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(Received May 14, 1998) 

Abstract. In this note we consider a linear-fractionai programming problem with equality 
linear constraints. Following Rohn, we define a generalized relative sensitivity coefficient 
measuring the sensitivity of the optimal value for a linear program and a linear-fractional 
minimization problem with respect to the perturbations in the problem data. 

By using an extension of Rohn's result for the linear programming case, we obtain, via 
Charnes-Cooper variable change, the relative sensitivity coefficient for the linear-fractional 
problem. This coefficient involves only the measure of data perturbation, the optimal 
solution for the initial linear-fractional problem and the optimal solution of the dual problem 
of linear programming equivalent to the initial fractional problem. 
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1. INTRODUCTION 

Let us consider the linear programming problem 

P(A,b,c). Find 

(1.1) Z(A,b,c) = mm{cx: Ax = b, x>0} 

where A is a given m x n real matrix, b € Rm is a resource vector and c 6 R™ is 

the objective vector. We suppose that the feasible set of P(A,b,c) is bounded and 

nonempty. 

Sensitivity analysis of solutions in linear programming is very important and can 

be realized [6] by a) parametric programming, b) perturbation analysis, c) stability 

analysis and d) error analysis. 
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Parametric linear programming consists in analyzing the effects of variations in 

parameters on the optimal basis. Perturbation analysis investigates conditions under 

which the parameters may be perturbed without affecting the choice of the optimal 

basis. Static stability (i.e. the parametric variations are not essentially dependent on 

time) of a linear programming problem consists in characterizing the neighborhood 

of the optimal solution with a specified set of parameters. Error analysis analyzes 

the sensitivity of the optimal solution due to measurement errors of the coefficients 

around the optimal basis. 

Sensitivity analysis investigates also the behavior of the optimal value with respect 

to some variations of the problem data. In this sense, let S = (A, b, c) be a parameter 

set of the linear program (1.1) and let S' = (A' ,b' ,c') be a perturbation of S. We 

are interested in the behavior of Z(S + hS') near h = 0. Mills [2] has proposed as 

a measure of sensitivity to local perturbations the concept of "marginal value" of a 

linear programming problem defined by 

(1.2) inn Z(S + hS')^Z(S)^ 
y h-+o+ h 

According to Williams [9], a necessary and sufficient condition for the existence of 

the limit in (1.2) is that both the primal and dual optimal sets of the linear program 

with a coefficient S be bounded both from below and above. 

The marginal value (if it exists) can be computed as 

max max L(S,x,y) 
x y 

where (x,y) is the optimal pair of the primal and dual variables and L(-) is the 

Lagrangian function 

L(S, x, y) = ex + yb — yAx. 

In the next section, we present an alternative to the "marginal value" for a linear 

program, i.e. Rohn's [5] relative sensitivity coefficient. 

2. T H E LINEAR PROGRAMMING CASE 

Rohn [5] constructed for the linear programming problem P(A,b,c) a sensitivity 

coefficient involving only the initial data S = (A, b, c), the optimal solution x* of the 

problem (1.1) and the optimal solution y* of the dual problem 

(2.1) max{by: ATy s; c}. 



In order to define this sensitivity coefficient for a given real number r > 0, Rohn 

considered the family of perturbed problem 

P(A',b',c'). Find 

(2.2) Z(A',b',c') = min{c'a;: A'x = b', .i > 0} 

for which the relative errors of the data do not exceed r, i.e. the inequalities 

(2.3) \A' -A\^ r\A\, \b' - 6| < r|6|, \c' - c\ < r\c\ 

hold, where the absolute value \A\ of a matrix A = (fly) is defined by 

(2.4) • \A\ = (\atj\), 

and similarly for vectors. 

We shall assume that the optimal value Z(A,b,c) is nonzero, and there exists 

t > 0 such that for each r € [0,t], each problem (2.2) (satisfying (2.3)) has an 

optimal solution. 

Rohn [5] introduced the sensitivity coefficient of the problem P(A, b, c) as 

(2.5) E(A,b,c)= lim ^ M , v ' \ ' ' ' M 0 + r 

where for a given r, ET(A,b,c) denotes the maximal relative error of the optimal 
value, i.e. 

