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ROTATIONS OF A-LATTICES 

JIŘÍ KARÁSEK, Brno 

(Received August 18, 1995) 

Summary. In [2], J. Klimes studied rotations of lattices. The aim of the paper is to 
research rotations of the so-called A-lattices introduced in [3] by V. Snasel. 

Keywords: A-A-semilattice, A-V-semilattice, A-lattice, left semirotation, right semirota-
tion, rotation, complete A-lattice 

AMS classification: 06A06, 06A15, 06B99 

The set of all lower (upper) bounds of a subset X of an ordered set A will 
be denoted by L(X)(U(X)). In the case of a finite set X = {a,b,...} we write 
L(a, b,...) (U(a, b,...)) instead of L(X) (U(X)). As usual, under a Galois correspon­
dence we mean a pair (f,g) of mappings between ordered sets P and Q such that / , 
g are antitone and the compositions gf, fg are extensive. 

It is easy to prove the following 

1. Lemma. Let P, Q be ordered sets, f:P-+Q,g:Q->P mappings. Then 
the pair (f, g) is a Galois correspondence between P and Q if and only if we have, 
for each x € P, y e Q, 

f(L(x,g(y)))CU(f(x),y), 

g(L(f(x),y))CU(x,g(y)). 

2. Definition. A below directed ordered set A with a binary operation A is 

called a X-A-semilattice if it satisfies the following three axioms: 

(1) o A 6 6 L(o, 6) for each a, b e A. 

(2) If a < b, then a A b = a for each a, be A. 

(3) A is commutative. 
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A A-A-semilattice is defined dually. An ordered set with two binary operations A 
and V is called a A-lattice if it is a A-A-semilattice and A-V-semilattice. 

3. Theorem. Let K, L be X-A-semilattices, f': K -> L, g: L -t K mappings. 
Then the pair of mappings (/, g) is a Galois correspondence between K and L if and 
only if, for each x e K, y 6 L, 

f(xAg(y))eU(f(x),y), 

9(f(x)Ay)eU(x,g(y)). 

P r o o f . "=>": Let (/ , g) be a Galois correspondence between K and L. Let x e 
K,yeL. By 1, we have f(L(x,g(y))) C U(f(x),y), g(L(f(x),y)) C U(x,g(y)). 
But xAg(y) e L(x,g(y)) by 2(1), so that f(xAg(y)) 6 U(f(x),y). Interchanging 
K and L, f and g, we obtain the second assertion. 

"<=": Let x e K, y e L. We have gf(x) = g(f(x) A f(x)) e U(x,gf(x)), thus 
gf(x) ^ x by 2(2). The mapping gf is therefore extensive. Now, let xi, x2 e K, 
xi ^ x2. Then, by 2(2), xx = x\Agf(x2), for, by extensivity of gf, xi ^ x2 ^ gf(x2). 
This implies f(xx) = f(x1Agf(x2)) e U(f(xt),f(x2)) and f(xr) > f(x2); hence 
the mapping / is antitone. Interchanging K and L, f and g, we obtain extensivity 
of fg and antitony of g. Consequently, the pair (/, g) is a Galois correspondence 
between K and L. D 

4. Definition. Let K, L be A-lattices, f:K^L,g:L->K mappings. The 

pair of mappings (/ , g) is called 

a) a left semirotation between K and L if 

f(x A g(y)) e U(f(x),y) n L(f(x) V y), 

g(f(x)^y) eU(x,g(y)) 

for each x 6 K,y e L, 
b) a right semirotation between K and L if 

f(xAg(y))eU(f(x),y), 

g(f(x) Ay)e U(x,g(y)) n L(z V <?(</)) 

for each x e K,y e L, 
c) a rotation between K and L if it is a left and a right semirotation. 

5. R e m a r k . ( l ) I n the case of K, L being lattices, the notion of a left semiro­
tation, right semirotation, and rotation coincide with the corresponding notions in­
troduced by J. Klimes in [2]. 
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(2) In the definition of a left semirotation, it suffices to require that K is a 

A-A-semilattice; similarly for a right semirotation. 

6. Lemma. Let K, L be A-Jattices, (/, g) a left or right semirotation between 
K and L. Then the pair of mappings (f,g) is a Galois correspondence between K 
and L. 

