
Mathematica Bohemica

Aleksander Maliszewski
Averages of quasi-continuous functions

Mathematica Bohemica, Vol. 124 (1999), No. 1, 29–34

Persistent URL: http://dml.cz/dmlcz/125978

Terms of use:
© Institute of Mathematics AS CR, 1999

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/125978
http://dml.cz


124 (1999) MATHEMATICA BOHEMICA No. 1, 29-34 

AVERAGES OF QUASI-CONTINUOUS FUNCTIONS 

ALEKSANDER MALISZEWSKI, Bydgoszcz1 

(Received May 19, 1997) 

Abstract. The goal of this paper is to characterize the family of averages of comparable 
(Darboux) quasi-continuous functions. 
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PRELIMINARIES 

The letters R, Q and N denote the real line, the set of rationals and the set of 
positive integers, respectively. The word function denotes a mapping from R into R. 
We say that functions <p and i> are comparable if either <p < if> on R or ip > ij> on R. 
For each A C R we use the symbols cl A and bd A to denote the closure and the 
boundary of A, respectively. 

Let / be a function. If A C R is nonvoid, then let u>(f,A) be the oscillation of f 
on A, i.e., u(f,A) = sup{|/(s) - f(t)\: x,t € A}. For each x e R let u>(f,x) be the 
oscillation of f at x, i.e., u>(f, x) = lim u>(/, (x — S, x + 5)). The symbol ^ / denotes 
the set of points of continuity of / . 

We say that a function / is quasi-continuous in the sense of Kempisty [4] 
(cliquish [10]) at a point x 6 R if for each e > 0 and each open set U 3 x there is 
a nonvoid open set V C U such that u>(f, {x} UV) < e (u>(f,V) < e respectively). 
We say that / is quasi-continuous (cliquish) if it is quasi-coutinuous (cliquish) at 
each point x G R. Cliquish functions are also known as pointwise discontinuous. 

1 Supported by BW grant, WSP. 



Let I be an interval and / : / -> R. We say that / is Darboux if it has the 
intermediate value property. We say that / is strong Swiqtkowski [6] if whenever 
a,b e I, a < b, and y is a number between f(a) and f(b), there is an x 6 (a, b) n 'tfj 
with f(x) = y. One can easily verify that strong Swiatkowski functions are both 
Darboux and quasi-continuous, and that the converse is not true. 

For brevity, if / is a cliquish function and i € l then we define 

UM(/,~) = lisi fit)-
t-n,tevf 

The symbols LTM(/,a-~) and LIM(f,a.-+) are defined analogously. 

INTRODUCTION 

In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson characterized the averages 
of comparable Darboux functions [1, Theorem 2]. In this paper we solve an analo­
gous problem, namely we characterize the averages of comparable quasi-continuous 
functions. 

A similar problem is to determine a necessary and sufficient condition that for 
a function / there exists a quasi-continuous function i> such that ip > f on R. (The 
answer to this question for Darboux functions can be easily obtained using the proof 
of [1, Theorem 2].) In both cases we ask whether there is a positive function g such 
that both / + g and — / + g are quasi-continuous (the first problem) or such that 
/ + g is quasi-continuous (the second problem). This suggests a similar problem for 
larger classes of functions. Theorem 4.1 contains a solution of this problem for finite 
classes of cliquish functions. Recall that by [5, Example 2], we cannot in general 
allow infinite families in Theorem 4.1. Unlike [7, Theorem 4], we cannot conclude 
in condition (ii) of Theorem 4.1 that g is a Bake one function; actually, we cannot 
even conclude that g is Borel measurable (Corollary 4.5). 

The Baire class one case makes no difficulty if we require only quasi-continuity of 
the sums, but it needs a separate argument, if we require both the Darboux property 
and the quasi-continuity. Notice that by Proposition 4.3, the necessary and sufficient 
condition for Darboux quasi-continuous Baire one functions is essentially stronger. 



AUXILIARY LEMMAS 

Lemma 3.1. If f is a cliquish function, then the mapping x >•+ LIM(/, x) is lower 
semkontinuous, while the mapping x i-+ LIM(f,a;~) belongs to Baire class two. 

P r o o f . Let y e R. For every x £ R, if LIM(f.x) > y, then there exist an 
open interval lx 9 x and a rational qx > y such that / > qx on %f/ n Ix, whence 
UU(f,t) >-qx>y for each t e Ix. Thus the set {x € R: LIM(/, i) > y} is open. 