(2.6) ET(A,b,c)=^{\Z{A''b':Cp-Z{AA%A',b',c' satisfy (2.3)}. 
*. 1 /j \s\, o, c) i •* 

Now we consider a more general case of the perturbed problem than that studied 

by Rohn [5]. We define the perturbation set for P(A,b,c) as the set Hr(A",b",c") 

of all systems (A',b',c') satisfying the conditions 

(2.7) | A ' -A\^ rA", 

(2.8) | 6 ' - 6 | ^ r 6 " , 

(2.9) \c' - c\ < re", 

where A", b" and c" are a given matrix and vectors with nonnegative elements having 

the same dimensions as A, 6 and c, respectively. 
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Now, for a given r > 0, we define the maximal relative error of the optimal value 
under relative data errors (A", b", c") by 

M A ^ , c ; ^ b ^ c ' 0 = m a x { | ^ A , ' y ; f ; - y ' f c ' c ) l : ( A ' , 6 ' , c ' ) 6 f f r ( A " , 6 " , c " ) } . 
*-1 Z / ( A , 0, C) I / 

Definition 2.1. The generalized relative sensitivity coefficient is defined by: 

(2.10) S(A,b,c;A",b",c") = ton Sr(A,b,c;A",b",c")^ 

When A" = |A|, b" = |b|, c" = |c|, we obtain Rohn's sensitivity coefficient, i.e. 

E(A,b,c) = S(A,b,c;\A\,\b\,\c\). 

Lemma 2.1. If the problem P(A, b, c) has a unique non-degenerate optimal so­
lution x* and ex* ^ 0, then there exists r > 0 such that, for every (A',b',cr) £ 
Hr(A",b",c") 

Z(A',b',c') = Z(A,b,c) + y*(b' -b) + (c1 - c)x* +y*(A - A')x* + 0(r2) 

where y* is the optimal solution of the dual problem (2.1). 

The proof of this lemma follows an argument similar to that used by Rohn [5] in 
proving his theorem (see also [8], theorem 2.4, and [4]). 

We will show that the relative sensitivity coefficient S(A, b, c; A", b", c") defined by 
(2.10) can be expressed in terms of the optimal solutions x*, y* of problems (1.1) 
and (2.1). 

Theorem 2.1. Let the optimal solution x* of (1.1) be nondegenerate, let the 
nonbasic relative cost coefficients be positive and let ex* ̂  0. Then 

(2.11) 6(A,b,c;A",b",c")={c"\X* + m ^ t m m X * 

\cx*\ 

holds, where y* is the optimal dual solution. 

Proof . From Lemma 2.1 we can express the optimal value of (2.2) by 
Z(A',b',c') = Z(A,b,c)+y*(b' -b) + (c' - c)x* + y*(A - A')x* + 0(r2). 

Like in Rohn [5], we observe that the maximal value of y* (V — b) for all V satisfying 
(2.8) is equal to r\y*\ |6"|; similarly for the other two terms. Hence, we obtain 

Sr(A, b, c; A",b", c") = \c"\z* + W'\m + \y*\\A"\x*r + ^ 

Therefore, taking the limit (see (2.10)) and using the fact that ex* ^ 0, we get 
(2.11). • 
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3. T H E LINEAR-FRACTIONAL CASE 

The above result can be also extended to the following linear-fractional program: 

F(A,b,c,d). Find 

(3.1) f (A, b,c,d) = mm {-lX + C° : Ax = 6, x ^ o\, 

where we denote 

c = (ci ,c0) e Un+1, d= (di ,d 0) 6 R"+ 1 . 

We suppose that 

(3.2) dix + d0 > 0, Vx € X = {x e R": Ax = b, x >- 0}, 

(3.3) the feasible set X is bounded and nonempty set. 

Like in the previous linear case, let A",b",c",d" be the perturbation bounds (hav­

ing nonnegative elements). For a positive real number r, we define the perturbation 

set for F(A, b, c, d) as the set Hr(A" ,b" ,c", d") of all systems (A1, b',c', d') satisfying 

the conditions which are similar to (2.7)-(2.9): 

(3.4) Hr(A",b",c",d") = {(A',b',c',d'): \A' - A\ ^ rA", \b' - & K rb", 

\c' -c\ ^rc", \d! -d\ ^rd"}. 