P r o o f . It follows from 3. G 

7. Lemma. Let K, L be A-Jattices, f:K-*L,g:L-±K mappings. Then the 

following statements are equivalent: 

• (a) (/ , 9) is a left semirotation between K and L. 

(b) (/ , 9) is a Galois correspondence between K and L and, for each x £ K, y £ L, 

f(L(xAg(y)))nL(f(x)Vy)^<l). 

P r o o f , (a) => (b): Let (a) hold. Then (/,g) is a Galois correspondence between 

K and L by 6. For any x £ K, y e L, f(L(xAg(y)))nL(f(x)\/y) + 0, for f{xAg(y)) 

belongs to this intersection by 4. 

(b) =>(a): Let (b) hold. Let x £ K, y e L . As f(L(x Ag(y)))nL(f(x)Vy) ±<b, 

there exists u e L(x A g(y)) such that f(u) e L(f(x) V y). Thus u ^ x A g(y), 

/ (« ) s$ f(x) V y. Regarding the antitony of / we obtain f(x A g(y)) ^ f(u) ^ 

}(x)\/y, so tha.t f(x Ag(y)) e L(f(x)\/y). By 3, we have f(x Ag(y)) eU(f(x),y), 

g(f(x)Ay) e U(x,g(y)). Summarizing, we g e t / (x Ag(y)) £ U(f(x),y)r\L(f(x)\/y), 

g(f(x) Ay) e U(x,g(y)), and (f,g) is a left semirotation between K and L- G 

8. Lemma. Let K, L be A-Jattices, f:K-*L,g:L-*K mappings. Then the 

following statements are equivaJent: 

(a) (f,9) is a right semirotation between K and L. 

(b) (/ , g) is a Galois correspondence between K and L and, for each x e K,y £ L, 

g(L(f(x)Ay))nL(xVg(y))1i$. 

P r o o f . Dual to 7. G 

9. T h e o r e m . Let K, L be A-Jattices, f:K-+L,g:L-*K mappings. Then the 

following statements are equivalent: 

(a) (/ , 9) is a rotation between K and L. 

(b) (/ , g) is a GaJois correspondence between K and L and, for each x e K,V £ L, 

the sets f(L(x A g(y))) n L(f(x) V y) and g(L(f(x) A y)) n L(x V g(y)) are 

nonempty. 

P r o o f . It follows from 7 and 8. G 
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10. R e m a r k . While in the case of lattices, both sets in (b) are singletons under 

the assumptions of 9, in our case any of them may contain more elements, which is 

shown by the following example. 

11. E x a m p l e . Let K, L be A-lattices with isomorphic Hasse diagrams: 

= o 2 V 0,3 = b2 V 63 L 

63 = 64 Л 05 

ai = a 4 Л aъ 

If two elements x, y in K or L have the standard supremum or infimum, we put 

xV y = sup{x,y} or x A y = inf{a;,y}. In the other cases the joins and meets are 

inscribed in the diagrams. Define a mapping f.K^Las follows: 

/(a.) = 67_i for each i e {1,2,3,4,5,6}, 

and put g = f~l. Then (f,g) is a rotation between K and L, but 

g(L(f(a2) A 64)) n L(a2 V g(64)) = {ai,a6}. 

12. N o t a t i o n . Let A, B be sets, f:A-+B, g: B ^r A mappings. Denote 

Cgf = {x&A;x = gf(x)}, 

CJg = {yeB;y = fg(y)}. 

1 3 . L e m m a . Let K, L be X-lattices, (f,g) a left semirotation between K and 

L. Then the set Cfg is an upper subset of the ordered set L such that yi, y 2 e Cfg 

implies fg(yiAy2) e L(yi,y2). 

P r o o f . Let y e Cfg, s e L, y < s. By 6, (f,g) is a Galois correspondence 

between K and L, so that g is antitone and we have g(y) ^ g(s), thus g(s) = 

g(s) A g(y). Using extensivity of fg we obtain f(g(s) A g(y)) = fg(s) ^ s, and, 

moreover, fg(y) = y (for y ~ Cfg). As (f,g) is a left semirotation, s ^ /g(s) = 

f{g(y)A9(s)) ^ fg(y)Vs = yVs = s, hence /g(s) = s and s e C / s . Further, let yi, 

y2 e C / 9 . A s y i > y i A y 2 , y 2 ^ yi Ay2, we get g(yi) ^ 9(yi Ay 2 ), g(y2) ^ g ( y i A y 2 ) . 

