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ON CONSEQUENCES OF CERTAIN BOUNDARY CONDITIONS ON 

THE UNIT CIRCLE 

GABRIELA ADAMCZYK, Lodz 

(Received January 29, 1998) 

Abstract. Let V denote the well-known class of Caratheodory functions of the form 
p(z) = 1+ciz-i , z e A = {z 6 C: \z\ < 1}, with positive real part in the unit disc 
and let H(M) stand for the class of holomorphic functions commonly bounded by M in A. 
In 1992, J. Fuka and Z. J. Jakubowski began an investigation of families of mappings p 6 ^ 
fulfilling certain additional boundary conditions on the unit circle T. At first, the authors 
examined the class V(B, b; a) of functions defined by conditions given by the upper limits 
for two disjoint open arcs of T. After that, such boundary conditions given, in particular, 
by the nontangential limits, were assumed for different subsets of the unit circle. In parallel, 
G. Adamczyk started to search for properties of families, contained in H(M) and satisfying 
certain similar conditions on T. The present article belongs to the above series of papers. 
In the first section we will consider subclasses of V of functions satisfying some inequalities 
on several arcs of T, whereas in Sections 2 and 3—families of mappings / € H(M) with 
conditions given for measurable subsets of the unit circle T. 

Keywords: bounded holomorphic functions, Caratheodory functions, harmonic measure, 
extrema points 
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In this section we will consider Caratheodory functions connected with several 
arcs of the unit circle. 

Let b = (bi,b2,...,bk), 0 ^ &i < 62 < • • • < h, « = (ax,a2,... ,ak), ay ^ 0, 
k 

j = 1, 2, . . . , k, Y, aj = ! ' k > 2- A s usual, denote A = {z G C: \z\ < l } , 
j = i 

T={z€C: \z\ = 1},V= {p(z) = 1 + Clz + • • •, R%p(z) > 0, z £ A } . 

Def ini t ion 1. Let b , a be fixed as above and p e V. We say that / € V(h, a) 
iff there exists a system la = Ia(p) = (Iai,Ia2,.. -,Iak) of k disjoint open arcs of 



,0), 

the unit circle T of lengths, respectively, 2TMJ, j = 1, 2, . . . , k, such that 

(1) lim Rep(z) > bj for all C 6 Iaj, 
2-+C 

j = 1, 2, . . . , k. 

R e m a r k 1. Of course, for any admissible b and a = (ai , l — a i ,0 , . . . 
«i e (0,1), the classes V(b, a) reduce to the well-known families V(B, b; a), [4] 

Consider p e V(b,a), Ia = Ia(p)—the respective system of arcs, with Uj—the 
harmonic measure of Iaj, j = 1, 2, . . . , k. Put 

k 

(2) w{~) = 2 > W i ( ~ - ) , * e A \ { C i , . . . , C * } , 
i=i 

where Ci, • • -, C* stand for the ends of arcs of the system IQ. Of course, w is a 
nonnegative harmonic function bounded by bk in A. From (1) we also obtain 

Urn ( - Rep(z)) <_ -6,- = -Wi(C), C 6 /.,,-, j = 1, 2, . . . , fc. 

Using the Lindelof maximum principle, we get 

Lemma 1. Let b, a be arbitrary and admissible. If p e V(b, a), where w is the 
function given by formula (2) for la(p), then 

(3) Rep(z) ^ LO(Z), zeA. 

This and the normalization p(0) = 1, u>j(0) = ctj imply 

Theorem 1. If t ie class V(h,a) is not empty, then 

k 

(4) E îO-
3=1 

R e m a r k 2. In (4) the equality holds iff Rep is of the form (2). 

Consider a sequence of vectors b n = (bi,b2,... ,hk-i,b). ) such that 0 < b\ < 
62 < .. . < fek-i < bj. and lim &̂  = co. Fix suitable a, Ia and a sequence {pn} 
of functions holomorphic in A with positive real parts, such that 

forC€/«;,i = 1, 2, . . . , fc-1, f bj for C € Ia 
MrnRep„( , )> | 6 ( n ) for ( g ^ 
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Then 

/ k~~l \ 
Rвpn(z) Ž Ьiüд(г) + • • • + Ьk^шk^(z) + b[n) 1 - _£>,•(„) ) 

^ i=i ' 

^^( - - ^wì- гєA-
_ k-i 

Let 2 6 A r = {z € C: \z\ < r}. Of course, VK(z) = __ w_,-(z) is a function 

harmonic in A r, so W(z) < <5(r) with <5(r) < 1. Therefore |p„| .= 6J_n)(l - <5(r)), 
z e A.. It means that _•„ converge almost uniformly to oo if n -+ oo. It is known 
that if p„ e V(hn, a), then p.„(0) = 1. So, we have 

R e m a r k 3. Let {bn} be the sequence given above. Then the classes V(bn, a) 
are, starting with a certain n, empty. 

