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KILLING'S EQUATIONS IN DIMENSION TWO AND 

SYSTEMS OF FINITE TYPE 

G. THOMPSON, Toledo1 
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Abstract. A PDE system is said to be of finite type if all possible derivatives at some 
order can be solved for in terms lower order derivatives. An algorithm for determining 
whether a system of finite type has solutions is outlined. The results are then applied to 
the problem of characterizing symmetric linear connections in two dimensions that possess 
homogeneous linear and quadratic integrals of motions, that is, solving Killing's equations 
of degree one and two. 
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1. INTRODUCTION 

A system of partial differential equations is said to be of finite type if every possible 
derivative of some order, say r, can be solved for in terms of lower order derivatives 
and independent and dependent variables [1]. In more abstract terms if IT: E —> 
M is a bundle with M the space of "independent variables" and the fibres of TX 
corresponding to the "dependent variables" a system of finite type defines a section 
s: JT~1E -> JrE over JT"1E. In case r is 1 a system of finite type is nothing but a 
"total differential system". Another invariant characterization of a finite type system 
is that its symbol should vanish. 

Many of the PDE systems that occur in the classical problems of differential 
geometry are of finite type or become so after a number of prolongations. For example 
the problem of determining a metric that is compatible with a given symmetric 
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connection, deciding whether a connection admits a parallel field of vectors and 
Killing's equations for the existence of a homogeneous polynomial integral of the 
geodesic flow all fit into the finite type scheme. 

The main purpose of the present article is to investigate two of the problems just 
mentioned for symmetric linear connections in dimension two. Section 3 investigates 
the existence of parallel vector and line element fields. The equations determining 
the existence of a parallel vector field do fit into the finite system scheme but it is 
not necessary to use the theory developed in Section 2. Section 4 is concerned with 
Killing's equations for degree one integrals and Section 5 and 6 for integrals of degree 
two. In Section 2 we outline an algorithm for determining whether a system of finite 
type has a solution. The study of Killing's equations in Section 4, 5 and 6 is of 
interest in its own right and serves as an illustration of the scope and limitations of 
the theory developed in Section 2. 

In Section 3 we use mainly coordinate free language whereas Sections 4 and 5 are 
entirely local in nature, it being understood that all calculations are carried out in a 
coordinate chart (x1) on the two dimensional smooth manifold M. We use R and K 
to denote the Riemann curvature and Ricci tensors associated to a symmetric linear 
connection V on M. 

2. SOLUTIONS TO SYSTEMS OF FINITE TYPE 

Suppose that aA denote the dependent variables of some PDE system and that 
the independent variables are (x1). Suppose also that 1 ^ i ^ n and 1 ^ A ^ m. 
We assume that the PDE system is of finite type and that r = 3 in the definition 
given in Section 1. This latter assumption is purely for the purpose of simplifying 
the exposition and is in no way an essential restriction. 

We write the PDE system in the form 

(2.1) afjk = ftjk, 

where the left hand side of (2.1) represents a third order derivative of aA and the 
function /A. contains at most x1,aA, a? and a%. We assume that there are precisely 
m(nt ) e 1 u a t i ° r ' s of the form (2.1). We could also have some equations of order 
less than three but none of order greater than three. We assume also that the fA

ik 

are smooth i.e. infinitely differentiable functions again for the sake of simplifying the 
exposition. 

Now differentiate (2.1) with respect to xl. We obtain 

(2.2) afm = ft, 



[The summation convention over repeated indices applies in (2.2).] Next form the 
analogous expression for a?-(fc and equate the corresponding right hand sides. Finally 
replace armrll and amnk by their values as given by (2.1). The result is an equation 
which contains at most xl,a%a*., and a^k. 

The next stage of the process consists of choosing a collection of independent 
second order conditions generated by the method described above using all equations 
of the form (2.1). By "independent" we mean functional independence with respect 
to second order derivatives, taking into account that the original PDE system may 
contain some equations of purely second order. It is also possible that the new 
second order conditions could be manipulated so as to obtain first order or even 
zeroth order conditions i.e. relations among the a^'s. Again we add to the PDE 
system only relations which are independent of equations already contained in the 
system. 

