
Mathematica Bohemica

Jaroslav Ježek; Václav Slavík
Random posets, lattices, and lattices terms

Mathematica Bohemica, Vol. 125 (2000), No. 2, 129–133

Persistent URL: http://dml.cz/dmlcz/125956

Terms of use:
© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/125956
http://dml.cz

125 (2000) MATHEMATICA BOHEMICA No. 2, 129-133

RANDOM POSETS, LATTICES, AND LATTICES TERMS

JAROSLAV JEŽEK, VÁCLAV SLAVÍK, Praha

(Received January 6, 1998)

Abstract, Algorithms for generating random posets, random lattices and random lattice
terms are given.

Keywords: lattice, poset, algorithm

MSC 1991: 06B25, 06-04

An elaboration of a conjecture concerning finite lattices often depends, in its initial
phase, on the verification for a set of randomly chosen lattices.

In this paper we are going to present three algorithms: for generating a random
poset, or random lattice, with a given number of elements, and for generating a
random lattice term.

The algorithm for a random lattice can be also used for generating a random join
semilattice: a random join semilattice with Â elements is nothing else than a random
lattice with N + 1 elements, from which we remove the least element.

We suppose that a (good) random number generator is given. For a positive
integer i, rnd(i) is a random number from {0, ..,,£ — 1}.

For the notation the reader is referred to either [2] or [3].
The algorithm in Section 3 is based on ideas of J.-B. Nation.

While working on this paper both authors were partially supported by the Grant Agency
of the Czech Republic, Grant No 201/96/0312. The first author was also partially sup­
ported by Grant Agency of the Academy of Sciences of the Czech Republic, Grant No
A1019508.

129

1. POSETS

Denote by N the number of elements of a random poset. Let L be a two-

dimensional array of size N x N, which will hold the less-or-equal relation table

of the poset. We initialize L by setting L[i][j] ~ 0 for i =£ j and L[i][i] = 1

(i , j = 0 , . . . , y V - l) .

We will also need two (one-dimensional) arrays M and Q of size N.

The random poset will be given by its table L after executing the function Work(i)

for i ~ 0 , . . . , N — 1. This function calls the auxiliary function FrndMax(i), which

finds the maximal elements of the current poset, chooses its random subset and

returns the number of elements of this subset.

For a positive integer i, denote by S(i) the least positive integer j such that j 2 > i

and j > 2.

i n t FindMax(i){ i n t k=0; i n t j , s , a ;

f o r (j = 0 ; j < i ; j + +) {

s = l ; f o r (a=0 ;a< i ; a++) i f (a!=j&& L[j] [a]) s=0;

i f (s) {M[k]=j;k++;} }

a = r n d (k + l) ; f o r (j = 0 ; j < k ; j + +) Q[j]=0;

f o r (s = 0 ; s < a ; s + +) { j = r n d (k) ; i f (Q [j]) s — ; e l s e Q [j] = l ; }

r e t u r n k ; }

vo id Work(i){ i n t j , l , w , s , q , u ;

q=S(N- i) ;

i f (i = = 0) u=0; e l s e i f (! r n d (q)) u=FindMax(i);

f o r (j = 0 ; j < u ; j + +) i f (Q [j]) L[M[j]] [i] = l ;

w=l; while(w){w=0;

f o r (j = 0 ; j < i ; j + +) i f (L [j] [i]) f o r (s = 0 ; s < i ; s + +)

i f (L [s] [j] & & ! L [s] [i]) { w=l; L[s] [i] = l ; } } }

2. LATTICES

The idea of generating a random lattice is similar to that of a random poset, but

a little more complicated.

Again, the number of elements will be denoted by N. Instead of the less-or-equal

relation, we need the join table, which will be held in a two-dimensional array J of

size TV x TV. The table is initialized by setting J[i][i] = i and J[i][j] = - 1 for i # j

(meaning that the joins are not yet defined).

130

The lattice is generated from below. Assume that its order ideal of k elements has
been constructed. From the set of maximal elements of the order ideal we select a
random subset S (if k = N - 1, S must be the set of all maximal elements). We then
add a new element a, covering all the elements of 5. (This may force some maximal
elements outside 5 to be also covered by a.) For i,j with i < a, j < a and J[i][j]
not yet defined, we set J[i][j] = a.

The FindMax(i) function is almost the same as for posets. The Work(i) function
is different.

int FindMax(i){ int k=0; int j , s , a ;
for(j=0;j<i;j++){

s=l; for(a=0;a<i;a++) if (a!=jttJ[a] [j]==a) s=0;

if(s){M[k]=j; k++;}}
a=rnd(k);a++; for(j=0;j<k;j++)Q[j]=0;
for(s=0;s<a;s++){ j=rnd(k) ;if (Q[j])s— ;else Q[j]=l;}
return k;}

void Work(i){ int j , l , w , s , q , u ;
if(i==N-l){for(j=0;j<N;j++) for(l=0;KN;l++)

i f (J [j] [l]==-D J[j][l]=N-l; return;}
q=S(N-i);
if(i==l){u=l; M[0]=0; Q[0]=1;}
else if(!rnd(q)) u=FindMax(i);
for(j=0;j<u;j++) if CQCjJ>{JCHCjjD [i]=i; J [i] [M[j]]=i;}
w=l; while(w){w=0;
for (j=0; j< i ; j + +) i f (J [j] [i]== i) f o r (s = 0;s<i ; s++)