Assume now that, for fixed b, a, (4) holds. Let I_ be a respective system of 
arcs, toj—the harmonic measure of the arc Iaj, w|—the conjugate function of u>j, 
wj(0) = 0 . Put 

(5) hj(z)=uj(z) + ioj*(z), z e A, j = 1, 2, . . . , k 

and 

k 

(6) Pof» = X>ily(--)> ^ A . 
i=i 

Denote also 

k 

(7) ^~=Y^ajb^ 
5=1 

One can easily check that if _ = 1, then po £ 7>(b, a). For ?, 6 (0,1), put 

(8) p(z)=p0(z) + (l--ri)q(z), z e A, 

where q is an arbitrary function from V. Then p _ V(b, a). So the following theorem 
is true. 

Theorem 2. If condition (4) holds, then the class V(h,a) is not empty. 
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R e m a r k 4. It is clear that there are infinitely many functions belonging to 
V(b, a) because in the construction (6) or (8) we can choose another system IQ or 
another mapping q € V • 

Moreover, the above constructions prove 

Proposition 1. 1° If r) = 1, then V(h, a) is a set of mappings of the form (6). 
2° If 0 < n < 1, then P(b,a) is a set of mappings of the form (8). 

Indeed, take p 6 V(b, a), construct po by formula (6) for IQ = la(p) and consider 
a function P(z) = p(z) — po(z), z £ A. This is a function holomorphic in A and 
Mm. ,c ReP(z) S> 0 for C e Iaj, j = 1, 2, ..., k. So, ReP(z) ^0, ze A. Moreover, 
P(0) = 1 - n, so if n = 1, then P = 0 and (6) holds. For n € (0,1), it is enough to 
take q(z) = j~P(^) to justify (8). 

In view of Theorem 2 and Proposition 1, constructions (6) and (8) constitute 
structure formulae in the respective classes V(b, a). They are useful, among other 
things, in the searching for estimates of certain functional. 

Consequently, consider « e (0,1). Let p € V(h,a). To this mapping there 
correspond, of course, a definite system of arcs I a (p) and functions po and q according 
to (8). From (5) and (6) we obtain 

Po(z) = J2 hi \ (1 + 2e""Ä + '' 

On the other hand, po(z) = t) + c\lV0z + • • •, z € A. So 

Recn,j,0 = 2 V J t i / cosntdt, n = 1,2,... 
i = i •'I"j 

In view of Proposition 1 (2°) and the well-known estimate of the coefficients in V, 
we get 

(9) max Rec„)P = 2 max S~~'bj / cosní dí + 2(1 — n). 
Pev(h,a) Ic ~í Jinj 

Let la be a fixed system of appropriate arcs of the circle T. Denote by IQ the 
system Ia rotated by the angle r, i, e. such that lT

a = {z = e~~,T£, C € Iaj }• 

Definition 2. By V(b, a; la) we will denote the set of all functions p 6 V(b, a) 
for which there exists r = r(p) 6 (0,2n) such that IQ(p) = IQ. 



Let us consider the case k = 3 and put a = (01,02,03), a i = a 2 = | ( 1 - a ) , 
a 3 = a , a 6 ( 0 , 2 K ) . Let la = (Iai,Ia2,Ia3) where 4 > = {C = e": t£ ( K , 2 I C - an)}, 

Ia2 = {C = e": te (aTt,K)},/0 3 = {C = e": t e ( - a n , a i t ) } . 
Take p £ ^ ( b , a ; I a ) . From the definition of this class and from (9) we have 

/ /-an-fr I-T.+T /- — ait+T 

Reci ,p(r) = 2I&3 / costdt + b2 costdt + bi costdt 

= (|&3 - &2 — &i) sin — cosT + (&i - &2) cos — sin T. 