At this stage various possibilities may occur. First of all, it is conceivable that the 
"new" equations are algebraically inconsistent with the original system. In this case 
there are no solutions and the algorithm is finished. Secondly it is possible that the 
augmented system is not inconsistent and becomes of finite type of order two. In this 
case we iterate the procedure to try to produce new first or zeroth order conditions. 
Thirdly the new conditions may be satisfied identically or by virtue of equations 
occurring in the original system which we have tacitly assumed is not algebraically 
inconsistent. 

In this latter case the general solution depends on a certain number of arbitrary 
constants. The easiest way to understand the number of such constants is to imagine 
developing a power series solution to the PDE system, which is not to say that the 
theory is restricted only to real analytic systems. The number of arbitrary constants 
is the number of "free" parameters in a Taylor series where some of the first and 
second order derivatives are solved for in terms of derivatives of order no higher than 
themselves using the implicit function theorem if necessary. 

A fourth possibility is that by differentiating some of the zeroth or first order 
conditions, either "new" equations or ones originally there, one can produce a system 
of finite type of order two, one or conceivably zero. In the first case one returns to the 
original procedure to produce new zeroth or first order conditions. In the second case 
one differentiates the first order conditions and uses these second order equations in 
conjunction with second order equations already present to produce yet new first or 
zeroth order conditions. Again in the third case where all the dependent variables 
are determined one still has to look at all the derivatives of first and second order and 
check for consistency with conditions already contained in the system. The general 
principle to bear in mind is that if at some stage we arrive at a system of finite type 
or order less than the original order, we have to explore all possible consequences of 
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this new lower order system and check for consistency with equations already present 
in the system. Once again one returns to the original procedure to try to produce 
new zeroth or first conditions. 

The fifth and final possibility is that none of the remaining four cases occur. 
One then proceeds as follows. One differentiates all the zeroth, first and second 
order equations of the augmented PDE system (containing the "new" equations but 
not the third order equations (2.1)). These differentiated equations are converted 
into second order equations where necessary by means of eq. (2.1). The algorithm 
terminates now if all the differentiated equations are algebraically dependent on the 
zeroth, first and second order equations that were used to determine them. If a 
new condition is produced so that the algorithm does not terminate, it is added to 
the system. Eventually, for any "reasonable" system of PDE (quasi-linear or real 
analytic systems for example) the process will stabilize and produce either no new 
conditions or a system of finite type of order two in which case the procedure begins 
all over again. 

We refer to the step in case five where one differentiates to check consistency of the 
system as the "one more derivative phenomenon" and the reader will see it appear 
in Section 4 and 5. The actual existence of solutions follows from the Frobenius 
theorem. The "one more derivative procedure" amounts to checking the integrability 
conditions of that theorem, case three above being a special case. Also, in practice it 
is not always necessary to eliminate derivatives explicitly; it is convenient sometimes 
to keep derivatives present in equations and view them as purely algebraic quantities. 
An example of this situation occurs following eq. (4.16) in Section 4 where we do not 
eliminate the derivative ai;2-

A further point to note is that a PDE system may not be of finite type as it 
stands. It may require several differentiations to convert it into a system of finite 
type. Killing's equations of degree n determine whether a homogeneous integral of 
degree n in velocities exists for the geodesic flow of a given symmetric connection. 
Killing's equations require n differentiations to appear as a system of finite type 
[2], [3]. 

Finally, as the theory of finite type systems relates to problems in differential 
geometry we are usually dealing there with covariant rather then ordinary partial 
derivatives. It is much more natural to work with these covariant derivatives the 
major difference being that covariant derivatives are commuted by means of Ricci's 
identities. Keeping this structure opens up the possibility of interpreting various al
gebraic conditions geometrically, tensorially or invariantly. For example in Section 5 
a major dichotomy in the theory occurs according as the Ricci tensor K is or is not 
symmetric. 



3. PARALLEL LINE DISTRIBUTIONS AND VECTOR FIELDS 

A vector field X on M is said to be recurrent if when X is covariantly differentiated 
in any direction the result is a multiple of X. A more convenient formulation is that 
there exists a one-form 8 on M such that 

(3.1) VX = 0® X. 

From (3.1) we find the following condition on the curvature R of V, for all vector 
fields Y and Z: 

(3.2) R(Y, Z)X = d8(Y, Z)X. 

If 8 is closed then X may be scaled by a function so as to obtain a parallel vector 
field in the small. Thus if we are addressing the issue of whether M possesses a 
parallel vector field X we see that a first necessary condition is 

(3.3) R(Y,Z)X = Q. 

