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Absiract. This paper establishes existence of nonoscillatory solutions with specific asymp-
totic behaviors of second order:quasilinear functional differential equations of neutral type.
Then sufficient, sufficient and necessary conditions. are proved under which every:solution
. of the equation is either oscillatory.or tends to zero as t —oc.
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1. INTRODUCTION
We consider quasilinear differential equations of neutral type in the form
E) (Liz(®) +f(t2(9() =0, t2a>0,
where a > 0 is.a constant and L{ is a differential operator defined by

(1) Lox(t) = z(t) — p(a(h(),
(1.2) fa(t) = r®)| Loz ) * 7 Lox(t).

The conditions we always assume for (E) are listed below:
(Cy) 7 [a,00) =(0, 00) is:continuous and

fw(r(t))i—x‘ At < o0;
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(C2) b [a,00) = [0,A] is continuous, 0. < A < 1;

(03) h:la, 00) — R is.continuous and strictly increasing, h(t) < ¢ for’ “t> a-and
lim h(t) = co;
t=ro0

(C4) g: [a, 00): — R is continuous and t}i}m g(t) =00;

=

(Cs) f:lay00) x R = R is continuous, f(¢,z) is nondecreasing in z and satisfies
zf(t,z) > 0forall z #0andt > a.

Let £1°> a be such that

(1.3) to = min {h(t;), inf g(t)} > a.
t2ty

By a proper solution of (E) we mean a continuous function z: [tg,00) — R which
has the property that Loz(t) and Lfa(t) are continuously differentiable on [t;,00),
and satisfies the equation (E) at every point of [t1, o). The solutions which vanish
for all large ¢ will be excluded from our consideration. "A proper solution of (E) is
said to be oscillatory if'it has infinite sequences of zeros tending to infinity; otherwise
a proper solution is said to be nonooscillatory.

In this paper we shall study the oscillatory and nonoscillatory behavior of proper
solutions of the equation (E). More specifically we first classify the set of nonoscilla-
tory solutions of (E)-according to. their asymptotic behavior as ¢ — 0o and present
conditions for the: existence of three types of nonoscillatory. solutions of (E) with
specified asymptotic behavior. 'We then establish criteria for oscillation of all proper
solutions of the equation (E).

Equations of the form (E) include as special cases the neutral equations of the
type

] (r®)(=(t) = p()z (1)) + £(t,2(9®) =0, L0
and the non-neutral equations of the type
(Eq) (el @' @) + f(hz(g(t) =0, t>a,

hoth of which have been objects of intensive investigation in recent years.  We re-
fer to the papers [3-5,7,16] and to [1,2,8-15,17,19,20] for typical oscillation and
nonoscillation results regarding (E,) and (E;), respectively.

The oscillatory behavior of equations of the form (E) was first studied in the pa-
per [6] under the hypothesis that the function r(2) defining the operator L{ satisfies
J2(r(s) T ds = 0o. The purpose of this paper is to turn our attention to the equa-
tion () with r(¢) satisfying the condition (Cy): [7( r(5))7 ds < 0o and develop an
oscillation theory for it in the same spirit as in[6].
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Extensive use will be made-of the function 0q(t) defined by
o0 -3
a9 = [ tET s ez
t

Note that g (t) — 0.as ¢ — co by (Cy).
The following notation will be needed in the sequel:

(1.5) WO =1, b ) = R(hEN®), k=12,
k-1
(1.6) R =1, P =[]p0B0), k=12,
: =0
an Yty =sup{s > a;9(s) S}, () =sup{s 2 a;h(s) <t}

2. CLASSIFICATION OF PROPER NONOSCILLATORY ‘SOLUTIONS

We begin by classifying the set of possible nonoscillatory solutions of the equation

(E) according to-their asymptotic behavior as t — co:

Let N-denote the set of all nonoscillatory solutions of (E). If z € N then'it follows

from (E) and the assumptions (Cy)~(Cs) that the function
@D Loz(t).= 2(t) = p(z(h(t))

has to be eventually of constant sign, so that either

2.2) () Loz(t) > 0
or
(2:3) z(t)Loz(t) <0

for all sufficiently large t.
We use the notation

Nt ={z(t) € N: z(t)Loz(t) > 0 for all large t},
NT={2(t)y € Noz(t)Loz(t) < 0 “forall larget}.

