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ON. CONSEQUENCES OF CERTAIN .BOUNDARY CONDITIONS ON
THE UNIT: CIRCLE

GABRIELA - ADAMCZYK; LédZ

(Received January-29, 1998)

Abstract,” " Let P denote ‘the well-known class of Carathéodory functions -of the form
p(z) = 1+ciz+ore, 2z € A ={z:€ C:lz| <1}, with positive real part in the unit disc
and let. H(M) stand for the class of holomorphic functions commonly bounded by M-in A.
1n.1992, J. Fuka and Z."J. Jakubowski began an investigation of families of mappings p. € P
fulfilling certain additional boundary conditions on the unit circle 7 At first, the authors
examined the class P(B,b; a) of functions defined by conditions given by the upper limits
for two disjoint open ‘arcs of I'. “After that, such boundary conditions given, in particular,
by the nontangential limits, were assumed for different subsets of the unit circle. In parallel,
G. Adamczyk started to search for properties of families, contained in H(M) and satisfying
certain similar conditions on 7. The present article belongs to the above series:of papers.
In the first-section we will consider subclasses of P of functions satisfying some inequalities
on several arcs of T; whereas in Sections 2 and 3—families of mappings f € H(M) with
conditions given for measurable subsets of the unit circle 7%

Keywords: “bounded holomorphic functions, Carathéodory functions, harmonic measure,
extrema points

MSC1991::30C45

Tn this section we will consider Carathéodory functions. connected ‘with several
arcs of the unit circle.
Let b= (bi, b,y 0i), 0K by Sbe S0 Kby 0 = (g, 0,0, )y 5 200,
k

J=1,2 5k Soa; =1,k 2 2 Asusual, denote A = {z € C: 2] < 1}
=1
T={:€C:lz|=1}, P={p(z) = 1+cz+, Rep(z) >0, z€ A}
Definition 1. ' Let b, e be fixed as above and p € P. We say that f € P(b; )

iff there exists a system Lo = 15(p) = (lay, Tany s Loy ) of & disjoint open arcs of
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the unit circle T of lengths, respectively, 2rnay; 4. =1, 2, .k, such that

(1) lim Rep(z) 2.b; - for all C € 1o,

P
J=1,2, k.

Remark 1. Of course; for any admissible b and o' = (ay,1 —m,0,...,0),
a1 €(0,1), the classes P(b; ) reduce %o the well-known families P(B,b; o), [4].

Consider p e P(b, ), Io = Io(p)-—the respective system of arcs, with w;—the
harmonic measure of In;, j = 1,2, 0., k. Put

k
) wiz) =Y bw;i(), e B\ {G;, G0,
=1

where (1, .. ;Gostand for therends of ‘arcs of the system I,. -Of course, wiis a
nonnegative harmonic function bounded by by in A. From (1) we also obtain

Ti?ﬁc(-—Rep(z)) Kby =—wi(Q); (el d =152, k.
Za
Using the Lindelof maximum principle, we get

Lemma 1. Let b, « be arbitrary and admissible. If p € P(b, ), where w is the
function:given by.formula (2) for 1, (p); then

(3) Rep(z) 2 w(z), 2z €A
This and the normalization p(0) = 1, w;(0) = «; imply

Theorem 1. If the class P(b, a) is not empty, then
(4) SThjey <L

Remark 2. :In (4) the equality holds iff i{ep is of the form (2).

Consider “a sequence. of vectors b, = (b1,b2$..,,bk-l,bf€”)) such that 0.<'b; <
by <l bpoy < bi’” and 11_1}1 bf:”) = 00, Fix suitable o, I and a sequence {p,}
n—joo
of functions holomorphicin A with positive real parts, such that

lim Repa(z) >

z=3¢

b; for¢ely,d=1,2, 0 k~1,
bff) for ¢ €1,



Then

g k1,
Repn(2) 2 biwy (2) o+ byywiy (2) + 0 (1 - ij(z)>

=1

Ee1
26 <1 = ij(z)), Zen
fe=d

= k1
Let 2 € Ay = {2.€ Cilz| v} Of course, W(z) =3 w;i(z) is a function
J=1

harmonic in. A, so. W (z) <:6(r) with 6(r) < 1. Therefore |p,| > bﬁ"}(l = 3(r)),
2z € A, It means that p, converge almost uniformly to oo if n.—occ. It is known
that if p, € P(b,, o), then p,(0) = 1.-So, we have

Remark 3. Let {b,}be the sequence given above. Then the classes P(b,, «)
are, starting with a certain n, empty.