Since X is assumed to be parallel, differentiating (3.3) in the direction of a vector 
field W gives 

(3.4) VwR(Y, Z)X = 0. 

The process can be iterated to yield a sequence of homogeneous linear conditions 
on X with coefficients that are higher covariant derivatives of R. It may now be 
shown that the necessary and sufficient condition for the existence of parallel X is 
that there should exist a positive integer r such that the conditions at order r + 1 
are consistent with the totality of conditions of order 0 , 1 , . . . , r [4,5], This Theorem 
provides another example of the "one more derivative" phenomenon. 

Let us now specialize to the case where the dimension of M is two. Then it is well 
known that M admits two linearly independent parallel vector fields if and only if 
V is fiat. We shall formulate conditions for M to have a single linearly independent 
vector field. Recall that in dimension two R and the Ricci tensor K are related by 

(3.5) R(X,Y)Z = K(Z,X)Y-K(Z,Y)X 

for all vector fields X, Y and Z. From (3.3) it follows that 

(3.6) K(X,Y) = 0 



where X is parallel and Y is arbitrary. Differentiating (3.6) along the field W gives 

(3.7) (VWK)(X,Y) =0. 

Since we are supposing that M has just one linearly independent vector field it is 
unnecessary to consider further derivatives of (3.7). 

The conditions for the existence of the parallel vector field may be reformulated 
as follows: 

Proposition 3.1. V has a parallel vector field X if and only if X satisfies (3.6) 
and in addition 

(3.8) VK = ^ ® K + 0 ® a ® o 

where tp and 9 are fixed one-forms and a denotes the form K(—,X), 

P r o o f . Remark first of all that the structure equation (3.8) expresses the 
equality of two (0,3) tensors. Clearly (3.8) and (3.6) entail (3.7). Conversely, for any 
vector field W, eq. (3.7) implies that in components the matrix representing VwK 
has a zero first row, where the first coordinate is chosen so as to provide a flowbox 
for X in (3.6). Furthermore, if K is symmetric then so too will be VwK and hence 
they will be dependent. Thus (3.8) will be satisfied with 6 = 0. Otherwise, if K is 
not symmetric, K and a® a must be linearly independent and it must be possible 
to write VK in the form (3.8). D 

We now turn to the situation where V has a single linearly independent parallel 
line field. 

Proposition 3.2. V has a parallel line field if and only if one of the following 
two situations occurs: 

(i) There exists a vector field X on M that satisfies for all vector fields Y on M 

(3.9a) K(X,X) = 0 

and 

(3.9b) (VYK)(X,X) = 0. 

(ii) For all vector fields X and Y on M 

(3.10) K(X, Y) + K(Y,X) = 0 
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P r o o f , (i) We leave the necessity of (i) and (ii) to the reader. Conversely, we 
choose coordinates (ar1) so that gp- is a flow-box for A'. Then (3.9a) gives that A'JI 
is zero. Next, computing (3.9b) locally we find that: 

(3.11) Kil;3 = -T2i}{KK + K2l). 

In view of (ii) we may assume that K12 + K21 is non-zero and so r ^ and rf2 are zero 
by virtue of (3.9b). However, the latter conditions ensure precisely that gfy spans a 
parallel line field. In case (ii) K is skew-symmetric. But in this case according to [6] 
coordinates may be introduced on M relative to which the geodesic equations may 
be written as 

(3.12) x = — cxx
2, y = cyy

2 

where c is some function of x and y from which the conclusion of the Proposition is 
apparent. Indeed both x1 and x2 determine parallel line fields. 

We next consider the case where V has two linearly independent parallel line 
fields. a 

Proposition 3.3. V has two linearly independent parallel line fields if and only 
if there exist linearly independent vector fields X and Y satisfying 

K(X,X) = K(Y,Y)=0 

(VWK)(X,X) = VW(Y,Y) =0. 

P r o o f . Apply proposition 3.2 (i) to both X and Y. We do not claim that X 
and y are coordinate fields. • 

The last step we take in the direction of parallel line fields is as follows: 

Proposition 3.4. V has a parallel vector field and parallel line field if and only 
if there exist vector fields X and Y satisfying 

K(X, X) = K(X, Y) = K(Y,Y) = 0 

and 

VK = e®K 

for some fixed one-form 6. 