If z € N7 then by Remark 2.1 in 18] tILm a(t) = 0. Now in view of (C2), (Cs),
o0

lim Loz(t) = 0, From this we obtain
t—roo
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Remark 2.1: I x(¢) € N7, then lim z(t) = 0, lim Loz(t) o
1—300 oo

Let z(¢) € N* for t >'t;. Then from (2.1) we have

(24) a(t) = Loz(t) + p(t)Loa(h(D) + P02 (b(D), ¢ > 1y 5 m(tr).
From (2.4).in view of (Cz) we get

(2:5) (O] 3 L@, t3 0

Repeating the application of (2.1) and (2.4) we obtain

n(t)=1

(26) a(t) = >" P(O)Loa(bB(8) + Paur (W™D (@), ¢ 210y > mltar-1),
k=0

where n(t) denotes the least positive integer such that h(t1) < Al gt
Let K, be a constant such that |z(t)] <K, for t € [A(t1),t1]. If Loz(t) is nonde-
creasing on t1, 00), then (2.6) in view of (Cp) and (1.6) yields

< | Loz()]

210 lz(t)) < T + Koo b2ty 2h

Lemma 2.1.  Let z(t) be a nonoscillatory solution of (E) on [ty co). If z(t) € Nt,
then there exist positive constants ¢y, ¢s and T > 1 such that

(2.8) €10a(t) < |Loz(t)| S ¢z for 2 T.

Proof. ‘Let z € N*. Without loss of generality we may suppose that z(¢) >0
and Loz(t) > 0.for t > #o. In view of the assumptions (C1)~(Cs) the equation (E)
implies that

(2.9) Lyz(t) = r(B)| Loz (t)]*7 Ly ()

is decreasing for t > ty > (o). Hence in view of (Cy) either Lyz(t) > 0 fort >4y
or there exists 5.2 £y such that Loz (t) <0 for ¢ >t,.

i) Suppose that Ljz(t) > 0 on [t;,00). Then with regard to (2.9) there exists a
constant K¢ > 0 such that L¢z(t)= r(t)(Lhz(t))* < K¢ for i > t1. From the last
inequality we obtain Loz(t) — Loz (t1) < Kipa(t1), which implies that

(2:10) Loz(t) S 2y t 2 4y,
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where ¢; = Loz(t1) + K104 (t1).
i) Suppose that Lyz(t) < 0.on [tz 00).:Since LYz (t) = —r()(~Lhz(t))*is de-
creasing for-t 2ty we have
(211) ~Loa(t) 2 (r(L) F Loa ()| r ()T, 1> 1,
from which via integration over [t, 00), t > ¢, it follows that
(2.12) Lox(t) 2 croa(t);, >t
where ¢ = (r(tg))?=L|ngc(t2)I. Let T = max{t,t2}. The desired inequality (2.8)
follows from (2.12) and (2.10). :
Using Lemma 2.1, (2.5) and (2.7) we obtain

< liminf 1 H ,
0< htrgxogf]t(t)f, llﬁgplfﬁﬂ < 0.

Then in view of the monotonicity of Loz (?) there exists a limit Jﬂxgo Loz (t)] =
bo < 00. Let Ii;m inf [z(t)] = 0. Then by Lemma 1 and Lemma 2 {16] we have
L= 00,

11_151010 JLox(t)] = 0 and Jim. Jz(t)] =0.