Assume now that, for fixed b, «; (4) holds. Let I, be a respective system of
arcs, w;—the harmonic measure of the arc I, w;-—the conjugate function'of wy,
wI(0) = 0. Put

(5) hi(z) =wi(2) Hiwj(2), 2€4,7=1,2,.:k
and
i
©) mo() = Ybhs(a), zeA
=

Denote also

.
! 1= aib;:

=1

One can-easily check that if n =1, then po € P(b,e). Forn €(0,1), put

(8) p(z) =po(z) + (L-ma(z), z€A,

where ¢ is an arbitrary function from P. Then p € P (b, c). So the following theorem
is true.

Theorem 2. If condition (4) holds, then the class P(b; ¢t) is not empty.



Remark 4. It is clear that-there are infinitely many functions belonging to
P(b, ct) because in the construction (6) or (8) we can choose another system I, or
another mapping g € P.

Moreover, the above constructions prove

Proposition 1. 1° If n =1, then P(b, a) is a'set of mappings of the form (6)-
2° If 0 < < 1, then P(b, ) is a set of mappings of the form (8).

Indeed, take p € P(b, a), construct po by formula (6) for I, =TI, (p) and consider
a function P(z) = p(z) —polz), z € A. This is a function holomorphic in A and
lim . ReP(z) z0for¢el, ,j=1,2,...,k S0, ReP(z) >0,z €A, Moreover,
P(0) =1 =n,s0if n=1, then P =0 and (6) holds. For n € (0,1), it is enough to
take g(z) = 125 P(2) to justify (8).

In view of Theorem 2 and Proposition .1, constructions (6) and (8) constitute
structure formulae in the respective classes P(b,«). They are useful, among other
things, in the searching for-estimates of certain functionals.

Consequently,  consider 7 :€ (0,1).. Let p € P(b,a). To this mapping there
correspond, of course, a definite system of arcs I, (p) and functions pg and q according
to (8). From (5)-and (6) we obtain :

k
polz) = ij/ (14 2e7 2+ ) dt.
J=1 Zaj

On the other hand, po(2) =N+ ¢y poz+- 5 2 € A So

&
Recn,p(,z,?ij/ cosntdt, n=1,2,.
1

= ey

In‘view-of Proposition 1(2°) and the well-known estimate.of the coefficients in P,
we get,

&
9) max = Recnp =2 max Ebj/ cosntdt +2(1—n).

peP(b,a) L. o Io;

Let I, be a fixed system of appropriate arcs of the circle 7. - Denote by I7, the
system L. rotated by the angle 7, i.e. such that I = {z=¢77¢, (€ la;}-

Definition 2. By P(b, ;1) we will denote the set of all functions p € P(b, o)
for which there exists 7= 7(p) € (0, 2x) such that I, (p) =17
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Let us consider the case k = 3 and put & = (@1, 02,03), 01 = @2 = %(1 = ),
g =a, @€ (0,2r). Let T = (luy, loy; Las) where Iy, = {C = €1t € (r,2n—am)},
L, = {¢=¢"1t € (ax, M)}, Loy = {C= e t € (—am,am)} :

Take p € P(b, e; I). From the definition of this class and from (9) we have

rORAT. T QT
Recy (1) = 2<b3/ costc1t+b2/ costdt-kb;/ costdt>

— oy antr -

= ($bs— by — by) sin &F cos 7+ (by — by) cos S sin 7.
If po runs over the set of all functions of the form (6), then 7 runs over the interval

