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Abstract..” From the fact-that the unique solution ‘of a homogeneous lincar. L\ng’brmc
tem is the trivial one we can obtain the existence of a solution of the nonhomogencous
em. Coefficients of the systems considered are elements of the Colombean algebra R of
generalized real numbers, Tt is worth mentioning that the algebra R is not a field.
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1. INTRODUCTION

We shall consider the systems of linear equations

A b ALY Pk R Ay = by
an @yt Galat S Gom T = by,
(1.1) i . g ;
U121+ - Qa2To+ S O T = b
whereay; (i = 1,2, n, 4= 1,2, 0 om), b (0= 1.2, ynyand 2 (5 = 1,2,...0m)

areelements of the Columbeau algebra R of generalized real numbers. The Loe{ﬁ»
cients agj, ¢ = 1,2, 000, 4 =1,2,..)m, and. b, 4 = 1,2,. 7., n, are.given, while
21,2, Tm -are to be found. The multiplication, the summation and the equality
of two elements from R are meant in the Colombeau algebra sense. “After-extending
these operations in a natural way to matrices and vectors with entries from R we
can rewrite the system (1.1) in the equivalent matrix form

12) Az =b.
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It is well-known that R is-a commutative algebra with the unit element and it is
also well-known (cf. [4, pp. 6-7] or [3, Section 37]) that most of the theory known for
determinants of matrices.of real or complex numbers are applicable to determinants
with'elements in commutative rings with the unit element. In particular, if X'is
a‘commutative ring with the unit element, X" is the space of column ‘n-vectors
with entries from X, ‘A is an n X m-matrix whosc. columns are elements of X™ and
b€ X", then the determinant det(A) of A is defined in such.a way that the following
assertions are true:

1.1. Proposition, Ifm =n and det(A) possesses an inverse element (det(A))™*
in X, then the given nonhomogeneous system(1.1) has a unique solution x for any.
right-hand side and this solution is given by

2; = det{A:)(det(ANTE i=1,2,.0,m,
where A; stands for the matrix obtained from A by replacing the i-th column by the
column b.

(For the proof see [4,p. 6].)
1.2. Proposition.  Ifm =n and the homogeneous system
(1.3) Az =0

possesses a nontrivial solution, then det(A) is not invertible in X.

(For the proof see [4, Proposition 1.1.2].)

1.3, Proposition.: The system {1.3) possesses a nonzero solution if and only if
there is a nonzero element A\ of X, ‘such that \det(4) = 0 (i.e. det(4) is a divisor of
the zero element 0 in X).

(For the proof see [3, Corollary of Theorem 51].)

The aim of ‘this -paper is.to prove some additional theorems on existence and
uniqueness of solutions. of the system:(1.2). In particular, from the fact that the
unique solution of the system (1.3). is the trivial one we obtain the existence and
uniqueness of solutions of the system (1.2). The results of this paper will be applied
in the investigation of boundary value problems for generalized differential equations
in the Colombeau algebra (see {2]).




2. ALGEBRA ‘OF GENERALIZED-NUMBERS

Let us recall here some basic facts concerning the Colombeau algebra of generalized
numbers which are needed later on.  For more details see e.g. [1].

As usual, we denote the space of real numbers by R, while N stands for the set of
natural numbers (N = {1,2,...}).

Let 2(R) be the set of all C* functions R = R with a compact support.” For

a‘given ¢ € N we denote by &, the set-of all functions ¢ € 2(R) such that the
relations

o o
/ e{t)dt =1, ‘and / tFo(t)dt =0 forany 1<k <q

o0 -0

hold.  We have

oy 2 oy forany g€ N and nﬂq:ﬂ

a=1
For given ¢ € 2(R) and & > 0, v, is defined by
we(t) = to().