Combining Lemma 2.1 with (2.6), (2.7), we conclude that the following three types
of asymptotic behavior are possible for nonoscillatory solutions z(t) € N* of (E):

o 0< litrninf]z(t)l, lim sup |z (2)]. < ‘oo,
o0 100
(1) o lim 2(2) = 0, h{gs;lp L:‘%)) =00,
o de@ o e ()
(I 0< ht!g})xcxf Qa_(t), hirlb:olp PRE) <0
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' 3. EXISTENCE OF PROPER NONOSCILLATORY SOLUTIONS

In this section we establish criteria for the existence of nonoscillatory- proper so-
lutions of the equation (E) of type (I), (II) or (III) mentioned above.

Theorem 3.1, The equation (E) has nonoscillatory solutions of type (I) if an
only if

G.1) ‘/aw<—;(%/:]f(s,c)jds)%dt<oo, T5a

for some constant.c # 0.

Proof. (The “only if” part.) Let z(t) be a nonoscillatory solution of (E) of
type (I) on [to;00), to 22 a. We may suppose that z(t) is eventually ‘positive. Then
there exist positive constants ¢, ¢ and 41 2t such that
(3.2) c<z(gt) S for izt

In view of (C4), (Cs) and (3.2) we see from (E) that
(33) (Lia@) < =flt,0,  t 2t
The last inequality implies that L¢z(t) = r(t)|Lhz(i)|* 1 Liz(t) is decreasing on
[t1,00). Then in view of (C1), there exists a ¢, > t, such that Lz(2) is either

positive or negative for ¢ > fo.
i) Suppose that Lyz(t) > 0 on [ty, 00). Then; integrating (3.3) over [t2,¢] we have

'3
[ f9ds< Liatta), ez,
t2
which implies because of (C1) that

[ (s [ 1.0 <o

This shows that (3.1) is-valid.
il) Suppose that Liz(t) < 0'on [is; 00): Integration of (3.3) over:[ty,1] gives

rmmwmw>[f@om



or
~Lhalt) > (r(% / |f<s,c>sds)", N

Integrating the above inequality over [t2, 00} and noting that z € N we see that
(3:1) holds. :

(The “if” part.) Suppose that(3.1) holds for some constant ¢ > 0. The case of
a negative ¢ can be treated similarly. Let b and d be positive constants such that
0<d< bi—;% and %é% < ¢, where A is as'in (C): Take T 2 a such that

(3.4) Ty = min{h(T), inf 9(0)} > @

and

(3.5) ‘ _/;lw<;%/71tf(s,c)ds>%dt< g

Let C[Tp, 00) be the locally convex space of all' continuous functions defined on
[Ty, 00) which ‘are constant on [Ty, T] with the:topology:of uniform convergence on
any compact subinterval of [T, 00).

Define a closed convex subset Y of C[Tp, c0) by

Y = {y € C[To,00); b—d < y(t) <b+d on {T,00)

(3.6)
and y(t) = y(T) on [Ty, T}]}.

Using (2.5). we can associate to each'y € Y the function §: [Ty, c0) — R defined by

n(e)-1

a8 = (R WIS
- 0= 3 BN + P T, 13T,

o y(@)

i) = 2 te Y],

where n(t) denotes the least positive integer such that Ty < hl?(0l() T
It is easy to verify that

(38) u(®) = 70 = pOIHO), 13T
and
(39) b-d<u0 IO < TS t2T.



We now define an operator F: Y — C| [Ty, 00) by

o0 T 'LA“
E=b+ [ (;%;) /[ f(s,.ﬂ(y(S)))dS) ar, 13T,
FDO = (FYT),  To<t<T.