{0,2n). Hence

Recyp(7) < max: Recy (1)
T€(0,2r)

=208 % ((3b3 —bo — by) cos@o sin 8F +(by — bo) sinwp cos &),

where -
so= T arctg (28Tl b om)
2 by — by 2

Corollary 1. Let-a € (0,2n), a = {152,122 o) b = (by, by, bs). be arbitrary
and fixed, and let the system Iy be defined as above. Let p. € P(b,o;1y) be of the
formp(z) =14 c1pz+---,2€ A, Then

lerp) <2 {1+ cos S ((3bs — by — b1) cos xo sin &F + (by — Do) sinzo cos )},
Zo is given by the above formula, and these:-estimates are sharp.
Definition 3. . Fix an arbitrary I, and denote
PY(b,1a) ={p € P(b,a): In(p) = La}.

Example 5 Letk =3 a= (éyé,%), b= (bi,ba,bg) and I, = {{ = eit:
—n<t < =B T, = AC=et - Bt < B Loy = {( =@ E <t < n)y
Too = (Tays Jans Las). Using Proposition 1 (2°) for p € PY(b,a;1q) we get Cnp =
Crpy (L=mengsn=1,2, .. whence

0 forn =41,

2 S
£1/b?+b§+2b2(bg—b1~b3) forn=4l+1,n=4+3,
Jenp| €21 =n) 43 17

—|bg — by for n =4l +2,
nr

LeN.
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The following assertions are true.

Proposition 2. For any admissible b, «, the class P(b, ) is compact.

Using Lemma 1, one can prove this fact analogously asin [4].
Proposition 3. For any admissible b, a, I, the class PY(b, a; 1a) is convex,

Proposition 4. Let by > bi_1. The class P(b, «) is not.convex.

Toverify them, ‘consider two functions po-and pj given by formula :(6) for Ip
and I7,, 0-< 7 < min{2na;}5_,. The linear convex combination px of the functions
p1 and pp given by (8) for n.€ (0,1), po, pj and g(z) = H=, 2 € A, does not satisty
the definition condition’(1) for j = k. ‘If .= 1, one should take px = Apo + (1 = A)pj.

Below, we will determine a relationship between P(b, a) and the families H(1, ot}
investigated in article [1]. Let us recall:

Let H stand for the family of mappings:f holomorphic and bounded in A, f(0) =

F0) =1 =0,

Definition 4.« Let L= (I1, 1, ., L), e = (a0, ), 0 <y < oo Sl
k

;2 0,7=1,2, ...,k Y oa;=1,k>2 By H(l,a) we denote the set of functions
j=1
f € H for which there exists a respective system I =X, (f) such that

glgélf(z)] <l foreach (e,

F=1,2,1.k.

=

1t is known that H(l,a) # 0 iff n(k) =] l;-}" >-1. “Assume that 1, o satisfy

<
il

additionally I < e and'n(k) < e. ' We have
Theorem 3. If p € P(b,a), then the mapping
f(5) = 2, ze

belongs to the class H(L, &') where [; = e!7h=it1, ol =g, =120k

The proof is analogous to that in [2).
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In this part we will investigate functions bounded in the unit disc.with ‘some
conditions given for two sets of T'.

In literature one can find various methods for investigating the boundary-behaviour.
of functions defined in certain domains (see, for instance, the local Fatou theorem
in {12}, p. 94).

For f-€ H, the upper limit and also the nontangential limit -a.e. on T exist. So,
denote

lim | f(z)| = [f(ew)i for (=€l €T,

I'g3z2-¢

Similarly as in'[8] one can justify

Lemma 1. Let I C T be an arbitrary open-arc, f '€ H.  The conditions

(A) @mz)[ <M forCel
and
(B) [F(e9)| <M aeonl

are equivalent.

Besides, note that if f.€ H, then there exist radial limits | f* (¢’)] a.e. on T and

(10) |7 (%)) :}13} [£(re)] = lim- [f(z)], 6€(0,2r) a.e.