To prove the other assertion put Ay = {x € R: LIM(/,x~) > y) for each y 6 R. 
Let y € R. If x G Ay, then proceeding as above we can find a closed interval Ix C Ay 

with x e Ix- So Ay n bd-Aj, is at most countable. Hence Ay is an F„ set, while 
{ i 6 B : LIM(f.x-) < ?/} = (J{R \ A,: g < y, g 6 Q} is the difference of an F„ set 
and a countable one. O 

Lemma 3.2. Let / = [a,b] and n 6 N. Suppose that functions fi,.-.,fk are 
cliquish andnvdx.{u>(f\,I),. • • ,u>(fk,I)} < 1. There is a positive Baire one function g 

k 
such that g = 1 on bd 1 , ^ 3 p\ "if/;, and for each i the function (fi + g) \ I is 

i=l 

strong Swiatkowski and 

(/,' + j ) [ / n f l Vfi] D [inf/.[2] + l,max{inf /,-[/] + l,n}}. 

P r o o f . Put T = max{|n - inf fi[I]\- i € { 1 , . . . ,fc}} + 1. Construct a nonnega-
tive continuous function <p such that <p[I] = [0, T] and ip = 0 outside of / . For each i 
define f\(x) = (ft + <p)(x) if a- e / , and let / , be constant on (-oo, a] and [b, oo). By 
[7, Theorem 4], there is a Baire one function g such that, / ; + g is strong Swiatkowski 

k 

for each i (see condition (8) in the proof of [7, Theorem 4]), ^ - D f] 'fff., and \g\ < I 

on R; by its proof, we can conclude that g = 0 on {a,b}. Put g = <p + g + 1. Then 
for each i, since /,- + g is strong Swiatkowski and /,- + iy = / , + </ + 1 on J, we have 

(Ji + g)[ln fQ «/,] 3 (inf(/* + 0)[J],sup(/, +$)[/]) 

o( / , (a) , inf / f[J] + supo[/]) 

3 [inf/,-[/] + l,max{inf /,•[/] + l , n } ] . 

The other requirements are evident. n 



MAIN RESULTS 

Theorem 4.1, Let 3- be one of the following classes of functions: all cliquish 
functions, Lebesgue measurable cliquish functions, cliquish functions in Baire class a 
(a > 1), and suppose / j , . . . ,fu 6 3'• The following are equivalent: 

(i) there is a positive function g such that f-;+g is quasi-continuous for each i; 
k 

(ii) there is a positive function g 6 3- such that Vg D f) ty. and fi + g is quasi-
i=l 

continuous for each i; 
(iii) for each i € l and each i we have LIMYfi.x) < oo. 

P r o o f . The implication (ii) => (i) is obvious. 
(i) => (iii). Let i € R and i 6 { 1 , . . . , fe}. Since /,- + g is quasi-continuous, so by [2] 

(see also [3, Lemma 2]) we obtain 

L M ( / i , i ) <UU(fj + ci,x) ^ (fi + g)(x) < oo. 

k 

(iii) => (ii). Put A = U {x e R : «-"(/;>£) ^ l}. Then A is closed and nowhere 

dense. Find a family {/„: n € N} consisting of nonoverlapping compact intervals, 
such that U Ai = R\-4 and each x f A is an interior point of J„U/m for some n, m e 

nSN 

N. Since each /„ is compact and ui(ft,x) < 1 for each x € J„ and i € { 1 , . . . , fc}, so 
we may assume that w(fi, In) < 1 for each i and n. For each re e N use Lemma 3.2 to 

k 

construct a positive Baire one function gn such that gn = 1 on bd J„, Vgi: D f) '6'f,, 

and for each i the function (/,: + gn) \ In is strong Swiatkowski and 

(*) (/. + 9n) [/» n [I «>.•] ^ M /*II»] + 1. max{inf /i[/„] + 1,n}}. 

Define g(x) = gn(x) ii x 6 I„ for some n 6 N, and 

g(x) = max{max{ LIM(/,;. x) - f{(x): i 6 { 1 , . . . , A:}}, 0} + 1 

if x e A. By Lemma 3.1, each mapping x H- LIMf ft, :r) is Baire one, so g € ,F. 
Fix an i 6 { 1 , . . . ,k}. Clearly /j + g is quasi-continuous outside of A. On the 

other hand, if x e A, then by (*), for each 5 > 0 we have 

(fi + g)[(x-8,x + 6)nVh+g\ D (UM(fux) + l,oo). 

