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DISCRETE SPECTRA CRITERIA FOR SINGULAR
DIFFERENCE OPERATORS
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Abstract. - “We. investigate oscillation and spectral ‘properties (sufficient conditions -for
discreteness and boundedness below of the spectrum). of difference operators

-1 L2
B = S E anpa”y).
W
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1. IN'}'R()I)UC’I'I()N, AUXILIARY ‘RESULTS

Let wy, be a positive real sequence and denote by 72, the Hilbert space of real-
%

valued sequences y = {yi}rw, such-that 3 wpy? < oo, with the scalar product
k=1

o
{y,2):= 5 wryrzr. The-aim of this paper.is to investigate oscillation and spectral

k=1
properties of 2n-order difference operators generated by the expression
Lo
.y y)iin = oo 3 DA Ayrn),
A=0

where ¥ are real and p{" > 0.

Denote

D(B) = {y = {us}icy €6 {m(yen) € 55}
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and consider the operator B: D(B) —+ 2 given by B(y)ktn = m(y)kin.

Let By 1= B* be the adjoint operator of B. The operators B and By are said to
be the mazimal and the minimal operator defined by the difference expression m(y).
We say that the operator B has the property BD.if the spectrum of any self-adjoint
extension of By is discrete and bounded below.

A similar problem in the case w =1 and p,‘iol ,pk” LD, 0 was investigated
in [3].-It-was shown that the operator-B has property BD if and only if

(n=1)
% =

1
im k2D N
Jim KD 37— =0,
=k P;
‘Another paper related to our-investigation is [5], where oscillation and spectral
properties of differential operators generated by the expression

IDC VI TOTEIRY

are. investigated.

Here we use the recent results about oscillation properties of self-adjoint difference
equations m(y) = 0, see [1,2], to establish a discrete analogue of some results of [5].
We also extend the results of [3] concerning one-term difference operators.

Oscillation properties of the even order difference equations

(12) AR A a) =0
A=0

are defined using the concept of the generalized zero point of multiplicity n introduced
by Hartman [6].. By this definition, an integer'm +1 is said to be the generalized zero
point of multiplicity n_of a solution y of (1.2) if 4, # 0, ¥m41 =72 = Ymanoa =0
and (= 1) Ymn 2 0. Equation (1.2).is said to be oscillatory if for any N € N
there ‘exists a nontrivial solution of (1.2)-having at least two different generalized
zeros of multiplicity nin [N, co), in the opposite case it is said to be nonoscillatory.

Proposition 1, - The following statements are equivalent:
(i) B has property BD.
(i) The equation m(y) = Ayk.+n is nonoscillatory for every A € R.
(iii) - For every A € R there exists N'€'N such that

1y, N) =3 5" g (Agnai)? 2 Y Mg
=0 k=N k=N

for.any y € Dp(N) = {y = {wedg2 vy = ,E S N+n—1,3m:yp =0,k >
m}.



Forn =1 the above given Proposition may he found in [4] and a closer examination

of its proof shows that using results of [1,2] it may be formulated in the form given
here.

2. "NONOSCILLATION. CRITERIA
‘We start with a discrete version of a Wirtinger-type inequality.

Lemma 1. . Let My be a positive sequence such that AMy # 0. Then for any
y € Dy (N) have

- MM,
(2.1) E !AMktyi-H P Z !AJ\!? (Ayk)gv
k=N
where
|AM] V3]
by =8 1+
Yu kgrl\’l ML-H 1: (E>N |AM;.— 1|)

Proof.  Suppose that AMy > 0,in the opposite case we proceed in the same
way:

oo

o o
Z [AMly2 = Miy?| 5 = z MidyE = =3 My +vi)Ays
k=N k=N k=N

8

<37 M (il + Jyel) 183l
k=N

8

=57 M| Ay + Z Melye| |Ays]
k=N k=N

1

= ]VIL-MlvH 3 3
g(,;\ o) (Z‘A““‘M )
(ZIAMMM ) <

ot

+

(2 Tamer onr)

k=N



o MiMier 2\ M\
s 7 (Ayx 1) (su k )
- (;;v |A M| (An) o Mo

el 1 & ,
x ( > IAJVHM-H) + ( Z [Ajukbk) ]
L M= g
N MMy, Z)%( My ),‘3
= e (A
(% o o) (oo
I 1
X (Z [AMk!y,cH) T ( i |AMy) [AMy| lf) J
k=N gl [AM;_1]
N i
MMy 2)5( M, )2
< e (A
N <L=ZN 1AM (ew) :gg M
) ,
(B i) (s
-<i§\l| L k>113' |AM;._4] Z‘ k-tlyi
ke 1
MMy 2) ( )5
= e (A
(k:z,\, |AM,| (Lo :BR Mk+1
[ i
o JAM] 3
8 .H (E“p TAMndl AMkiym :

