_0, \infty) \). Therefore by
the Schauder-Tychonoff fixed point theorem there exists a fixed element \(y_0 \in Y \) such that
\(\mathcal{F}y_0 = y_0 \) and \(y_0 \) satisfies the integral equation
\[
y_0(t) = \int_T^\infty \left(\frac{1}{\phi(T)} \left(d_0(T) + \int_T^t f(s, y_0(g(s))) ds \right) \right)^{\frac{1}{\alpha}} dr, \quad t \geq T,
\]
where \(y_0(t) = \hat{y}_0(t) - \hat{y}_0(h(t)), t \geq T \). From (3.22) and (3.20) it follows that \(\hat{y}_0(t) \) is
a nonoscillatory solution of (E) of type (II). \(\square \)

4. Oscillation of Proper Solutions

In this section we give criteria for (E) to be almost oscillatory in the sense that
\(N = N^- \) or equivalently every solution of (E) is either oscillatory or tends to zero
as \(t \to \infty \). In order to obtain such criteria we need stronger hypotheses on the
nonlinearity of the function \(f(t, x) \) in (E) with respect to \(x \).

Definition 4.1.
(i) The equation (E) is said to be strongly superlinear if there exists a constant
\(\beta > \alpha \) such that \(|x|^{-\beta} |f(t, x)| \) is nondecreasing in \(|x| \) for each fixed \(t \geq a \).
(ii) The equation (E) is said to be strongly sublinear if there exists a constant
\(0 < \gamma < \alpha \) such that \(|x|^{-\gamma} |f(t, x)| \) is nonincreasing in \(|x| \) for each fixed \(t \geq a \).

Theorem 4.1. Let the equation (E) be strongly superlinear. Suppose that
\[
y(t) \leq t \quad \text{for} \quad t \geq a.
\]
If
\[
\int_a^\infty |f(t, c_0(t))| dt = \infty
\]
for all constants \(c \neq 0 \) then every proper solution of (E) is either oscillatory or tends
to zero as \(t \to \infty \).
Proof. Let \(x(t) \) be a nonoscillatory solution of (E). Without loss of generality we suppose that \(x(g(t)) > 0 \) for \(t \geq t_0 \). Then the equation (E) in view of \((C_1)-(C_4)\) implies that the function \(y(t) = L_0x(t) \) is eventually of constant sign, i.e. either \(x \in \mathbb{N}^+ \) or \(x \in \mathbb{N}^- \).

1. Let \(x \in \mathbb{N}^+ \). Then (2.5) and (2.8) hold and so the function \(y(t) = L_0x(t) \) satisfies

\[
(4.3) \quad x(t) \geq y(t), \quad t \geq t_1
\]

and

\[
(4.4) \quad c_1 \theta_0(t) \leq y(t) \leq c_2, \quad t \geq t_1
\]

for some positive constants \(c_1, c_2 \) and \(t_1 \geq t_0 \).

Using the assumption \((C_5)\) and (4.3), we obtain from (E)

\[
(4.5) \quad (L_0x(t))' \leq f(t, y(g(t))), \quad t \geq t_2 = \gamma(t_1).
\]

The function \(L_0^2x(t) = r(t)g'(t)x^{(v-1)}(t) \) is decreasing on \([t_2, \infty)\). Therefore there exists a \(T \geq t_2 \) such that \(y'(t) \) is either positive or negative on \([T, \infty)\).

i) Suppose that \(y'(t) > 0 \) on \([T, \infty)\). Integrating (4.5) from \(T \) to \(\infty \) and using (4.4) we have

\[
\infty > r(T)(y'(T))^{\alpha} \geq \int_T^\infty f(t, c_1 \theta_0(g(t))) \ dt \geq \int_T^\infty f(t, c_1 \theta_0(t)) \ dt,
\]

which contradicts (4.2).

ii) Suppose that \(y'(t) < 0 \) on \([T, \infty)\). If \(\beta > \alpha \) is the exponent of superlinearity of (E), then in view of (4.4) and the monotonicity of \(y(t) \) we have

\[
(c_1 \theta_0(t))^{-\beta} f(t, c_1 \theta_0(t)) \geq (y(g(t))^{-\beta} f(t, y(g(t))), \quad t \geq T
\]

or

\[
(4.6) \quad f(t, y(g(t))) \geq \left(\frac{y(t)}{c_1 \theta_0(t)} \right)^{\beta} f(t, c_1 \theta_0(t)), \quad t \geq T.
\]

On the other hand, since \(y'(t) < 0 \) on \([T, \infty)\) we have (3.14), i.e.

\[
(4.7) \quad \left(\frac{y(t)}{c_1 \theta_0(t)} \right)^{\beta} \geq c_1^\beta r(t)|y'(t)|^\alpha, \quad t \geq T_1 \geq T.
\]