If po runs over the set of all functions of the form (6), then T runs over the interval 

(0,2ic). Hence 

RCCI,P(T) < max Reci,p(T) 
T€<0,2K) 

= 2cos^p ((|&3 ~b2 — &i)cosa;o sin ^ + (&i - &2)sina;ocos^) , 

xQ = - - arctg ctg-

Coro l la ry 1. Let a e (0,2TC), a = ( — ^ , 1 ^ , 0 ) , b = (61,62,63) be arbitrary 
and Axed, and let the system I a be defined as above. Let p 6 V(h, a; la) be of the 
form p(z) = 1 + ci,P2 -\ , z e A. Then 

|ci,p) < 2 { l + c o s ^ ((|&3 - & 2 -& i ) cosx 0 s i n ^ + (&i - &2)sina;ocos ^ ) } , 

Xo is given by the above formula, and these estimates are sharp. 

Defini t ion 3 . Fix an arbitrary I Q and denote 

Vv(h, a;Ia) = {p e V(b, a): la(p) =la}. 

E x a m p l e 5. Let k = 3, a = ( j , | , J ) , b = (61,62,63) and Iai = {( = e": 
-Tt < t < - § } , Ia2 = {C = e u : - § < i < § } , Ia3 = {C = e": § < t < it}, 
I Q = (IatJaJaa)- Using Proposition 1 (2°) for p 6 7 ? v ( b , a ; I a ) we get c„,p = 
Cn,p0 + (1 - J?)c„,g, n = 1, 2, . . . , whence 

|cn,p| s£ 2(1-??) + < 

for n = 41, 

-V&f+ &1 + 2 & 2 ( & 2 - & I - & 3 ) for n = 42 + 1, n = 41 + 3, 

— І63-61I for n = 41 + 2, 

ІЄ N. 



The following assertions are true. 

Proposition 2. For any admissible b, a, the class P(h, a) is compact. 

Using Lemma 1, one can prove this fact analogously as in [4], 

Proposition 3. For any admissible b, a, Ia, the class Pv(h,a;la) is convex. 

Proposition 4. Let bk > bk-i. The class P(b, a) is not convex. 

To verify them, consider two functions p0 and p0 given by formula (6) for I a 

and \a, 0 < r < min{2Kaj}j=;1. The linear convex combination p\ of the functions 
Pi and Pi given by (8) for n e (0,1), p0, p0 and q(z) = ~^, z 6 A, does not satisfy 
the definition condition (1) for j = k. If rj = 1, one should take p\ = Xp0 + (1 — A)pJ. 

Below, we will determine a relationship between P(b, a) and the families H(l, a) 
investigated in article [1]. Let us recall: 

Let H stand for the family of mappings / holomorphic and bounded in A, /(0) = 
/'(0) - 1 = 0. 

Definition 4. Let 1 = (h,h, • • • ,h), a = (ai,a2, • • • ,ak), 0 < h < ••• ^ h, 
k 

ai ^ 0, j = 1, 2, . . . , k, J2 ai — 1. k ^ 2- By H(l, a) we denote the set of functions 
i=i 

/ e H for which there exists a respective system IQ = la(f) such that 

lim|/(2)I ^ lj for each ( g la., 

j = l,2,...,k. 

It is known that H(l,a) # 0 iff n(k) = f] l"' ^ \. Assume that 1, a satisfy 
j=i 

additionally lk < e and r/(k) < e. We have 

Theorem 3. If p 6 V(b,a), then the mapping 

f(z)=ze1-^, z€A 

to the class H(l,a') where lj = el~'"'->+i, a', = ak-j+i, j -1,2, ...,k. 

The proof is analogous to that in [2]. 
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In this part we will investigate functions bounded in the unit disc with some 
conditions given for two sets of T. 

In literature one can find various methods for investigating the boundary behaviour 
of functions defined in certain domains (see, for instance, the local Fatou theorem 
in [12], p. 94). 

For / e H, the upper limit and also the nontangential limit a. e. on T exist. So, 
denote 

lim \f(z)\ -. \f(e[e)\ for C = eie e T. 

Similarly as in [8] one can justify 

Lemma 1. Let I CT be an arbitrary open arc, f e H. The conditions 

(A) Em]/(z) |<M forCel 

and 

(B) |/(e i e)|sCM a.e.onl 

are equivalent. 