Tp3z—elt

Definition 1. “Let F C T be aset of Lebesgue measure 2no, o € (0,1) and
0 <m < M <oo. By HY(M,m,q; F) we denote the family of functions f € H such
that

M ae-on Fy
m . a.e onT\F;

(a 17 (69)] < {

Remark 1. Let F be an open arc I, of length 2nc. Then HY(M,m, oy 1,) =
HY{(M,m;I,): The considerations in this part of the paper represent a certain kind
of generalization of investigations from the paper [13].

For arbitrary admissible M, m, «, F, we have

Proposition 1. HY(M,m,«a; F) is. a family of functions commonly. bounded
by M in A\
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Constructing a function analogously as in [5] and [13] one obtains conditions for
the nonem;ﬁiness of the above families. So, let F' C 7 be a fixed set of measure 2na,
w( 5 F)—the harmonic measure of the set' F, w’(+; F)—the conjugate of w(:; F),
wH0; F) =0 Put h(+; F) =w(; F) -+ iw*(+; F) and

(12) fo(2) = Zeh(z;[")LngM+(1~h(z;F))Logm’ 2EA,
and, for
- 1
(13) = Famica:
(14)

If 7 = 1, then fo € HY(M,m, a; F), whereas if /7 € (0,1), then f; is a function of
the family HY/(M, m, o; F). Thus we get

Theorem 1. If 0 <m < M, a € (0,1) and

(15) ME%mr2>,

then BY/(M,m,o; F) %0 for F.C T and F is of length 2nc.
Conversely:

Theorem 2. Inequality (15) is’a necessary condition for.the nonemptiness of
HY(M;m, o F).

The proof is omitted (see [13]). One can easily prove the structure formula below.

Theorem 3. Let f'€ HY(M;m,o; F). Then there exists a holomorphic function
@ bounded by 1 in°AA, ®(0) =0, #(0) = 7, such that

(16) f(z):f%(iz-@(z), z €A,

where fq is the function given by (12) for the set F.

The converse is also true, i.e; each function which is the product (16) of any
suitably fixed mapping fo(z)/z and ®(z) belongs to HY(M,m, a; F).

Proposition 2. The classes HY.(M,m,a; F) are compact.

180



For the proof, it is enough to use Proposition 5 'and the structure formula (16) for
a-sequence- f,, of functions from the ‘class investigated, converging almost uniformly
onA.

In the consideration carried ‘out so far, the set F,. distinguished by the: given
boundary. condition, was fixed. Now, we shall consider the possibility of changing F'
and some consequences resulting from it.

Let F' C T be an arbitrary fixed set'of measure 21, 7 € (—n, 1), F,—the set F
rotated by 7, ie. By = {z =e77¢: (€ F}.

Definition 2, Let f € H. We say that f € H(M,m,o; F) if there exists
7 =7(f) € {(—n,n) such'that f satisfies conditions {11) for the set F,.

The following two statements are.valid.
Proposition 3. For any fixed and admissible M, m; o, F,

HMmoF) = ) B (MmaoF)

TE(TT,T)
holds.

Proposition 4. The classes H(M, m, a; F') are.compact in the topology given by
the almost uniform convergence in /.

To prove this one should carry out a reasoning analogous to that in [5], [13].

Remark 2. Note that, for the justification of the assertions given in this part of
the paper, it would suffice to assume in the definition of the families HY(M,m, o; F)
that inequalities (11) are satisfied for the corresponding radial limits f7(e!’). ‘In
view of the existence of both the radial and nontangential limits as well 'as by equal-
ity (10) in this case, the analogous class HY (M, m, a; F') is identical with the class
HY(M,m,o; F). But note also that the equality of both the limits does not mean
their “equivalence”, of course, in the sense of the theorems obtained on their proper-
ties of the function fin A. It is known, for example, that if a function f holomorphic
and bounded in A has a nontangential limit equal to zero on a certain subset E T,
then f = 0. The above assertion does not hold for radial limits.