Integrating (4.5) from \(T_1 \) to \(t \), we get

\[
(4.8) \quad -L_0^2x(t) > -L_0^2x(T_1) + L_0^2x(T_1) \geq \int_{T_1}^t f(s, y(g(s))) \ ds, \quad t \geq T_1.
\]
Noting that $L^a_t(t) = -r(t)|y'(t)|^a < 0$ and using (4.6)-(4.8) we obtain
\[
\left(\frac{y(t)}{c_1\theta_a(t)}\right)^a \geq c_1^{-a} \int_{T_1}^t f(s, y(g(s))) ds
\]
\[
\geq c_1^{-a} \int_{T_1}^t \left(\frac{y(s)}{c_1\theta_a(s)}\right)^a f(s, c_1\theta_a(s)) ds, \quad t \geq T_1.
\]
Denote by $z(t)$ the last integral in the above inequalities. We then have
\[
z'(t) = c_1^{-a} \left(\frac{y(t)}{c_1\theta_a(t)}\right)^a f(t, c_1\theta_a(t)) \geq c_1^{-a} (z(t))^\frac{a}{2} f(t, c_1\theta_a(t)), \quad t \geq T_1.
\]
We divide the above inequality by $z(t)^{\frac{a}{2}}$ and integrate it from T_1 to ∞, obtaining
\[
c_1^{-a} \int_{T_1}^\infty f(t, c_1\theta_a(t)) dt \leq \alpha \frac{a}{\beta - a} z(T_1)^{\frac{a}{2}} < \infty,
\]
which contradicts (4.2).

II. Let $x \in N^-$. Then $\lim \inf x(t) = 0$ by Remark 2.1.

The proof of Theorem 4.1 is complete. \(\square\)

Theorem 4.2. Let the equation (E) be strongly sublinear. Suppose that (4.1) holds. Every proper solution of (E) is either oscillatory or tends to 0 as $t \to \infty$ if and only if

\[
\int_0^\infty \left(\frac{1}{x(t)} \int_T^t |f(s, c)| ds\right)^{\frac{1}{a}} dt = \infty
\]

for all constants $c \neq 0$.

Proof. The “only if” part follows from Theorem 3.1.

To prove the “if” part we assume for a contradiction that (E) has a nonoscillatory solution $x(t)$ such that $\lim \inf x(t) > 0$. Without loss of generality we may suppose that $x(g(t)) > 0$ for $t \geq t_0$. Then the equation (E) in view of (C1)–(C5) implies that the function $L_0(t)$ is eventually of constant sign, i.e. either $x \in N^+$ or $x \in N^-$. Let $x \in N^+$. Then the function $y(t) = L_0(t)$ satisfies (4.3) and (4.4).

i) Suppose that $y'(t) > 0$ on $[t_1, \infty)$. Then there exist $K > 0$ and $t_2 > t_1$ such that $y(g(t)) \geq K$ for $t \geq t_2$. It follows from (4.5) in view of (C5) that

\[
(L^a_t x(t))' = f(t, K), \quad t \geq t_2,
\]

for all constants $c \neq 0$. \(\square\)
Integrating this inequality from t_2 to t yields

$$\int_{t_2}^{t} f(s, K) \, ds \leq L^+_x(t) - L^+_x(t_2) < \infty,$$

which, in view of the assumption (C_1), implies

$$\int_{t_2}^{\infty} \left(\frac{1}{r(t)} \int_{t_2}^{t} f(s, K) \, ds \right)^{\alpha/a} \, dt < \infty.$$

This contradicts (4.9).

ii) Suppose that $y'(t) < 0$ on $[t_1, \infty)$. Using the sublinearity of (E) and (4.4) we find

$$(y(g(t)))^{-\gamma} f(t, y(g(t))) \geq c_2^{-\gamma} f(t, c_2), \quad t \geq t_2,$$

where $\gamma \in (0, \alpha)$ is the exponent of sublinearity. Combining (4.5) with (4.11) shows that

$$-(L^+_x(t))' \geq c_2^{-\gamma} f(t, c_2), \quad t \geq T_2.$$

Integrating (4.12) from T_2 to t and using the decreasing nature of y and (4.1), we obtain

$$r(t)||y'(t)||^\alpha \geq c_2^{-\gamma} \int_{T_2}^{t} f(s, c_2) \, ds,$$

which is equivalent to

$$|y'(t)|(g(t))^{-\gamma} \geq c_2^{-\gamma} \left(\frac{1}{r(t)} \int_{T_2}^{t} f(s, c_2) \, ds \right)^{1/\alpha}, \quad t \geq T_2.$$

Integrating (4.13) from T_2 to ∞ we conclude that

$$c_2^{-\gamma} \int_{T_2}^{\infty} \left(\frac{1}{r(t)} \int_{T_2}^{t} f(s, K) \, ds \right)^{1/\alpha} \, dt \leq \frac{\alpha}{\alpha - \gamma} (g(T_2))^{\frac{\alpha}{\alpha - \gamma}},$$

which contradicts (4.9).

II. Let $x \in N^-$. Then $\lim_{t \to \infty} x(t) = 0$ by Remark 2.1.

This completes the proof of Theorem 4.2.

\[\square\]

Authors’ addresses: T. Kusano, Department of Applied Mathematics, Fukuoka University, Fukuoka, 814-01, Japan, e-mail: tkusano@ssat.fukuoka-u.ac.jp; P. Marušiak, Department of Applied Mathematics, Faculty of Science, University of Žilina, J. M. Hurbana 15, 01026 Žilina, Slovak Republic, e-mail: marusia@fpv.utc.sk.