Besides, note that if / £ H, then there exist radial limits |/* (el°) | a. e. on T and 

(10) \f (eie) I = lim 1/ (rew) I = lim 1/0)1, 6 G (0,2it) a. e. 
r~>l r^9z->e>" 

Definition 1. Let JF C T be a set of Lebesgue measure 2na, a e (0,1) and 
0 < m < M < co. By HV(M, m, a; F) we denote the family of functions / € H such 
that 

/ , , , -fl> i {M >a. e.-on F, 
<"> l ^ ^ l < { m a . e . o n r \ E . 

R e m a r k 1. Let F be an open arc Ia of length 2%a. Then Hv(M,m,a;Ia) = 
HV(M, m;Ia). The considerations in this part of the paper represent a certain kind 
of generalization of investigations from the paper [13]. 

For arbitrary admissible M, TO, a, F, we have 

Proposition 1. HV(M, m,a;F) is a family of functions commonly bounded 
by M in A. 
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Constructing a function analogously as in [5] and [13] one obtains conditions for 
the nonemptiness of the above families. So, let F C T be a fixed set of measure 2na, 
LU{ •; F)—the harmonic measure of the set F, w*{-; F)—the conjugate of UJ{ •; F), 
u*{0;F) = 0. Put h{-;F)=w{-;F)+iw*{-;F) and 

(12) fo(g) = z^z;F)U>SM+(l-Hz;F))U>Smt g g ^ 

and, for 

1 
(13) ñ = 

M^m1-

(14) /1(*) = / o ( * ) . _ _ J L > zeA. 

If fj = 1, then /o e H V ( M , m, a; F), whereas if fj € (0,1), then fi is a function of 
the family W{M,m,a;F). Thus we get 

T h e o r e m 1. If 0 < m < M, a € (0,1) and 

(15) Mam1~a ^ 1, 

then W{M,m,a;F) ^ 0 for F C T and F is of length 2%a. 

Conversely: 

T h e o r e m 2. Inequality (15) is a necessary condition for the nonemptiness of 
Hv{M,m,a;F). 

The proof is omitted (see [13]). One can easily prove the structure formula below. 

T h e o r e m 3. Let f € H V ( M , m, a; F). Then there exists a holomorphic function 
$ bounded by 1 in A, $(0) = 0, $'(0) = fj, such that 

(16) f{z) = ^-1>{z), zeA, 

where /o is the function given by (12) for the set F. 

The converse is also true, i. e. each function which is the product (16) of any 
suitably fixed mapping fo{z)/z and $(z) belongs to H V ( M , m,a;F). 

P r o p o s i t i o n 2, The classes Hv{M,m,a;F) are compact. 



For the proof, it is enough to use Proposition 5 and the structure formula (16) for 
a sequence fn of functions from the class investigated, converging almost uniformly 
on A. 

In the consideration carried out so far, the set F, distinguished by the given 
boundary condition, was fixed. Now, we shall consider the possibility of changing F 
and some consequences resulting from it. 

Let F c T be an arbitrary fixed set of measure 2na, T e (—%,%), FT—the set F 
rotated by r , i, e. FT = {z = e~'TC: C € F}. 

Defin i t ion 2. Let / e H . We say that / 6 H(M,m,a;F) if there exists 
r = r ( / ) € (—Tc,7t) such that / satisfies conditions (11) for the set FT. 

The following two statements are valid. 

P r o p o s i t i o n 3 . For any fixed and admissible M, m, a, F, 

B.(M,m,a;F)= ( J H v ( M , m , a ; E T ) 

r e ( -M) 

holds. 

P r o p o s i t i o n 4. The classes H ( M , m, a; F) are compact in the topology given by 
the almost uniform convergence in A. 

To prove this one should carry out a reasoning analogous to that in [5], [13]. 

R e m a r k 2. Note that, for the justification of the assertions given in this part of 
the paper, it would suffice to assume in the definition of the families H V ( M , m, a; F) 
that inequalities (11) are satisfied for the corresponding radial limits /*(e' f l). In 
view of the existence of both the radial and nontangential limits as well as by equal­
ity (10) in this case, the analogous class H V ( M , m,a;F) is identical with the class 
H V ( M , ro, a;F). But note also that the equality of both the limits does not mean 
their "equivalence", of course, in the sense of the theorems obtained oh their proper­
ties of the function / in A. It is known, for example, that if a function / holomorphic 
and bounded in A has a nontangential limit equal to zero on a certain subset E C T, 
then / = 0. The above assertion does not hold for radial limits. 