Hence

o 3
< Z |AMkly§+1)

k=N
- : l :
sy 72) o (s, A0 (g Y
< S (AR 1
(; A B o TAM,] e

and thus

S p & MM :
Mk < 2 bl it 1Y 2
E;IA Hyi S 90 2 Taagg (B)-

0O

Using this inequality we can prove the following nonoscillation criterion for a two-

term equation

(2.2) (1) A" (1 A) = Prtian. e >0, P> 0.
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Theorem 1. Suppose that there exist positive sequences M, ,&1), M, ,Ez), oo M, ,f,”)
such that |AM‘£1)}, |AJ\4"£2)!, RN {AMk")| are eventually positive,

; M3 mP
|AMUTD) > e TERR e
[aM7
MO,
[an™)
satisfying
(2.3) 0< lun sup w( ’z/)( & 1/;3\",” =0 < 00,
where
; MY ) [ am? ]
pla)
b sup 14| sup ———Fem
ow (pfv 1Y) (L>lw (INYION |)
If
1 ¢ 1
(2.4) limsup pj < =
koo A/I,gl) :L:i )

then equation (2.2) is nonoscillatory.

Proof. ~According to Proposition 1, we need to prove that there exists N € N
such that the quadratic functional

Hy) = 3" {ra(a"y)® = peviin}
k=N
satisfies H (y) > 0 for every nontrivial y = {yx} € Du(N).

Let € > 0-be such that

hm sup

Z Q_*.g
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Then from (2.4), using Lemma 1 and summation by parts, we have for N sufficientiy

large
oo w o
Do
S k=3 —m( z,,,.) MOAR
k=N k=M j=
(1), 2
<iTE M (A, ]
o
1
<- +5[ Z M ’!yﬂ,,:mmn—m‘; Mgkl
(1) (1) »
_ Vi ( My MH,, o) 12
(Aeinsi)® jan )
Sy A Ay e Z v+
’4"” S (2) 2
g~ M -
] w+55§v ‘A !L I(A?Jk+n 1)
(2] 2
[(\r)l(/(Z) = My )Adk(-#)l( 2yk+ 2)?
bre S jlaml)
/)(1//{2 el
< T VN Z 1AM (A gy 2)?
D &
< ,, ) (A%ye)*
tE o 1AM
: w2 o 3
Since (2.3) holds, J’—N—L < 1.if N-is sufficiently-large, hence
M A[ E ad
Zpuwn < Z At \";” (@) < D7 m(Ary)?
ion AN k=N
Consequently, H(y) > 0if N is sufficientlylarge.
Now consider the equation
(2.5) (1) A (KA ) = pryicin

with pp 2 0 and & ¢ {1,3,...,2n ~ 1}, & < 2n— 1 Le., equation (2.1) where

rk+1) e
(o) Pt::/ gt gy
mERY s ey W e
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Corollary 1. Ir o ¢ {1,320 - 1}, a<2n—1and

: = =) (2n —- 3 —a)*(2n - 1 a)
i (2n-1—c) ; (
(2.6) luén_'sup kf2n-1—a E ;< o

=k
then (2.5) is nonoscillatory.
Proof. Let M{™ = |1 —a|(k—1)"Y, MUY 2 (1 - )23 = al(k = 2)e?
MP =(1~a)2@-a)? . 20~ 1-al(k= )85t =3
Recall that we have T(k + 1) = k['(k) and Ak®) = akle=D hence
wo =10 (i)
Using these formulas one can directly verify that sequences M, ,“ )oj=1,00 n, satisty

the assumptions of Theorem 1 with ry = k%) and A!im «;uf,\];) =4: Consequently (2.4)
V—ro0
reads (2.6).and (2.5) is nonescillatory. by Theorem 1. 3

3. SPECTRAL PROPERTIES OF DIFFERENCE OPERATORS

In the next theorem we investigate ‘spectral properties’ (sufficient conditions for
property BD) of the full-term difference operator m(y) given by (1.1). We use essen-
tially the following idea.  The general operator m(y) is viewed as a “perturbation”
of a certain one term operator

L)h
SN
wy

for some:i € {1,2,...,n} and on the remaining terms we impose. such restrictions
that they-do not interfere with this term.