P r o o f . Again we omit the necessity. For the sufficiency note that the conditions 
on X and Y imply that X satisfies (3.6) and the recurrence property of K implies 
that X also satisfies (3.7). Thus by scaling, X may be assumed to be parallel. 
Similarly Y satisfies the conditions of Proposition (3.3) and so spans a parallel line 
field. D 
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4. T H E SOLUTION OF KILLING'S EQUATIONS OF DEGREE ONE 

Irrespective of whether or not V is engendered by a metric, one may formulate 
Killing's equations in the form 

(4.1) ai;j + ai;i = 0, 

signifying that Oji" is a first integral of the geodesies of V. 
If we covariantly differentiate (4.1) once, perform Christoffel elimination with the 

help of Ricci's identities we obtain 

(4.2) ai;jk + anRZij = 0. 

It follows that system (3.1) is of finite type and that the most general solution of 
(3.1) for a given V can depend on at most n(J) constants, where M has dimension 
n. 

Now specialize to the case where n is 2 and use eq. (3.5) to rewrite (4.2) as 

(4.3) ai-jk+ajKki-akKji-O. 

Differentiate (4.3) once more, express ai;jki — ai;jik by means of Ricci's identities and 
use (4.3) again to eliminate second order derivatives: 

aj;k(Ku - Ku) + ai;k(Kjt - Ktj) + ai;l(Kkj - Kjk) 

(4.4) + aj;l(Kik - KH) + OiBkji + ajBuk = 0. 

In (4.4) Bkji is defined by 

(4-5) Bkjl - Kkj;t - Kj;k. 

In considering (4.4) the first possibility is that it is satisfied identically, in which 
case 

(4.6) Kij-Kji-0, 

(4.7) Bkji - 0. 

Conditions (4.6) and (4.7) reproduce a well known classical result which is valid 
equally in dimension n: the geodesies of V possess the maximum number (nJx) of 
linearly independent first integrals if and only if the Ricci tensor is symmetric and 
V is projectively flat [5]. 



If (4.4) is not satisfied identically there are two subcases according as (4.6) is or
is not valid. Suppose first of all that (4.6) does not hold. Then (4.4) is a first order 
condition. Note that since (4.4) is skew-symmetric in both i and j and k and /, 
respectively, it constitutes a single condition. Thus (4.1) and (4.4) imply that all 
four first order derivatives are determined uniquely. Again we differentiate (4.4) and 
use (4.3) to eliminate second order derivatives. We write out the result, as well as 
(4.4) itself, but this time the indices assuming the numerical values 1 and 2: 

(4.8) B-mCh - B211a2 - 4Q12a1;2 = 0 

(4.9) [B 2 2 U - 4<312JiT21loi - [Bam - 4Q12Kn]a2 + [ B 2 n - 4Q12;1]a1;2 = 0 

(4.10) [B1222 + 4Q12I<22}ai - [B1122 + 4Q12K12]a2 + [B122 + 4Q12;2]ai;2 = 0 

In the above equations Qij denotes the skew-symmetric part of Kij and we are 
presently assuming that Qij is non-zero. If (4.8) is not satisfied identically but (4.9) 
and (4.10) are each proportional to (4.8) then there exists a one-form 8 that satisfies: 

(4.11) Bijk;l + 4QikKjt = QxBiik 

(4.12) Bijk+4Qik;j=40jQik. 

The existence of the one-form 9 satisfying (4.11) and (4.12) is equivalent to V having 
two linearly independent first integrals. The conditions may also be formulated 
without reference to the auxiliary one-form 8 as 

(4.13) Cijklmn = 0 

where the tensor C is defined by 

(4.14) Cijklmn = 16QikQmnKjt + 4QmnBijk;i - 4Qmn;lBijk - BijkBmtn 

If (4.13) does not hold there are several other possibilities. The first of these 
possibilities is that the 3 x 3 matrix of coefficients formed from (4.10)-(4.12) is non-
singular. In this case there is no non-zero linear first integral associated to V. The 
fact that the matrix of coefficients is singular, an obvious necessary condition for the 
existence of a non-zero linear first integral, may be expressed in tensorial form as 

(4.15) BilfkBPq]T;lsBTm]n + BiqkQln;[mB§lf;s] + QinBijk;[mB^>s] = 0 

where B is defined by 

(4.16) Bijk;l = Bijk;t + QikKj,. 
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A point to be noted about (4.8) is that we could use it in conjunction with (4.1) 
to eliminate all first order derivatives. However, it appears easier to formulate con
ditions on oi ,o 2 and ai ; 2 . Because of (4.1) and (4.3) any derivative of (4.8) will yield 
a similar linear homogeneous expression in these three variables. 