Hence /i + g is quasi-continuous, D 
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Theorem 4.2. Let $• be one of the following classes of functions: all cliquish 
functions, Lebesgue measurable cliquish functions, cliquish functions in Baire class a 
(a ^ 2), and suppose flt..., fk 6 S-. The following are equivalent: 

(i) there is a positive function g such that /,• + g is both Darboux and quasi-
continuous for each i; 

k 
(ii) there is a positive function g £ & such that '6',, D f) %)-, and /; + g is strong 

i=l 
Swiqtkowski for each i; 

(iii) for each x G R and each i we have niax{LJM(/;,;<;~).MM(/i,3;+)} < <x>. 

P r o o f . The proof of the implication (iii) =>• (ii) is a repetition of the argument 
used in Theorem 4.1, and the implication (ii) => (i) is obvious. 

(i)=j>(iii). Let x € R and i e {l,...,k}. Since / ; + <j is both Darboux and 
quasi-continuous, so by [9, Lemma 2] we obtain 

UM(fi,x-) <. UU{fi+9,x~) ^ (fi + <?)(*) < °°-

Similarly LTM(/;, x+) < oo. D 

Proposition 4.3. There is a Baire one function f such that f + g is strong Swiqt-
kowski for some positive function g in Baire class two, but f + g is Darboux for no 
positive Baire one function g. 

P r o o f . Let F be the Cantor ternary set and let .? = {(a„,bn): n ' H] and f 
be disjoint families of components of U \ F such that F = ( c l ( J ^ ) n ( c l ( J . / ) -
Define f(x) = n if x 6 (an,bn) for some n 6 M and f(x) = 0 otherwise. Clearly / 
belongs to Baire class one. 

Let x e R. If x e (an,bn] for some n e H, then LIM(f, x~) = n, otherwise 
LIM(f,x~) = 0. Similarly LIM(f,a:+) < oo. By Theorem 4.2 there is a positive 
Baire two function g such that / + g is strong Swiatkowski. 

On the other hand, by [8, Proposition 6.10], f +g is Darboux for no positive Baire 
one function g. D 

In Proposition 4.4 the symbol c denotes the first ordinal equipollent with R. 

Proposition 4.4. Given a family of positive functions, {g^: f < c}, we can find 
a cliquish function f which fulfils condition (iii) of Theorem 4.2 and such that f + g$ 
is not quasi-continuous for each £ < c. 

P r o o f . Let F be the Cantor ternary set and let, {a;?: J < c} be an enumeration 
of F. Define f(x) = -ge.(x) - 1 if x = x$ for some £ < c, and f(x) = 0 otherwise. 
Clearly / is cliquish, and for each a; 6 R we have UM.(f,x~) = MK(f,x+) = 0. 

Let £ < c. Then (/ + g()(xe) — - 1 and / + ft is positive on a dense open set. 
Thus / + <7{ is not quasi-continuous at Xf. D 

33 



Corollary 4.5. There is a cliquish function f which fulfils condition (iii) of 

Theorem 4.2 and such that f + g is not quasi-continuous for each positive Borel 

measurable function g. 

Theorem 4.6. Let f\,..-,fk be Baire one functions. The following are 

equivalent: 

(i) there is a positive Baire one function g such that fi + g is both Darboux and 

quasi-continuous for each i; 
k 

(ii) fciiere is a positive Baire one function g such that % D f) '€ti and fi + g is 

i.=i 

strong Swiatkowski for each i; 

(iii) there is a Baire one function h such that for each x € R and each i we have 

nrax{UM(fi,x--),UM(fi,x+)} sg h(x). 

P r o o f . The implication (i) => (iii) can be proved similarly as in Theorem 4.2 

(we let h = max{/ i , . . . , fk} + </), and the implication (ii) => (i) is obvious. 

(iii) => (ii). The proof of this implication is a repetition of the argument used in 

Theorem 4.1. The only difference is in the definition of the function g on the set A. 

More precisely, we put 

g(x) - max{max{/i(x) - fi(x): i 6 {1 , . . •,fe}},0} + 1 

if x 6 A. Then clearly g is a Baire one function. • 
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