Let us suppose that the linear-fractional problem F(A, b,c, d) has the optimal 

v a l u e / ( y l , & , c , d ) ^ 0 . 

Def in i t ion 3 . 1 . The generalized relative sensitivity coefficient of the linear-

fractional programming problem F(A, b, c, d) is the number S(A, b, c, d; A", b",c",d") 

given by 

a, A i „ .« _« » ^//N ,• Sr(A,b,c,d;A",b",c",d") 
S(A,b,c,d;A,b,c,d")= hm —i—Z-l • ; '-—'-, 

where the maximal relative error of the optimal value is expressed by 

Sr(A,b,c,d;A",b",c",d") = 

ţ\f(A',b',c',ď)-f(A,Ъ,c,( 
- m a x i __ _ _ _ — . — . 

U /(A ,6,c,d) 
(A',Ъ',c',ď)eHr(A",b",c",d")j. 

D e f i n i t i o n 3.2. We say that the problem F(A, b, c, d) is regular if there exists a 
real positive number r' such that the problem F(A',b',c',d') satisfies the conditions 
(3.2), (3.3), for every (_',&',c',d') in Hr,(A",b",c",d"). 
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Z(B, e, c) = min(ciu + c0ť) 

A -b 

Employing the Charnes-Cooper [1] (see also [7]) change of variables 

u = tx, t= - > 0, 
d\x + d0 

we can associate with the fractional problem F(A,b,c,d) the following linear pro­
gram: 

P(B,e,c). Find 

subject to 

where 

B = ( l ; b ) , e = ( 0 , . . . , 0 , 1 ) e . . . 

Since in problem P(B, e, c) the right hand side e = ( 0 , , . , , 0,1) is not perturbed, 
we can consider a partial sensitivity coefficient of this linear program defined by 

(3.5) G(B,c) = S(B,e,c;B",6,c"), 

where 

(3.6) B" = (A" bl) , 8 = (0 ,0 , . . . , 0) e R n + 1 . 
\dt d0J 

T h e o r e m 3.1. If F(A,b,c,d) is regular, if P(B,e,c) has a single nondegenerate 
optimal solution (u",t") 6 R' J + 1 and if c\u" + c0t" ^ 0, then 
(3.7) 

S(A,b,c,d;A",b" c",d") = ^ ' + 4 + IV"IA"X" + ^ ^ ( d " x " +d'^ + I " " ' 6 " 
Ida:" + c 0 | 

where v* = (v'^v1'^ e R m + 1 is the dual optimal solution for the dual problem of 
P(B,e,c). 

P r o o f . Indeed, since F(A, b, c, d) is regular, hence 

Z(B',e,c') = f(A',b',c',d!) for all (A',b',c',d') e Hr(A",b",c",d"). 

Consequently, 

(3.8) S(B,e,c;B",6,c") = S(A,b,c,d;A",b",c",d"). 
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But, by applying Theorem 2.1 to the linear program P(B, e, c), we have the max­

imal relative error of the optimal value of P(B, e, c) given by 

(3.9) S(B,e,c;B"Ac") = £ > ^ f o ^ t ^ % ^ 

where («",*") e R n + 1 is an optimal solution of P(B,e,c). 

However, (3.9) and the fact that t" > 0 yield 

(3.10) S(B,e,c;B",6,c") = ^ L ± A ^ < + ^ B " ^ *) 
\cijrr + cQ\ 

Then by a simple calculation, taking x" = u"/t", from (3.6), (3.8) and (3.10) we 

obtain (3.7). Q 

For di = 0, do = 1, c0 = 0, cj,' = 0, d" = 0 and d0' = 0 the sensitivity coefficient 

reduces to (2,11). 

4. CONCLUSIONS 

In the paper we have obtained a generalized relative sensitivity coefficient for 

the linear-fractional problem, involving only the measure of data perturbation, the 

optimal solution for the initial problem and the optimal solution of the dual problem 

of linear programming equivalent to the initial fractional problem. These results are 

related to those obtained by Podkaminer [3] concerning the partial derivatives of the 

optimal value function of fractional-linear programming. 
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