The most difficult case arising from (4.8)-(4.10) is where the matrix of coefficients 
has rank two. In this case there can only be one linearly independent linear first 
integral for V. To see if there is one, we obtain the purely algebraic equation from 
(4.8)-(4.10): 

(4.17) Cjklmnpai - Ciklmnpaj = 0 

Note that (4.17) comprises two conditions. We are assuming that the linear homoge
neous system has rank one. We covariantly differentiate (4.17) and (4.8) to eliminate 
first order derivatives thereby obtaining 

(^QTsCjklmnp;c, + CjklmnpBsqr)a,i - (4QrsCiklninp;q + CiklmnpBsqr)aj 

(4.18) + (CjklmnpBris ~ CiklmnpBTjs)aq = 0. 

In order that there should exist one linearly independent solution to (4.1) it is neces
sary and sufficient that the linear system consisting of (4.17) and (4.18) should have 
rank one. Consequently the (®) = 15 determinants of all possible 2 x 2 matrices 
formed from the coefficients in (4.17) and (4.18) must be zero. 

Let us now return to the case where (4.6) is satisfied. Then (4.4) reduces to a 
purely algebraic equation. If we covariantly differentiate (4.4) then again we obtain 
(4.9) and (4.10) with Q set to zero. Thus the simplified form of (4.15) is again a 
necessary condition for the existence of a linear integral. Notice that it is no longer 
possible to have two linearly independent first integrals. 

Assuming then that (4.15) holds we must differentiate once more to see whether 
an integral indeed exists. In principle there result new linear conditions. However, 
it turns out that the derivative of (4.9) in the g|r-direction yields the same equation 
as (4.10) differentiated in the ^-direct ion, apart from a sign. The two may be 
consolidated into a single more symmetric condition that may be simplified by using 
(4.4) and written as 

(4.19) Bi22;2l0l + £211;12a2 + (£221;1 ~ J3n2;2)Ol;2 = 0. 

The other conditions arise as the "one" derivative of (4.9) and the "two" derivative 
of (4.10). 

We finally arrive at a system of six homogeneous linear equations for the three 
unknowns oi ,a2 and a i i2. The necessary and sufficient condition for the existence of 
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a linear integral for V is that all 20 = (3) of the 3 x 3 determinants of the system 
should be zero. However, it turns out that these 20 conditions can be reduced to 
just two, one of which is (4.15) with Q set to zero! 

To understand the latter remarks note first of all that (4.15) is the only one of the 
20 conditions that involves just first order derivatives of B. After deleting redundant 
equations that are merely linear combinations of others and using (4.15) to eliminate 
other equations algebraically from the list one may reduce to just four conditions 
one of which is (4.15) and the remaining three are: 

(4.20) 

(4.21) 

(4.22) 

(j9n2-Bll2;2 + j5ll2;li?22l)-0221;21 ~ (-Bll2-B221;2 + B22I j5221;l )-Bn2;12 

~ (Í?H2;2-B221;1 — Bll2;l-B221;2)(-Bll2;2 - j5221;l) = 0 

(Í?H2j5ll2;2 + -B221-Bll2;l)-B22l;ll ~ (-Bll2-B221;2 + -B221-B221;l)JB1i2;n 

+ 2JBH2;I(-BI12;1-B221;2 — -Bll2;2-B221;l) = 0 

(JB221-B221;1 + -Bll2-B221;2)-Bn2;22 ~ (j5221-Blll2;l + -Bll2-Bll2;2)-B221;22 

+ 2fl221;2(j5ll2;l"B221;2 — -Bn2;l-B221;l) = 0 

where B'ijkLm is defined as Bijki,n + BijkKim. 
Observe however that if (4.20) holds then (4.21) and (4.22) follow by differentiating 

(4.15). It is in this sense that the twenty conditions can be reduced to just (4.15) 
and (4.20). 