Now, we denote by & the set of all mappings from o7 into R.-Obviously, when
equipped with naturally defined operations, & is a commutative algebra over the
field R of real numbers and the mapping ¢ € o4 -1 € R:is its unit elemeént. ‘In
particular, the product Ry - Ry of the elements Ry and Ry of & is given by

Ry - Ryip € #y v Rilp)Ralp) € R

Furthermore, we denote by &), the set of all moderate elements of &, defined by

Em={Re&: AN eN) V(pe o) I(c>0,pu>0)
V(e € (0,m0)): |Rlpc)| < ceV

Clearly. &) is a linear subspace and a subalgebra of &.
By I we denote the set of all increasing mappings o N'r— 8% such that

Jim a(g) =00




and we define anideal .7 of & by

T={Re&: AN eEN,ael) V(g2 N,y d,)
3(e>0,110 > 0) ¥ (€ € (0, 0)): |R(ee)| € ce® @M}

The factor algebra
Bofm
7

is called the algebra of generalized numbers: (cf.[1, Sec.’2.1)). For a given & € R
we denote by R, its representative (R, € &) and write usually = = [Rs] (¢
R, + 7). Obviously, R is a commutative algebra with the unit element 1 = [Ry
where Ry () = 1 for any ¢ € o4, and the zero element 0.= [Ro], where Ro(¢) =
for any ¢ € /. Let us recall that for given z,y € R:we have

1

b

=]

2y =[R, R} =R, R, + 7.

Furthermore, it is worth mentioning that, R possesses nonzero divisors of the zero
element. In fact, let o = [Ro] € R and a* = [Ro-] € R be given by.

1if € Whioy \ @i for some k€N,
1) Ralo) = :

0 otherwise
and

0 if € @hp_1 \ by forsome k€N,
(2.2) Ro-(p) = -

1. otherwise.

Obviously R, < Re+ € Z and R,+- R, € J,ie. aa* = a*a= 0, while both ¢ and'a”

are nonzero. It follows immediately that R is not a field. ‘In fact, let ¢ and.a* € R

be given respectively by (2.1) and (2.2) and let z € R be such that az = 1. Then

0= {a*a)z = a*{az) = a” would hold, while a* # 0 according to the definition (2.2).
On the other hand, the algebra R possesses the following helpful property.

2.1, Proposition.  If a € R is not invertible, then a is a divisor of the zero

element 0 of R.

For the proof of Proposition 2.1 the following lemma is helpful:
2.2. Lemma.  Let us assume that

(2.3) (g eN) V(0 € ) A(dygrip > 0) F(Mgrip > 0)
Y (€ (0,7 0)): |Ra(gog)| 2 derp e,



Then the element a = [R,] € R is invertible in R.

Proof. Let the assumptions of the lemma be satisfied. Let us put

Tejl(-pj if ‘o =, for some ¥ € @ and €€ (0,7g-,),

1 otherwise.

Ra- () = {

We shall show that then
R, R, — Ry €7,

I(NeN;eeD) Vg Ny e o) Ie>0,7>0)
V(e €(0,m)): |Ra(We)Rar (¥e) — 1] S ce207 N,
Indeed, let us put V.= ¢* and let a be an arbitrary element of I'.  Then for any

g 2 N and any ¢ € o/, we have ¥ € /.. By the assumptions of the lemma there is
an 7g+ > 0 such that

Ro(¢e)Ras (%) = 1. for any € € (0,72 ).

Thus, if we put

1
c= an =g
Ty din =10y,

we complete the proof of the lemma, m}

Proofiof:Proposition 2.1. Let us assume that (2.3) does not hold, i.e.

(2.4) ¥(m €N) 3 (™ € o) Y(c>0,7>0)
(e € 0.m): [Ra(el™)] < Fem.

oo
As [N o, is empty, for any m € N there exists r, € NU {0}:such that
a1

P € iy \ Fnprr:
Obviously, for any m € N there is an 7, € N U{0} such that 0 <7 < T and

‘P[mja W[m-‘LHx ERRRY ‘/’[m-ﬁ;} € Hmtr,, \ Dmir,+15
while
AT o \ o 41



Let us put
(2.5) Pl = omATal for an e N,
Clearly, since according to our definition

Il ot aplm) oy anym €N,
we have
Yt 2ol forany m € N.