Theorem 2. Let i€ {1,2,...,n} be fixed and let the positive strictly monotonic
sequences M,El) s M,(f) AN M,E” satisfy

MO M),

MEDMED
jany

AMY > we i AM® > .
5 NV

o AMO >
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Then the opcmwr B has property. BD if the following conditions are satisfied for
somed; 11K

(a) 1)(' >0, Z m < o0, hm M‘ Z-‘-;,-*O

(b) Forj>1, ‘;’ >0.

(c). The'i sequences {

C.
(d). For every 0-<j-< ¢ we have 1/1 )< 00, whexe

“’L—“’AM(MH, 0.5 j < i~ 1} are bounded below by a constant

2
()7
v = sup “(‘T 14 (sup _—51—)
My 1aMl

Proof.  Let g be-areal number. From Lemma 1 we have for any y € D, (N)
andj=1,2,.,i~1

=
Z IAMP AT gy n01)?

Pyl
ENYYE
59 il iy 01 2
3.1 e (A g
@ SO 2 iy A

™
<o ST 1AM (A yay )%

k=N
Now, by conditions (b}, (c)
(3-2)
[ o '
1GN) =0 Y 0hen 2 3 2P (A knns)?
k=N k=N
— G447 A5 =
+O S AME Ay 2 S wgd,

F=0 k=N, k=N,

Using AM(‘) 2w ‘and (3.1) we obtain

i1

Z JAMP A Py i) € H’Z’%) Z (AMON Ay ),
I

k=N k=N

for 1 < j < ¢=1, hence thereis-a D-> 0 (D > u) such.that

CZZ ]AM“*U{(A’yHn ]}‘~MZ WEYF i 2~ DZ |A’U( )I Ay )t

J=0k=N. k=N
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- ~1 NS
We set M;:= (Z 7%) and ¥y = sup MH: [1 +( S“P ,\,,L :l) ] .
1P

By (a), we may choose N that M, N E 7o < 55> L2 V. With this choice of
Pr

N, using summation by parts and Lemma 1 (with the above given My), we obtain

-
Z lAl‘f[‘(c"}!(Ai—lyki‘n—i—H ?
k=N

VaY
M

MENA T i | 4 1A T ] [ i |

£
i
2

oo oo 1
- - jme1 : i
< m 2 (Z (z)> UA Ykmoipr [ 1A TJMu-zf] (AT

k=N M=k Pi
o
£ 2D gpi‘)(ﬁ'ykw—iﬂ)z»

Thus the left hand side of (3.2) is bounded below by.

> 0 (AYgns)? = D ( Z p"’(x'ym-f) 0.

k=N,

Now we turn our: attention to the one term difference operator
n 1 n n
(33) Ui = (=17 A" Awe).
We will use the following statement known as the discrete reciprocity principle, see
[3] Proposition 2. Let ag, 7x >0, A > 0.-Equation (—1)"A™(r  A%) = M0kYin 18

nonoscillatory if and only if the so-called reciprocal equation

(3.4) (—1)"&"‘(;‘:’1:A"yk) =

is nonoscillatory.

Theorem 3. . Let wy = yad {1,820 — 1}, a < 2n — 1.and

oo
oy (Znel-a) X
(3.5) ;}Hl:ok a _S_ 7

Then (3.3) has property BD.
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Proof.. Let A >:0. By Proposition 2 the equation I{y) = Ayk+n is nonoscillatory
if and only if (3.4) is nonoscillatory.

If (3.5) holds, then lim kGn=1=a) S° ap=l . g o (za)
k=oo ; 7

8

X" 1) “fence by

i
-

i
Corollary, equation (3.4} with -- = k(%) is nonoscillatory, i.e.- 1(y) = Ayktn is also

op

nonoscillatory and by Proposition 2, (3.3} has. property BD. O
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