If y. €Y, then using (3.9); (3.5) and (Cs) we obtain

l(fy)(i)—b{g/:)(r%/;f(s’%>ds)%d7_<d’

which shows that the operator 7 maps Y into Y. It is a matter of routine calculation
to verify that F is a continuous mapping and that F(Y") is relatively compact in
the topology of C[To, 00). Therefore, the Schauder-Tychonoff fixed point theorem
ensures the existence of -an element yo €Y such that Fyo = yo and yo satisfies the
integral equation

L
@

(310) g =b+ /:o<% /TTf(s,ﬁo(g(S)))dS) dr, 3T,

whereyo(t) = fo(t) = Jo(h(t)),t = T:

Differentiating (3.10) we obtain that §o(#) is a nonoscillatory solution of: (E) of
type (I).

This completes the proof. 0

Theorem 3.2. The equation (E) has nonoscillatory solutions of type (II1) if and
onlyif

@11) [ itca@iat <o, 730

for some constant ¢ # 0.

Proof. (The “only if? part.) Let z(f) be a type (I1II)-solution of (E) on [to, o0),
1o > a, We may suppose that-z(t) is eventually positive. Then there exist positive
constants ¢, ¢; ‘and ty > fo such that
(3:12) coa(t) L a(g(t)) Scioa(t) for t 21t

In view of (3.12), (C4) and (Cs), the equation (E) yields
(3.13) (Le2@) < —f(tcoa(t)), L2141
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The- last inequality implies' that L$a(t) = r(t)|Lhz(t)|**Lyz(t) is decreasing on
[t1,00). Then in view of (Cy) there exists a f 2 t; such that Lyz(¢) is either positive
or negative for ¢ >'ta.

i) If Liz(t) > 0-on t2, 00),:then integrating (3.13) over:[ts; c0) we have

[t con®)de< Late) < o,

ty

i) If ‘Lyz(t) < 0 on [ty;00), then, in view of the monotonicity of Lfz(t) =
=7(t)|Lox(t)|%, we have

“Lhals) = (:((—g);mgz(m, S22

Integration of the last inequality over [t,00) gives
(3.14) Lox(t) > (r(1) *|Loa(®)lea(t), 1212

which, combined with the inequality following from the integration of (3.13); yields

Loz (t)\« e / !
. >0 | > R
(3.15) Gor) 2O > | flsicaa(s)as
Combining (3.15): with (2.6) and (3.12) shows that (3.11) holds as desired.
(The-“if" part.) :Suppose that (3.11) holds for some nonzero constant c. We may

suppose that c is positive. Let b.and d be such that 0 <'d < bi;i: y (',(_Tixﬁ <.

where \'is as in (Cs). Take 7' a such that (3.4) holds and

(3.16) / f(s,cooz(t)) dt < d,
T
We define Y to be the closed convex subset of C[T}, 00) as follows:

(317) Y = {y € CIT;0): (b~ ) * 0alt) S y(1) < (b + D) galt) on [T, 00)
and y(t) = coo(T) on [Ty, T]}.

With each y. € Y 'we associate the function y defined by (3.7). Then it.can be
shown that the operator F: Y. — C[Ty;c0) defined by

E= [ (-(1;5 (b+ [ Tf(s,mg(s)))ds)%) ar, 13T,



and
Fu)Q) =(Fy(T),  Th<t<T

is'a continuous mapping which sends Y-into a relatively compact subset.of Y. By the
Schauder-Tychonoff fixed point theorem there exists an element yo € Y such that
Fyo = yo. This function yo = yo(t) satisfies the integral equation

619 wo= | w(;%;)(w L f(s,ga(ms))ds)‘%) dr, t>T,

where yo(t) = Go(t). = Go(h(1));t 2 T
Differentiating (3.18) we conclude that 9o(t) is a nonoscillatory solution of ((E).of
type (III). : o

Let us turn to the solutions of type (II) of (E). Unlike the sclutions of types (I)
and (III) we have been unable to characterize the existence of this type of solutions.