Furthermore, (2.4) implies that

N AT

(26)  Y(meNc>0,n€0,1)3(Bn e On): [Rawh)] < (8n)
(Let us notice that without any loss-of generality we. can assume that the relations

W[m) = w[m»rx} = ¢{1n+m) =yl

hold as well.)
Now, let us.define a sequence {m,}32, by

1 if 0=1,
me =
et mey + Ty 5 k1 if feNand (22

Clearly, mesq > mg holds for any ¢ € N and
lim g =00,
£-ro0
Furthermore, for any £ € N we have

mett] = iplmet i) o gl

i
Yl @ et mm N Dot +1°C Fongrn, \ Doyt 41,
Pt T N e\ Fnger,, 41

and in virtue of (2.6) the sequence {u')i’"'l}g;, possesses the following property:
@7) VEENc>0me 0,) 3 (Bn, € ©O,m): |Ra(w)] < L ()" 7.
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Let us put'c=2and = % and let { B, 152, be the corresponding sequence from
(2.7)..Let us put for ¢ € @ and e >0

1o if o= wg"{’,] and | R, (1"’)5]’;,:‘], Ni<3 (8ﬂ11;,)m(+m
(2.8) Ra(pe) = for some (€N,

0 otherwise,
We claim that
(2.9) B¢ 7.
Indeed, if Ry €. then

(2.10) (N eNael) V(g2 N,ee,) 37> 0)
Y(e €(0,7): | R () | < cedn=,

Let arbitrary fixed N € N'and o € T be given such that (2.10) holds. ‘Without any
“loss of generality we may assume that

(2.11) a(N) >N

is-true as well.-Let €5 € N be such that

(2.12) mg + T2 N forany £€N,-€ 2 .
Then for any € € N such that - > £, we have

(2.13) 3 > 2,7 € (0,1)) Vie € (0,7):

[Ba () 5, )] < (e, )70
Now, let {n: }52, be an arbitrary decreasing ‘sequence in (0, 1) such that
(2.14) lim g = 0.

koo

According to (2.7) we have
(218)  V(EeNkEN) (AL € (Om): |Ra(wlEh] < L (BT
In particular, the relations (2.14) and (2.15) imply that

(2.16) k13§oﬂ£ﬁl, =0 forany £eN, £3 by, fixed.

~3




Thus, if we put,

TS
ert = /,jm’ for. kL €N,

B

we obtain
] - o
N L“ = R (ulah)]
& Y < gy

According to-the definition (2.8) this means that for all ¢ = 05
such that ¢ = fy we have
@17 Balpe,) = ()., ) = Ralubiil) =

On the other hand, (2.13) yields
) . e) \ el me+T ) - N.
[Ra(er. )| < 7 (88) 770

for any 'k, ¢ € N-such that £ 2.
Consequently, as by (2:11) and (2.12) we have a(m¢+75,) >

lim Ll(ﬁ(k\)“(mm-m.,) Ny

koo

we obtain that for-any £ { there is a'kg such that
[Ba (s, A< forany k2 ko,

which contradicts (2.17).-This proves the relation (2.9).
Now, we will prove that the relation

’+’u

[m,

keNand €eN

1.

N and thus by (2:16)

(2.18) Ry -R,€T
is true as well.- To this purpose let us define a mapping o*: N-—= Rt = (0,00) as
follows:
1 -1
- (l i Kl > if 1<lgSmy,
. 2 ma
@) = (g:—me)(m ™my)
— S
me—y + Moo =) Ly me < g megy’ and €2
M) oMM

Since obviously

o (my) =a’ (1) =1 and a'(my) =me, for (=

=23,




it"is easy-to verify that a* € T. Furthermore, according to the definition (2.8) we

have for any @ € &}

Ra(ee)
S
Ra(@ln ) < X ()T
Ra(pe) Ralie) = [ 22w x,,,”‘*z( .
forsome (€N,
0 otherwise.