In this section we will investigate functions p € V which satisfy fixed conditions 
on the boundary of the disc A, distinguishing k subsets measurable in the sense of 
Lebesgue. We will assume that b = (&i, &2, • . . , fcjt), a = (a%, a2, • • •, a*) are defined 
as in Section 1. 

181 



Def in i t ion 1. Let p e V. We say that p belongs to the class p ( b , a ) iff there 

exist k disjoint sets Fj C T of Lebesgue measures, respectively, 2TOJ, j = 1, 2, . . . , k, 

such that 

(17) 'Rep(eie)^bj a.e. onFh 

j = l, 2, ..., k. 

In this definition, Rep(eie) stand for the nontangential limits. The case k = 2 was 

the subject of investigations in papers [5], [8]. Throughout our article, we denote 

(Fu...,Fk) = F(p) = F. Putting 

k 

(18) U(z;F) = Y/bjcoj(z), z e A, 
j=l 

with u>j being the corresponding harmonic measures of the sets Fj, we obtain a 

function harmonic in A, continuous almost everywhere on A and such that 

(19) U(z;F) = bj a.e. on Fj,j = 1,2, ...,k. 

Assume that p ( b , a ) ^ 0. So, let p e p ( b , a ) . Conditions (17) and (19) imply 

that Rep(z) ^ U(z;F) a.e. on T. Let XFj stand for the characteristic function of 

the set Fj. Then, for z e A, we get 

Rep(z)= f Retf^dn(t) ^ ^- f R e p ( e u ) R e ^ j - ^ d t 

^ E i f ^'W R e p ( e" ) R e5rr Є І Í + г d í 

> £ §- / XF'{t)'bj •ReV^idt = Ew*)-
j=i T- ~ j=i 

We have thus shown 

L e m m a 1. Take p € p (b , a), F = F(p) and U(-;F) given by formula (18) for F. 

Then 

Rep(z)^U(z;F), z 6 A. 

Putt ing z = 0 in the above inequality and remembering that u>j(0) = a, we have 

T h e o r e m 1. If p ( b , a ) ^ 0, tlien 

k 

(20) V j 6 , - a , - < l . 

i=l 



Moreover, we get 

Theorem 2, If condition (20) holds, then the class p(b, a) ^ 0. Besides, there 
exists a function p e p(b, a) such that Rep(z) = 6j a. e. on Fj, j = 1,2, ..., k. 

Proof . For the system T one can construct (analogously as in Theorem 2) a 
function 

it 

(21) G(z;T) = J^bjhj(z), zeA, 
i=i 

k 
holomprphic in A, ReG(z;T) = U(z;T), G(0;T) =• E ajbj. If there is an equality 

i=i 
in (20), then G(z;T) e p(b,a), whereas if there is a sharp inequality, one may put 

(22) Pl(z) = G(z;T)+^f^bja^C±^, z e A, |7 | = 1. 

Then p-t 6 p(b, a) . Note that, for p7, the equalities hold in (17). • 

We will establish some topological properties for a fixed subclass of the families 
p(b,a). 

Let T = (Fi,... ,Fk) be arbitrary, fixed, admissible and pv(h,a,T) = {p e 
p(b,a);T(p) = T}. 

Proposition 1. The classes pw(b,a,T) are convex. 

Using Lemma 3 and the properties of the function U( •; T), one can verify 

Proposition 2. Tiie classes pv(h,a,T) are compact. 

Directly from the definition of the families p(b, a) it follows that they are sub­
classes of Caratheodory functions. 

It turns out that the imposition of additional boundary conditions on a function 
p e V has its consequences. However, it is possible to fix a certain relationship 
between the families p(b, a) and V. Similarly as Proposition 1 (2°) one can prove 

Theorem 3. Let b, a be any fixed admissible systems. A function p € p(b, a) 
iff there exist T and qeV such that 

(23) p(z) = G(z;T)+(l-J2bjaX(z), z G A, 
V 3=1 J 

wiiere G(- ;T) is the function of the form (21) given for the system T of sets. 