Theorem 3.3. The equation (E) has nonoscillatory. solutions of type (II) if’

(3.19) /am(r(ltf)/‘w}f(s,c)lds>idt<oo,

for some ‘constant ¢ #-0 and
(3:20) | e kot = oo

for-any-k #0.
Proof: Suppose that (3.19) holds for some constant ¢ > 0 ;- A parallel argument,

holds for the case of negative c. Let T be so large and d be such that 0 < dea(T) < ¢
and

(321) /T = (7(1?) (dg[,(T) + /T ) ds) _) dr < doo (T).

We define & closed convex subset Y of C[Ty,00) and a mapping F: y — [To, o) as
follows:

Y = {y € C[Ty, 00); dea(t) <y(t) <c on [T,00)
and y(t) = y(T) on [T 71},
E0= [ w(,—(% (de-tmr+ fataas) Yan 62T,
FYO = (FHT),  To<t<T,
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where 7(t) denotes the function associated with y(¢) via (3.7). Observe that

doa (1) <) <O < T

for t-= T. It is a matter of routine calculation to wverify that - is a continuous
mapping and F(Y) is relatively compact in'the topology of C[Ty, 00). Therefore by
the Schauder-Tychonoff fixed point theorem there exists.a fixed element yp € Y. such
that Fyo = yo-and yo satisfies the integral equation

00y T . x

02 w0 = [ (5 (t@+ [ remeenas) Y T
t () T

where yo(t) =14 (t) — o (h(t)),1 = T. From (3.22) and (3.20).it follows that g(t) is

a nonoscillatory solution. of (E) of type (II). O

4. OSCILLATION ‘OF PROPER SOLUTIONS

In this section we give criteria for (E) to be almost oscillatory in the sense that
N:'= N7 or equivalently every solution of (E) is either oscillatory or tends to zero
as t - 00. In orderto obtain such: criteria we need:stronger hypotheses on the
nonlinearity: of the function  f(f, ) in (E) with respect to. z:

Definition 4.1.
(i). The equation (E) is said to be strongly superlinear if there exists a constant
B> o such that |z 77| f(¢,2)| is nondecreasing in |z| for each fixed ¢ > a.
(i) The equation (E) is said to be strongly sublinear if there exists a constant
0'< v <o such that 2] 77| f(¢,2)| is nonincreasing in |z| for each fixed ¢ 2 a.

Theorem 4.1, Let the equation (E) be strongly superlinear. Suppose that

(4.1) g(t) <t for tza,
If
(42) |t capla=co

for all constants ¢ # 0-then every proper solution of (E) is either oscillatory or tends
0. zero as.t = 0.

N
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Proof. Let z(t) bea nonoscillatory solution of (E). Without loss of generality
We suppose that z(g(t)) > 0 for t >ty Then the equation (E) in view of (Cy)-
(Cs) implies that the function y(t) = Lo(2) is eventually of constant sign, i.e. either
zeNtorzge N,

I. Let z € N*. Then (2.5) and (2:8) hold and so the function y(t) = Loz(t) satisfies

(4.3) W) Zylt), t2h
and
(4.4) cloa(t) Sylt) ooyt 2

for some positive constants ¢, ¢ and ¢ > to.
Using the assumption (Cs) and (4.3), we obtain from (E)

(4.5) (LE2() < —f(ty(9®)), 212 =(h).

The function L§a(t) = 7(t)ly"(t)|*ty'(t) is decreasing on [to;00).  Therefore there
exists a T' > 1, such that y’(¢) is either positive or negative on [T, c0):

i) Suppose that y'(t) >0 on [T, 00). Integrating (4.5) from T to co and using(4.4)
we have

o> )T > [ " ft cuoalo(e)) e > /[  Flt, eroa(®) dt,

which contradicts (4.2).
i1) Suppose that y"(t): <0 on [T, c0). If B> ais the exponent of superlinearity of
(E), then in view of (4.4) and the monotonicity of y(t) we have