Let arbitrary. N, g € N:be given such that ¢- > N, then there is a unique £ € N such
that g € N0 (110, meg1 ). Since 3, < 1, it follows that for all o € & and:e € (0,1)
we have

SV e i e eat(g) N

)l <e eKE <€ .

75 (i2e) Ra ()|
(Let us recall that &/, C @y, , i such a case.) Conscquently, if we choose N € N
arbitrarily (e.g. N = 1) then for all ¢ € N such that ¢ > N, any’'p € « ‘and any

£€(0,1) we get

[Ba () Ra () | S 100,

i.0.(2.18) s true. a

2.3. Vectors and matrices of generalized numbers. Let us put

—n : : .

The elements of &~ will: be considered as column n-vectors, i.e. 1 x:n-matrices of
generalized numbers. For a given'n x m-matrix A of generalized numbers, its entries
will be denoted by a;; (A = (a;) = ((L;j)?fl,__"l ). Given an'n X 'me-matrix A4 -of

generalized numbers and an ni x k-matrix ]li x)‘["é‘(‘zuvmhzcd nwnbers, their product
‘AB'is the n. % k-matrix of gencralized numbers defined in the natural way and the
transpose of ‘A'is denoted as usual by AT,

Obviously, if. A = (a;;) is a given matrix of generalized mumbers, -then

z= o L R®” is a solution of the systent (1.2) 1f and only if it satisfies

the systemn of relations

=Ry €7,

Roiy " Reyt Repyn Ry 0+ Ry R,

For a given ¢ € N, the symbol N, denotes the subset {1,2;%.., ¢} of N. For-a given
subset 4 of N, we will denote by v(4) the number of its elements. Let A = (a:5) be

9




an'n X m-matrix (n,m > 1) of generalized numbers and let 1 C N, and U -C N, be
given such that-v(#). < n.—1 and v(B) <m — 1. Then the symbol ‘Ay o stands for
the matrix obtained from the matrix ‘A by deleting the rows with the indices 7 € §L
and the columns with the indices j € 8. If 4 = {i} and B = {;j}, then we write

Ayw=Aij.

‘We say that the minor det(Agu o) of the matrix 4 is of the k-th-order if k>.0 and
n—v(ih) = m — v(P) = k. Fora given r € N such that 1.<r < min(n,m), the
symbol A1) stands for the submatrix (ay),_

of the matrix 4 = (as;

L P e l. K N I
Let an.n x n-matrix. A and a couple 4,5 € N, of indices be given. Then we def

the cofactor 2 ; of a;; in A by

ne

Diy=(=1)"F det (4, ;).

The 1 x (m+1)-matrix obtained when we attach a column b € R to the columns
of a given n x m-matrix A of generalized numbers will be denoted by (4,b).

If A has not only zero elements, then-the highest order.7 of nonzero minors:is
called the rank of A and will be denoted by rank(A4). If A is the zero matrix, we put
rank(A4) = 0.

3. MAIN RESULTS

Before formulating the main results of the paper let us give several simple examples
indicating that under our assumptions the situation is even in‘the case m = n =
more complicated than in the classical case.

Let a € R and b € R be given and let us consider the equations

(3.1) az=b
and
(3:2) az = 0.

a) I ais given by (2.1), then a # 0 and as mentioned above there exists a nonzero
generalized number a* € R (cf. (2.2)) such that aa* = ¢’a = 0. This shows
that the homogeneous equation (3.2) with @ # 0 may in general possess nonzero
solutions.

Furthermore, it was also mentioned above that if @ is given by (2.1), then a is
noninvertible, i.e..the equation (3.2) possesses for b= 1 no solutions, though e
is nonzero.. Let us notice that in this case we have

=

rank(A) = rank(4,b) =1

10




c) Let @ be given by (2.1) ‘and let b = a Then (4,b) = (a,a), rank(4) =
rank(4,b) =1 and z =1 is evidently. a solution to the equation (3.1) (i.e..ax
a).

Our: main results are:the following theorems.