In this section we will investigate functions p € P which satisfy fixed conditions
on the boundary of the disc A, distinguishing % subsets measurable in the. sense of
Lebesgue. We 'will assume that b = (by,bs,." ., bx), o = (a1, as, ., ) are defined
as:in Section 1.
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Definition 1. Let p € P. We say that p belongs to the class p(b, o) iff there

exist 'k disjoint'sets F; C T of Lebesgue measures, respectively, 2na;, 4 = 1,2, ...k,
such that

17 Rep(e?) 2 b; a.e.on'Fj,

i=1,2 0k

In this definition, Re p(e'?) stand for the nontangential limits. The case’k = 2 was
the subject of investigations in papers [5], [8]. Throughout our article, we denote
(Fy,..., Fy)=F(p) = F. Putting

£
(18) Uz, F) = ijwj(z), z €A,
j=1
with w; being the corresponding harmonic measures of the sets Fj, we obtain a
function harmonic.in A, continuous almost everywhere on A and such that
(19) U(z; F)=0b; ae onFj,j=1,2...k
Assume that' p(b, ) # 0. So, let p'€ w(b,a). Conditions (17) and (19) imply

that Rep(z) 2 U(z;F) a.e. on T. Let xr; stand for the characteristic function of
the set Fj. Then, for z € A, we get’

ety z
Pt

2t

zZ

k :
1o | et 4z
29— g 1) Re e
/j;Zn‘/_“)‘n(t)Rep(e )Reeufzdt
& . - "
1.7 etz
?;ﬁ/_xXFJ(t)ﬁj»Reeii_zdtz E bjw;(z).

=1

‘We have thus shown

Lemma'l. Takep€ p(b,a), F = F(p) and U(+; F) given by formula (18) for F.
Then

Rep(z) 2 U(z;F), ~z €M

Putting z = 0 in the above inequality and remembering that w;(0) = o, we have
Theorem 1. If p(b, ) # 0, then
k
(20) > bioy <1
j=1
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Moreover, we get
Theorem 2. If condition (20) holds, then the class p(b, ) # 0.: Besides, there
exists a function p € p(b, a) such that Rep(z) =b; a.econ Fy, j=1,2, ... k.

Proof.: Forthe system F one can construct (analogously as-in Theorem 2) a
function

k
(21) Gz F) =D bih(2), z€A4,
j=1

k
holomorphic in A, Re G(z; F) = U(z;F), G(0; F) = 3" ;b;. If there is an equality
i=1

in (20); then G(z; F) € w(b; ), whereas if there is a s_'harp inequality, one may put
: i etz
(22) Py(2) =G5 7) + (1“Z;bjaj)’e’;:'_';7 z€4, =1
=

Then py-€ p(b, a). Note that, for p,, the equalities hold in (17). ¢ (]

We will establish some topological ‘properties for a fixed subclass of the families
(b, o).

Let F = (Fi,...,Fy) be arbitrary, fixed, admissible and pY(b,a, F): = {p €
g(b,a); F(p) = F}.

Proposition 1. The classes pY (b, o, F) are convex.

Using Lemma, 3 and the properties of the function U(-; F); one can verify

Proposition 2. The classes ¥ (b, a, F) are compact.

Directly from the. definition of the families: (b, ) it follows that they are sub-
classes of Carathéodory functions:

It turns out that the imposition of additional boundary conditions on-a function
p € P has its consequences. -However, it is possible to fix a certain relationship
between the families p(b, &) -and P. Similarly as Proposition 1 (2°) one can prove

Theorem 3. -Let b, « be any fixed admissible systems. A function p € p(b,a)
iff there exist:F and'q € P such that

(23) p() = G F) + (1 - ija,»)m N
G=1

where G(-;F). is the function of the form (21) given for the system F. of sets.
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Using formula (23), one can prove

Theorem 4. A function p belonging to the class ©Y (b, o, F) is an extreme point
of this class iff it is of the form (22).