(c1oa(t)?F(t c10a(8) > @le(®)7F Ly(g®)). t2 T

or:
(+6) fsts®) > (229 1t ca(0), > 7

On the other hand, since y'(#) < 0 on [T, 00) we have (3.14), i.e.
yt) N —a /
: A CASTST
@ (o) zarowor t>n>T
Integrating (4.5) from Ty tot, we get

(48 —Lial) > ~Lia() + Lis(0) > [ o060 a5, (> T
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Noting that L (t) = —r(H)ly'(1)]* < 0-and using (4.6)-(4.8) we obtain

(2995 [ soatomas

o {17 y(s) A . ,
z /1‘1(01901(3)) f(s.c10a(s))ds, t 2 Th.

Denote by z(¢) the last integral in the above inequalities. We:then have

J0) =" (c‘;yff%)ﬂf (b er0a(®)) 2 ()% f(tcr0a(D), 2 1.

‘We divide the above inequality by z(t)‘g and integrate it from T} to. 0o, obtaining

«

B—-a

oo
i [T fltciea(®)d € z2s(TE < oo,
T
which contradicts (4.2).
1. Let © € N7, Then tli,’?@x(t) =0 by Remark 2.1.
The proof of Theorem 4.1 is complete. m]

Theorem 4.2. : Let the equation (E) be strongly sublinear." Suppose that (4.1)
holds. Every proper solution of (E) is either oscillatory or tends to 0 as t-— oo if
and-only-if

(4.9) /ﬂm (1—(17) /; [£(s,0)] ds) e

for all constants ¢ # 0.

Proof. The “onlyif” part follows.from Theorem 3.1.

To prove the “if” part we assume for a contradiction that (E) has a nonoscillatory
solution z(t) such that lim Lg}& |z(t)] > 0. Without loss of generality we may suppose
that 2(g(t)) >0 fort > to. Then the equation (E) in view of (C1)~(Cs) implies that
the function Lo(#) is eventually of constant sign,i.e. either z € Nt or z € N7,

1. Let'z € N*. Then the function y(t) = Loz(t) satisfies (4.3) and (4.4).

1) Suppose that y'(t) > 0.on [t;,00). Then there exist K > 0.and ¢; > 1 such
that y(g(t)) 2 K for t = to. It follows from (4.5) in view of (Cs) that

(Lfz®)' < =f(t, K), t>ta
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Integrating this inequality from £5:t0 % yields
i
(4.10) [ $610) ds < Liatin) — Lalt) < Ll < oo,
i

which, in view of the assumption (Cy); implies

o st 1
= (s, K d-) 1t <t 0.
L (G [ remae)
This contradicts (4.9).

i) Suppose that y'(t) < 0'on [t;,00)." Using the sublinearity of (E) and (4.4) we
find i
Wla®)) 7" FEulgM)) 2 T Fte), t2a(t) =ts,

where 7 € (0,) is the exponent of sublinearity. Combining (4.5) with (4.11) shows
that

(4.12) —(Liz®) 2 & WM fter), t2 D

Integrating (4.12) from T» to ¢ and using the decreasing nature of y and-(4.1), we
obtain

rOW O > ) /r F(s,e2) ds,

which is equivalent to

@13) WOl > o (717) [ reae) on

Integrating (4.13) from 7% to oo we conclude that

C;%fd(% /T ”‘Q’K)d"”)%dti" ¢ _(m)E,

T Q).

which contradicts (4.9).
I Let z:€ N7 Then tlim 2(t) =0 by Remark 2.1,
This completes the proof of Theorem 4.2. (5]

212



References

{1] Elbert A.: A half-linear second-order differential equation. Colloguina Math. Soc. Janos
Bolyai -30. -Qualitative Theory of Differential Equations,” Vol.-1-(Colloguium held in
Szeged, August 1979). North-Holland,” Amsterdam, 1981, pp. 153-180:

[2] Elbert 4., Kusano T.: Oscillation and nonoscillation theorems for a class of second order
quasilinear differential equations. ‘Acta Math. Hungar. 56 (1990), 325-336.