[}

Theorem 3.1. " Let m = n and let the zero vector be the unique solution of the
system (1.3) in R”. Then the system (1.2) has exactly one solution z in B for any
beR".

Theorem 3.2.. Let us assume that vank(A) = rank(4,b) = r >'1 and that there
are subsets 3 and 90 of the set Niin(n,m) such that v(#) = () = r and det(Ay y)
is invertible in ®. Then the system (1.2) has at least one solution 'z € r”
i

Theorem 3.3. - Let us assume that the system.(1.2) has a solution z € “Then

(3.3) rank(4) = rank(4,b).

4. PROOFS

Proof of Theorem 3.1, Letm=nandlet z =0 € R" be the only solution
of the homogeneous system (1.3).

Let us assume that det(A) is not invertible in R. Then by Proposition 2.1, det(4)
is.a divisor of the zero element in R and hence by Proposition 1.3 the system (1.3)
possesses a nonzero solution. This being contradictory to our assumptions, it follows
immediately that under the assumptions of the theorem det({4) has to be invertible
in R, The proof of Theorem 3.1 is now easily completed by making use of Proposi-
tion 1.1. 0

Proof of Theorem:3.2.- Without any loss of generality we may assume
that det(A()) # .0 and det(A()) is invertible in R. Furthermore, let us assume that
r.< m. The modification of the proof in the case r = mn is obvious.

Let an arbitrary vector A = (A, Az, - .+ Am—r)” € ™" be given. Let us denote

m
=bi~ 5" aphe, for i=12...,n
k=7+1

b;

and
b= (by,ba, o, b,)7

11



By.Proposition 1.1 there exists the unique solution y = (y1,y2, -+ )7 to the system

Ay =5

and this solution is given by

75 = det(AL ) (det(A)) 7,

j=1,2,0..,1,

where for a given j =1,2,.., 7, the symbol Agf") denotes the matrix obtained from
the matrix A(") by replacing the j-th'column by the vector bIfr=mn,thenz= yis
a solution of the given system (1.2) and the proof of the assertion of the theorem is
obvious, of course. If 7 <-n then analogously to the classical case (when aij, bi € R)
foranyi=r+1,7+2,...,nand any A € R™7" we obtain

(1) (Z aiy; — E,-) det(4) = 37 ai; det(4}) ~ by det(47))

J=1

= —det(A™ 1),

G=1

where the (r:+ 1) x (7 + 1)-matrix (A’""',l;') is given by

(A1) =

It is ‘easy to verify that if we denote by (A”}F) the (r+1) x

then the following relation is true:

det(A™, ). = det(A™ ).

a2
(553

Qr2

iz

a2

g2

Qry
iz

By the assumption of the theorem we have

det(AT;

Qyr.

A

Qrr

Qir

Qyr

a2,

apr

Qir

b

S

by
by

(r-+1)-matrix given by
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of course. Consequently, since det(A(7) is assumed to be invertible, it follows easily
from the relation (4.1) that the relations

anyr + Gy o ey =bi, 1=1,2,.n
are true. Thus, if we set
zo=y forsi =120 0 and = N, o for =4 L r42,000n,

then the vector = (a:l,:v:z,...,xu)T is the desired solution to the given ‘system
(1.2). u}

Proof 'of Theorem 3.3. Let us assume that the system (1.2) possesses
a solution & = (z1,%2,. .+ &) T € R Let us put again'r = rank(4). If r ='m
or.r. = 0, then the proof of the theorem is obvious. Let us assume 0 <7 < m.
Furthermore, without any loss of generality we can assume that

det(A(M) # 0

holds.
Obviously we have

(4.2) rank(A,b) > 1.

Let us denote y = (21,22, .., 2,07 and b = (b1, b2, -; b,) T Then the relation

m

Ay =T=F— (3 )

i i=150T

is-true.- Analogously to the proof of Theorem 3.2 we could show that for-any i =

741,742, 0, m the determinant of the matrix (A”',F) vanishes. Consequently,
we have rank(4,b) < r wherefrom with respect to.(4.2) our assertion immediately
follows. a

13
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