Conditions (4.20)^(4.22) can be written in tensorial form as 
(4.23) 
SKEW(i <r> n, I <-> q) Bhi)Bklm;n[Bp,r;(st) + BJ>(sr-Kt)q} + BAsT-it)Bhij;qBknm;i = 0 

where the round parentheses denote symmetrization over the indices s and t and 
SKEW denotes skew-symmetrization over the indices i and n and I and q, respec
tively. 

The following Theorem summarizes the various possibilities that can occur when 
V possesses a linear first integral. 

Theorem 4 .1 . V possesses the following number of linearly independent inte
grals; 

(i) 3 if and only if Kij is symmetric and Bijk is zero 
(ii) 2 if and only if K^ is not symmetric but Cijuimn is zero 

(iii) 1 if and only if either (a) or (b) occurs where 
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(a) Kij is not symmetric, Cijkimn is not zero but the linear system consisting of 
(4.17) and (4.18) has rank 1 

(b) Kij is symmetric, Bijk is not zero but (4.15) with Qij set to zero and 
also (4.23) hold, where only the component corresponding to (4.20) need 
be checked. 

The above Theorem may be compared with a theorem of Levine [7] whose in
vestigations begin in the same way. Levine introduces many relative tensors whose 
vanishing characterizes connections that have a linear integral of motion. The in
variant meaning of all these relative tensors is, however, not entirely transparent. 

5. T H E SOLUTION OF KILLING'S EQUATIONS OF DEGREE 2 

In this section we enquire whether V has a homogeneous quadratic integral ciijX'x3. 

In this case Killings's equations assume the form 

(5.1) aij-k + aki-j + ajk;i = 0. 

It is possible to show that all third order derivatives of Oy may be solved for explicitly 
in terms of lower order derivatives, thus showing that (5.1) is of finite type. Indeed 
this result holds true when M is of dimension n [2, 3]. We shall give the details 
assuming that n is 2. 

Writing out (5.1) explicitly for n = 2 gives: 

(5.2) a m = 0 

(5.3) ana + 2oi2i = 0 

(5.4) O221 + 20212 = 0 

(5.5) 0222 = 0 

Note that (5.2)-(5.5) comprises four equations for the first derivatives of O;J. In (5.2)-
(5.5) we suppress the semi-colon for the covariant derivative of aij and shall use it 
only when it is absolutely necessary. We shall adhere to this convention for higher 
order derivatives of a and K throughout this section. Covariantly differentiating 
(5.2)-(5.5) once and making use of Ricci's identities gives: 

(5.6) a l u i = a222i = 0 

(5.7) an21 = -2oi2ii = 21f120u - 2Kuar2 

(5.8) 02212 = -2a2i22 = 2Jf21o22 - 2/4'22a12 

(5-9) Oll22 + 201212 = 0 

(5-10) a2211 = 301221 = 0 
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In (5.7) and (5.8) # y denotes the Ricci tensor of V and collectively (5.6)-(5.10) 
comprise eight equations for the nine possible second order derivatives of ay. 

If we differentiate (5.6)-(5.10) again and employ Ricci's identities then all third 
order derivatives of a may be solved for as 

(5.11) a\\\}k = 0 

(5.12) oi1 2n = - 2 a 1 2 m = 2 # m a i i - 2#i 1 ia 1 2 - 2K\\an\ 

(5.13) a11212 = -2o 1 2 1 1 2 - 2/i"i220n - 2/C112a12 + 2A'12an2 - 2# n a 1 2 2 

(5.14) 011221 = -2oi2i2i = 2[A'i22aii - #1 1 2a2 1] + [2A'21 - 8A'12]a12i - 4A"n02i2 

(5.15) OU222 = -20l2!22 = 2[#2220ll + (A"i22 - A'221 - A212)oi2 

+ (A"2ii - #112)022 - (5A'21 - 2A,2)a122 - 4A"22a2ii] 

and all the remaining derivatives maybe obtained by transposing the coordinates. 
Following the general theory for systems of finite type we covariantly differentiate 

each third order derivative and "equate mixed partials" by means of the Ricci identi
ties. In principle we have to construct equations corresponding to oyju[i2] where ijkl 
assume the following values 1111, 1112, 1121, 1122, 1211, 1212 and values obtained 
by transposing coordinates. Of these values one easily checks that the first two do 
not lead to new conditions but are identities. Corresponding to the value 1121 we 
obtain the following condition: 

(5.16) (A"i2 - #21X01121 - 2K12an + 2K\\au) = 0, 

and likewise for the value 1211 

(5.17) (#12 - #21X01211 + K\2an - #11012) = 0. 