In view of the antitony of / , /g(yi A y 2) ^ /g(yi) = !/i, fg(yi A y 2) < /g(y 2 ) = y 2, 

hence /g(yi Ay 2 ) 6 L(y i ,y 2 ) . D 
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14. Lemma. Let K, L be A-iattices, (/ , g) a right semirotation between K and 

L. Then the set Cgf is an upper subset of the ordered set K such that X\, x2 e Cgf 

implies gf(x\ Ax2) e L(x\,x2). 

P r o o f . Dual to 13. D 

15. Theorem. Let K, L be X-lattices, (}, g) a rotation between K and L. Then: 

(1) Cgf is an upper subset of the ordered set K. 

(2) Cfg is an upper subset of the ordered set L. 

(3) x\, x2 e Cgf implies gf(x\ A x2) € L(x\,x2), f(x\ Ax2) e U(f(x\),f(x2)) n 

L(f(x\)Vf(x2)). 

(4) y\, y2 e Cfg implies fg(y\ Ay2) e L(y\,y2), g(y\ A y2) e U(g(y\),g(x2)) n 
L{g(y\)vg(y2))-

(5) / C Cgf is an order antiisomorphism ofCgf onto C;g. 

(6) g \ Cfg is an order antiisomorphism of Cfg onto Cgf. 

P r o o f . (1) follows from 14. 

(2) follows from 13. 

(3) The first part follows from 14. Further, let x\, x2 e Cgf. Then f(x\ Ax2) e 

U(f(x\),f(x2)), for f is antitone. We have f(x\ Ax2) = f(x\Agf(x2)) e L(f(x\)V 

f(x2)) by 4. Hence f(x\ Ax2)e U(f(x\),f(x2)) n L(f(x\) V f(x2)). 

(4) Dual to (3). 

(5) and (6) hold for any Galois correspondence and are well-known. D 

16. Theorem. Let K, L be X-lattices, f:K->L,g:L->K mappings such that 
gf and fg are extensive on K and L, respectively. If, for any x, u € K, y, v e L, 
x A 9(y) ^ " V g(v) is equivalent to f(x) V y > f(u) A v, then (f,g) is a rotation 
between K and L. 

P r o o f . First, we shall show that / is antitone. Let x\, x2 € K, x\ ^x2. Then 
i i A 9 / ( n ) ^x\^x2 < x2V gf(x2), thus f(x\) = f(x\)V f(x\) >f(x2)Af(x2) = 
f(x2), and / is antitone. Interchanging K and L, / and g, we obtain antitony 
of g. Hence the pair (/,<?) is a Galois correspondence between K and L. Hence, 
by 3, f(x A g(y)) e U(f(x),y), g(f(x) Ay) e U(x,g(y)) for any x e K, y e L. 
Further, we have xAg(y) < gf(xAg(y)) = gf(xAg(y)) Vgf(xAg(y)), consequently 
f(x)Vy>fgf(xAg(y))/\f(xAg(y)). But fgf(x A g(y)) > f(x Ag(y)), so that 
fgf(x A g(y)) A f(x A g(y)) = f(x A g(y)), and we get f(x A g(y)) ^ f(x) V y. 
Again, interchanging K and L, / and g, we have g(f(x) Ay) ^ xVg(y). This yields 
f(xAg(y)) eU(f(x),y)nL(f(x)Vy), g(f(x)Ay) e U(x,g(y)) n L(x V g(y)) for 
any x e K,y e L, and (/ , g) is a rotation between K and L. D 
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17. Lemma. Let K, L be X-lattices, f:K-*L,g:L-¥K mappings. If, for any 

x,ae K,y,be L, 
(1) f(x) ^ f(a) A 6 implies i ^ o V g(b), and 

(2) 9(y) >ah g(b) implies y ^ f(a) V b, 
then (f,g) is a rotation between K and L. 