Proof. Assume that p € p¥(b,e, F) is an extreme point of this class. The-
orem 9 implies that there exists a ¢ € P such that (23) holds,  Suppose to the
contrary that ¢(z) # :: i': It means that gis not an extreme point in P." So there

exist ¢15¢2 € P and A € (0,1) such that ¢(z) = Aq1(z) + (L = Nga(2), z € &, Put

&
pe(z) = Gz F) + (1 - ijaj)qk(z), €A k=1,2.
j=1
Of course, pr € Y (b;a, F), k=1, 2. ‘Besides; p = Apy'+ (1 ~v/\)pz, but: this
contradicts the first assumption.
Similarly one can justify the sufficient condition of the above theorem. 0

Remark 1. Let p€p(b, o) and F = (F1,...,F}) = F(p). Then

k 3.3 k
lcnfélé%Zij/ XFj(t)ei”tdti 4—2(1-22;]-%), n
j=1 T

i=1

1.

W

Indeed, let b, a be suitably fixed and let p € p(b, @), Let also F = F(p) stand for
a system of k respective sets F; for which (17) holds. Consider the known function
G(-5F). Of course,
13
Gz F) =3 b +argz+ -+ ance®+ 0, TzED
G=1

The mapping p can be represented by (23) where

) =t gzt 4,20z €A
Hence we ggt'
E
(24) Cnp = GnG+ (1 - ijaj> Qs ozl
=1

Moreover,

1 g F ditz
G(z;f):;E bixp (t) g dt
el TR t

k %
= %Z/ bixE (14 26tz 40 4 265 e, Z €A,
i
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Tig ™ :
(25) e =5 Y2 / X, (e db.
v —x

J=1
Hence and from the estimate of |g,| in'P we get the assertion.

Example 2. Let-k =3, &= (§,3,%), b = (b1,bs,bs). - Consider the sets
o {C= et (cn DIAW, Fam (Cmdtite (3 3\ W, By = {0 = o
t€ (7)) \'W, where W denotes the set of rational numbers, and F = (Fy, Fp, F).

Let p.€ pY(b,a;F). Using (25) -and the properties of Lebesgue integrals, for
G(-;F) we successively obtain

k Lk k
1 < int 1 / int 1 int
UG = § ; e z . E . ¢t
An,G 3 2 Zb,/ Xy (B)e™ dt Z 2b; - et dt 2 2b; e d

FUW

The above considerations mean that. the estimate of |c, | are identical with those
in the corresponding family P(b, «; 1a) (see Ex. 1).

More generally, let I,; C T be an open arc of length 2na;, where Q; C T is a set
of measure zero, F; = I, \'Q;, j =1,2, ..., k. From formulae (24), (25) and the
properties of Lebesgue integrals it follows that ‘the estimates |cnp] In Y (b, a; F)
and P(byosXe), Ia = (a5 Loy ) Fo= (B, F), are the same.

Example ‘3. 'Let a = (%,%,%), b= (b1, bs,b3).  Consider the sets Fi =
{¢=e1e (05 uinn}, B ={(=¢"te(-n0)}, B={(=¢:te
(2,37)}. Let F = (F\,F,, F;) and p € p"(b,o; F). Again, using (24), (25), after
suitable computations we obtain

0 ifn=8kVn=_8k+4,
1
—|(V2=2)bi+2b; =/2bg| if n=8k+ 1V =8k+T,
nr
k
~S b, 2
lew.r] < 2(1 El’f”‘a)* Z by = ba] ifn=8k+1Vn=8ki6,
_ nw
1
—|2b; ~ ba| ifn=8k+3Vn=28k+5,
nr

Remark 4. Tt is easy to note, that if F is essentially different from three arcs
of the circle 7" (that means—it is neither a triple of arcs of T nor a triple of arcs with
sets of Lebesgue measure zero-omitted) then, for instance, the estimate of coefficients
are more complicated.
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