[3) Erbe L. E.,Kong Q., Zhang B.G.: Oscillation Theory of Functional Differential Equa-
tions. Marcel Dekker Inc., New York, 1995:

[4] Gyéri I, Ladas"G.: Oscillation Theory of Delay Differential Equations, Carendon Press,
Oxford, 1991.

[5] Tvanow A.F., Kusano T.: Oscillation of solutions of second order nonlinear functional
differential equations of neutral type. Ukrain. Math. J. /2:(1991),1672-1683,

[6] Jaros J., Kusano T.,"Marusick P.: Oscillation and nonoscillation thearems for second
order quasilinear functional differential equations of neutral type. Adv. Math. Sci, Appl.
To appear.

{7]: Jaro§ J:, Kusano T.; Asymptotic behavior of nonoscillatory solutions of nonlinear func-
tional differential'equations of neutral type. Funkcial. Ekvac. 32 (1989), 251-263.

[8] Kiteno M., Kusano T.."On a class of second order quasilinear ‘ordinary differential
ecuation. Hiroshima Math.J. 25 (1995), 321-335.

[9] Kusano, T., Naito, Y.: Oscillation and nonoscillation criteria for second order quasilinear
differential equations. Acta Math, Hungar. 76:(1997), 55-73.

[10]. Kusano T., " Naito Y.,  Ogata’A.: Strong: oscillation -and nonoscillation - of :quasilinear :

differential equations of second order. Differential Equations Dynam. Systems 2.(1994),

1-10.

Kusano -T., Ogata A.: Existence and asymptotic behavior of positive solutions of second

order-quasilinear’ differential equations. Funkcial. Ekvac. 37(1994),:345-361.

[12) Kusano 1., Ogala A., Usami H.: Oscillation theory:-for'a class of second order. quasi-
linearordinary differential equations with application to partial differential equations.
Japap. J. Math, 19 (1993), 131-147.

[13] Kusano T., Lalli B.'S.: On oscillation of half-linear differential equations with deviating

arguments. Hiroshima Math. J. 24 (1994), 549-563.

Kusano 'T., Yoshida N:: Nonoscillation theorems for- a class of ‘quasilinear differential

equations. of second order."J. Math. ‘Anal. Appl. 189:(1995), 127-155.

[15] ‘Kusano T., Wang J.: Oscillation properties of half-linear functional differential quations
of second order. Hiroshima Math. J. 25 (1995),:371-385.

[16] Marusiak P.:'Asymptotic properties of nonoscillatory solutions of neutral delay. differ-

ential‘equations of n-th order. Czechoslovak Math. J. 47.(1997), 327-336.

Mirzou J. D.: On’'some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.

J:Math. Anal. Appl. 53:(1976), 418-425.

[18} Naito Y. Nonoscillatory solutions of neutral differential equations. Hiroshima Math. J.
29(1990), 231-258.

{19] ‘Wang,J: Oscillation and nonoscillation for a class of second order quasilinear functional
diferential equations. Hiroshima Math. J. 27 (1997).

[20] Wong P.J. Y., Agarwal R. P.: Oscillatory behavior of solutions of certain second order
nonlinear. differential equations. J. Math: Appl. 798:(1996), 337-354.

5=
ot

{14

(17

Authors’ addresses: T. Kusano, Department of Applied Mathematics, Fukuoka Univer-
sity, Fukuoka, 814-01, Japan, e-mail: tkusano@ssat.fukuoka-u.ac,jp.; . Marufiak, De-
partment of Applied Mathematics, Faculty of Science, University.of Zilina, J. M, Hurbana 15,
01026 Zilina, Slovak Republic, e-mail: marusiak@fpv.utc.sk.

213



		webmaster@dml.cz
	2020-07-01T13:59:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