P r o o f . First, we shall show extensivity of the mapping gf• For any o G K, 

we have f(a) > fgf(a) A f(a). By (1), we obtain a ^ gf(a) V 5/(0) = gf(a). 

Now, let us show antitony of the mapping / . Let X\, x2 £ K, X\ ^ x2. As gf 

is extensive, x2 s£ g / (x 2 ) , so that g / (x 2 ) ^ »i A gf(xt). This implies, by (2), 

f(x?) <: f(x\) V / ( x i ) = f(x\). Interchanging K and L, / and g, we get extensivity 

of fg and antitony of g. By 3, we have f(x A g(y)) e U(f(x),y) for any a: e K, 

y e L. As g / is extensive, gf(x A g(j/)) ^ x A g(y), and by (2), f(x A g(y)) ^ 

/ ( x ) V y, i.e. / ( x A g(y)) e L(f(x) V y) for any x e K, y £ L. Summarizing, we 

obtain / ( x A g ( y ) ) € U(f(x),y) nL(f(x) V y) for any x e # , y 6 L. Similarly 

g(f(x)Ay) e U(x,g(y)) n L ( x V g ( y ) ) for any a; e K, y € L and (f,g) is a rotation 

between if and L. D 

18. Lemma. Let K, L be X-lattices, (f,g) a left semirotation between K and L. 

Then, for any ae K,y,be L, g(y) ^ o A g(b) implies y ^ f(a) V 6. 

P r o o f . By 6, (f,g) is a Galois correspondence between K and L. Let a e K, 

y, b e L, g(y) ^ a A g(b). Then y ^ fg(y) ^ f(a A g(6)) ^ f(a) V 6 in view of 

extensivity of fg, antitony of / , and Definition 4. D 

19. Lemma. Let K, L be X-lattices, (f,g) a right semirotation between K and 

L. Then, for any x, a e K,b e L, f(x) ^ f(a) A 6 implies x ^ a V g(b). 

P r o o f . Dual to 18. D 

20 . Theorem . Let K, L be X-lattices, f:K-)L,g:L^>K mappings. Then 

the following statements are equivatent: 

(-) (/>#) i s a rotation between K and L. 

(2) For each x, a e K, y, b e L, f(x) ^ f(a) A 6 implies i ^ o V g(6), and 

g(y) ^ a A g(b) implies y ^ f(a) V h. 

(3) / g and gf are extensive and, for any x, a e K, y, b e L, a ^ x A g(y) implies 

f(a) ^ f(x) V y, and 6 > / (x ) A y impJies g(6) ^ x V g(y). 

(4) f g and gf are extensive and, for any xe K,y e L,f(U(xAg(y))) CL(f(x)Vy), 

9(U(f(x)Ay))CL(xVg(y)). 

P r o o f . (l)<» (2): It follows form 17, 18, and 19. 

(1)=>(3): By 6, ( / ,g) is a Galois correspondence between K and L, thus the 
mappings fg a n d s y a r e extensive. Let O x A g(y). Then, by antitony of / and 



4, f(a) < f(x A g(y)) < /(x) V j / . Interchanging K and L, / and g, we obtain the 
other implication. 

(3)=>-(l): First, let us show antitony of / . Let Xi, x2 6 K, X\ < x2- Then 
x2 ^ xi = xi Agf(xi), thus /(x2) ^ f(xi)Vf(xi) = f(xr). Again, interchanging K 
and L, / and g, we obtain antitony of g. Let x e K,y e L. As x A 9(2/) < x A g(y), 
we have / (x A g(y)) ^ /(x) V ?/. Further, x A g(y) ( i , i A g(y) ^ s(j/), hence 
/ (x Ajft/)) ^ /(x), f(xAg(y)) =s fg(y) > y, so that f(xAg(y)) G U(f(x),y). 
Altogether, / (x A 3(3/)) G U(f(x),y) n £(/(x) V j/). Analogously, s(/(x) A 1/) e 
U(x,g(y)) C\L(x V g(y)) and (/,#) is a rotation between K and L. 