if (J[s] [j]==3«J[s] [i] !=i){»=l; J [s] [i]=i; J [i] [s]=i;}
for(j=0; j< i ; j++)if (J[j] [i]==i)f° r(l=0;Ki; l++)if (J[13 W==i){

s=J[j] [1] ;if (s!=-l&&J[s] [i3 !=i){w=l; j [s] [i]=i; J [i] W=i;}}}

f o r (j = 0 ; j < i ; j + +) i f (J [j] [i] = = i) f o r (1 = ° ; 1 < i ; l + +)
if (J [13 [i]==i"J [j3 [1] ==-!){ J [J] W = i ; J [l] [j3=i;}}

131

3. L A T T I C E TERMS

The idea of generating a random lattice term (which should be given in its canon­

ical form) in n variables xi,...,xn is the following. We first generate a random

lattice with a set of n generators gx,... ,gn. Then we seek for an element g stand­

ing as far from the generators as possible, and obtain a term t(xi,...,xn) with

9 = t(s,i> • • • 19n) as a result.

The previously described algorithm for producing a random lattice cannot be used

for this purpose, since it does not allow any control over the generators of the lattice.

However, one can see easily that it is sufficient for the present purpose to generate

a random bounded (in the sense of, e.g., [1] and [2]) lattice instead of a random

general lattice. As is well known (and proved in A.Day [1]), finite bounded lattices

are precisely those lattices that can be obtained from the one-element lattice in

finitely many steps by doubling the intervals. So, it is easy to generate an infinite

random sequence of finite bounded lattices Lo,L\,... of increasing sizes: Lo is the

one-element lattice, and Li+i is obtained from Lt by doubling its random interval.

One can set gi = . . . = gn = 0 in Lo, and if the lattice Li is generated by

n elements, again denoted by gi,.-.,gn, one can restrict the random selection of

an interval in Li in such a way that the lattice £;+i , resulting by doubling this

interval, is again n-generated, and its n generators gi, • • •,gn can be obtained from

those of Li, taking only one appropriate element each time when a generator has

been doubled. We will not give the details of the algorithm here, since it is rather

technically complicated but the idea is simple.

Since the cardinalities satisfy \Li\ < \Li+i\ ^ 2\Lt\ for all i, one can find in the

sequence a random bounded lattice L with N <_ |L| < 2AT for any given A .̂ Let J

and M be two two-dimensional arrays of sizes 2N x 2AT, holding the join and meet

tables of such a random bounded lattice. We will suppose, for example, that n = 3

(the number of generators of the lattice.) The three generators of L will be denoted

by gi,92,9i (so that 0 ^ #1,52, $3 < 2N with respect to encoding lattice elements

by nonnegative integers). The function ProduceTermO, listed below, produces a

random term in three variables x,y,z based on this lattice. The function w r (i) is

auxiliary; it serves to print the term. We also need four auxiliary arrays A, B, C, D

of sizes 2At.

vo id w r (i) {

if(i==0) printf (" x ") ;
else if(i==l) p r i n t f C y ") ;
else if(i==2) p r i n t f (" z ") ;
e l s e { i f (B [i] > 2) p r i n t f (" C) ; wr(B[i]); if(B[i]>2) p r i n t f C) ") ;

if(D[i]==l) printf ("."); else printf (" + ") ;

if (C[i]>2)printf("(");wr(C[i]); if (C[i]>2) printf (")");}}

void ProduceTerm(){ int i,j,k,l,c,d,u,m,p;

A[0]=gl; A[l]=g2; A[2]=g3; p=l;

k=3; while(p){m=k; p=0;

for(i=0;i<m;i++) for(j=0;j<m;j++){

u=J[A[i]][A[j]];

c=0; for(l=0;Kk;l++) if(u==A[l]) c=l;

if(!c){p=l; A[k]=u; B[k]=i; C[k]=j; D[k]=2; k++;}}

for(i=0;i<m;i++) for(j=0;j<m;j++){

u=M[A[i]][A[j]];

d=0; for(l=0;Kk;l++) if(u==A[l]) d=l;

if(!d){p=l; A[k]=u; B[k]=i; C[k]=j; D[k]=l; k++;}}}

wr(k-l);}

The random term obtained in this way is given in its canonical form.

References

[1] A. Day: Splitting lattices generate all lattices. Algebra Universalis 7(1977), 163-170.
[2] R. Freese, J. Jezek, J. B. Nation: Free Lattices. Mathematical Surveys and Monographs

42, American Mathematical Society, Providence, RI, 1995.
[3] 67. Gratzer. General Lattice Theory. Academic Press, New York, 1978.

Authors' addresses: Jaroslav Jezek, MFF UK, Sokolovska 83, 186 75 Praha 8, Czech
Republic, e-mail: j ezekSkarlin. mf f. cuni. cz; Vaclav Slavik, Czech Agricultural University,
Kamycka 129, 165 21 Praha 6, Czech Republic, e-mail: s lavikStf .czu.cz.

		webmaster@dml.cz
	2020-07-01T13:55:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