Using formula (23), one can prove 

T h e o r e m 4 . A function p belonging to the class p v ( b , a , T) is an extreme point 
of this class iff it is of the form (22). 

P r o o f . Assume that p € p v ( b , a , T ) is an extreme point of this class. The­
orem 9 implies that there exists a q G V such that (23) holds. Suppose to the 
contrary that q(z) ^ fi^irf • It means that q is not, an extreme point in V, So there 
exist qi,q2 € V and A € (0,1) such that q(z) = Xqt(z) + (1 - X)q2(z), z € A. Put 

pk(z) = G(z;T)+(l-Yhi<Xi)<lk(z), zeA, k = 1, 2. 
v j=i ' 

Of course, pk 6 p v ( b , a , : F ) , fe = 1, 2. Besides, p = Ap! + (1 — A)p2, but this 
contradicts the first assumption. 

Similarly one can justify the sufficient condition of the above theorem. • 

R e m a r k 1. Let p 6 p ( b , a ) and T = (Fu ... ,Fk) = T(p). Then 

I 1 k f% \ ( k \ 

M ^ o~ X) 2 & ^ / x -̂ W e i n t dt + 2 ( x _ XJ 6 ^ ' ) > n ̂  L 

' i=l ~* ' ^ i=i ' 
Indeed, let b , a be suitably fixed and let p e p(b , a ) . Let also .F = T(p) stand for 

a system of k respective sets Fj for which (17) holds. Consider the known function 
G(-;T). Of course, 

k 

G(z;T) = Y b i a i + aUGZ + ••• + an,Gzn + •••, z e A. 
3 = 1 

The mapping p can be represented by (23) where 

q(z) = l + qiz + h qnz
n + •••, z 6 A . 

Hence we get 

(24) cn,p = an,G+[l-Y,bia)jQn< n ^ 1 -

Moreover, 

G(^)4xftew5~Ä 
- - j = i • / - ' 1 

= TTYJ bjXFj(t)(l + 2e'tz+--- + 2eintzn+ •••)&, z <= A, 
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i k r-
(25) an,G = 5^ E 2hi J_ XFi «e i n £ d*. 

Hence and from the estimate of \qn\ in V we get the assertion. 

E x a m p l e 2. Let k = 3, a = ( | , | , | ) . b = (6i,62,63)- Consider the sets 
Fi = {C = eis: t e (-*, I )} \ W, F2 = {C = e«: t 6 ( ^ , §)} \ W, F3 = {C = e": 
i e (|,Tt)} \W, where W denotes the set of rational numbers, and T = (Fi,F2,Fg). 

Let p e p v (b ,a ; T). Using (25) and the properties of Lebesgue integrals, for 
G(-;T) we successively obtain 

The above considerations mean that the estimate of |cn>p| are identical with those 
in the corresponding family V(b, a ; I a ) (see Ex. 1). 

More generally, let Iaj C T be an open arc of length 2tt<Xj, where Qj C T is a set 
of measure zero, Fj = Iaj \ Qj, j = 1, 2, . . . , k. From formulae (24), (25) and the 
properties of Lebesgue integrals it follows that the estimates |cn>p| in p v (b ,a ; T) 
and V(h, a; la), Ia = (Iai,..., Iak), T = (Fx,..., Fk), are the same. 

{C = e«: t e (0, |) U (§-,-.)}, F2 = {( = e«: t g ( - K , 0 ) } , F3 = {C = ei4: t £ 
(f, fit)}. Let ;F = (FUF2,F3) and p € pv(b,a;T). Again, using (24), (25), after 
suitable computations we obtain 

0 if n = 8fc V n = &k + 4, 

J- | (V2-2)bi+262-V2&3| ifn = 8k + l V n = 8fc + 7, 

Ы<2(l-£{ aí) + 
\ i = l ^ 

|&i-&з| if n = 8fc + l Vn = 8Jc + 6, 

— |2&2-Ьi| if n = 8fe + ЗVn = 8fc + 5, 

R e m a r k 4. It is easy to note, that if T is essentially different from three arcs 
of the circle T (that means—it is neither a triple of arcs of T nor a triple of arcs with 
sets of Lebesgue measure zero omitted) then, for instance, the estimate of coefficients 
are more complicated. 
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