(3)<=K4): Trivial. D 

21. Definition. A bounded ordered set A with two mappings /\ and V of the 
power set 71(A) of A into A is called a complete X-lattice if it satisfies the following 
three conditions: 

(i) If Xi CX2CA, then /\ Xi > /\ X2, \J Xi ^ \f X2. 
(ii) If X C yl has a least element x, then /\X = x. 

(hi) V * 6 tfPQ for each X C A. 

Instead of /\{a, b} we write a A b for any a, b e A; similarly with V-

22. R e m a r k . A complete A-lattice need not be a A-lattice with regard to the 
binary operations A and V. It becomes a A-lattice, if we add the condition 
(iv) If a, b e A, a ^ 6, then a V 6 = 6. 

23. Theorem. Let K, L be complete \-lattices, f: K -» L a mapping satisfying 
the conditions 

/(V X) > A f(X) for each XCK,and 
f(x Ay)^ f(x) V f(y) for each x,y e K. 

Then there exists a unique mapping g: L -> K such that (/,g) is a Galois corre­
spondence between K and L. 

Proof . Define a mapping g: L -» K as follows: 

g(y) = \J{x e K; f(x) > y} for any y G L. 

We have fg(y) = f(\f{x e K; f(x) > y}) > f\{f(x); x G K,f(x) > y} Z 
t\U(y) = y for any y G L, because {/(x); x G K,f(x) > y} Q U(y). Thus fg is 
extensive. Now, let yi,y2e L, yx ^.y2. Then 

{x € K; f(x) ^yi}^{x€K; f(x) > y2} 

and g(yi) = \j{x e K; f(x) > Ul} > \j {x € K; f(x) 2 vA = 5(2/2) and g is 
antitone. Let x G K. Then gf(x) = V {xi G K; f(xi) Z f(x)} > x, because 
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x e {xi 6 K; /(xi) ^ f(x)}, and g/ is extensive. Further, let Xi, x2 e K, xx ^ x2. 
Then xj = x% A x2, consequently /(xi) = /(xi A x2) ^ /(xi) V /(x2) ^ /(x2) and 
/ is antitone. Therefore (f,g) is a Galois correspondence between K and L. Let 
(/,#') be a Galois correspondence between K and L as well. Then, by 3, g'(y) = 
9'{y A f9(y)) ^ s(s/) f°r any y e L. Similarly g(y) ^ g'(y) for any y 6 L. Hence p is 
unique such that (/, g) is a Galois correspondence between K and L. • 

24. Theorem. Let K, L be complete X-lattices, f: K -> L a surjective mapping 
satisfying the conditions 

/(V AT) = A / ( * ) for any * C tf, and 
f(x Ay) = f(x) V /(y) for any x,y e K. 

Then there exists a unique mapping g: L -> K such that (}, g) is a left semirotation 
between K and L; moreover, fg = idi. 

Proof . Define a mapping g: L -» K as follows: 

9(y) = \/ {xeK; f(x) = y} for any y e L. 

We have fg(y) = f(\/{x e K; f(x) = y}) = A{f(x); x e K,f(x) = y) = y. 
Thus fg = idt and fg is extensive. Now, let yi,y2 e L, j/i ^ y2. As j/i = yi A y2 = 
fg(y\)^l9(y2) = f(g(yi) Vg(y2)), we obtain g(yi) V g(y2) e {x e K; f(x) = yi}. 
Hence g(yi) = \f {x e K; f(x) = j/i} Js s(yi) V g(y2) ^ ff(j/2) and g is antitone. 
Let x G K. Then g/(x) = V {*i S if; /(xi) = f(x)} ? x, because i 6 { i , e tf; 
/(xi) = /(x)}, and gf is extensive. Further, let xi, x2 e K, x! ^ x2. Then 
xi = xi A x2, so that /(xi) = f(x! A x2) = /(xi) V /(x2) ^ /(x2) and / is antitone. 
Consequently, (/, g) is a Galois correspondence between K and L. The uniqueness of 
g follows from 23. By 3, we have f(x Ag(y)) e U(f(x),y), g(f(x) Ay) eU(x,g(y)) 
for any x € K,y £ L. It remains to show that }(xAg(y)) ^ /(x) V y for any x e K, 
y e L. But we have /(x A 5(1/)) = /(x) V fg(y) = }(x) V y, and (/,g) is a left 
semirotation between K and L. O 
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