Thus by virtue of (5.7), both (5.16) and (5.17) are identities. 
Turning next to the value 1212 we obtain the condition: 

(5.18) 

[#2212 — #1222]au + [#1122 - #2112 + #1221 - #221l]0l2 

-[#1121 - #211l]022 + [7#122 - 5#221 ~ 2#2l2]a121 

- [7# 2 1 i - 5#112 - 2#i2l]oi22 + 8[#i2 - #21)01212 

+2[# 1 2 - #2i][3#220u + (#12 - 3#21))o12 - K\\a22] = 0. 

Essentially the same condition arises from the values 1122 and 2121 and 2211. In fact 
the only asymmetry in (5.18) derives from the term involving 01212- Thus (5.18) is 
the only new integrability condition obtained by equating mixed partial derivatives 
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of order three. Notice also that (5.18) is satisfied identically if (4.6) and (4.7) hold. 
In this case we obtain a special case of a well-known result [3] and the degree two 
Killing tensors consist of sums of symmetrized Killing vectors of degree one. 

Notice that only one second order derivative is undetermined by virtue of (5.6-
5.10). Thus if Kij is not symmetric (5.18) entails that all second order derivatives 
are determined. On the other hand if Kij is symmetric, then (5.18) reduces to a first 
order condition provided that (4.7) is not satisfied. 

Let us proceed by assuming that Kij is symmetric. Then (5.18) reduces, on 
introducing By* defined by (4.5), to 

(5.19) B221;2ail + (B112;2 - B221;l)-12 - Bu2'l-22 + 5Bi220l21 - 5B211a212 = 0. 

According to the general theory we now form the "1" and "2" derivatives of (5.19). 
We find that 

Bll2;12<*22 + [B221;12 + B21122]ai2 — B22l22an + 7B221;2012;1 

(5.20) + [6B211;2 + B221;l]Ol2;2 - 5B122a21;12 = 0 

B22I;2ia1l + [Bu2;21 + Bi22;ll]ai2 - Bll211<Z22 + 7Bii2;l'"21;2 

(5.21) + [6B122U + B112;2]a21;1 - 5B211a12;2i = 0, 

where Bijk;im is defined to be Bijk-,im + bBijkKim. 

Now since we are assuming that (4.7) does not hold, not both of (5.20) and (5.21) 
can be satisfied identically. In fact all second order derivatives of ay- are determined. 
We must now differentiate each of (5.20) and (5.21) in the "1" and "2" directions. 
However, it turns out that the "1" derivative of (5.20) gives the same condition as 
the "2" derivative of (5.21). Thus (5.20) and (5.21) produce only the following three 
new conditions at the next stage: 

— [B221;222 + 5B22ijK222]fflll + [B221122 — Bni2222(B22H - 6Bu22)i^22 

+ 5B221-K22l]-12 + [Bu-2122 + 5B112B221 + (6Bn22 - B221l)I<Tl2]a22 
(5.22) 

+ [9B22122 + 20B22l/<22]ai21 + [2B22112 - 7Bn222 + 15B221#12 

- 5B112.K"22]a122 + 12B2212ai2i2 = 0 

414 



[#221211 + 5#112#221 + (6#2211 ~ #1122)A"l2 + 12#H21 A22)]an 

+ [#112211 - #221111 + 5 £ H 2 A ' H 2 + (#1122 - 6#221l)A"n]ai2 

(5.23) - [#112111 + 5#ii2A"m + 12#ii2iA"u]a22 + [2#n22i - 7#22iii 

+ 15#ii2Ai2 - 5# 2 2 i/ť 1 1 ]a 1 2 i + [9#u2H + 2 0 # U 2 A i i ] a i 2 

+ 12#u2iai2i2 = O 

[#221221 + 7#22i2A"i2 + 5#22iA"2i2 + (6#u 2 2 - #22n)A"22]an 

+ [#112212 - #221121 + 5#n2A"22i — 5#22iA"u2 + 6#n2iA"22 

- 6#2212A"u]ai2 - [#112112 + 7#U2lA'l2 + 5#n2A"l21 

-f 5#n2A"ll]a22 + [#11222 — 8#2212i + 4#u2A"22 

- 16#221 A"12]ai21 — [#22111 - 8#H2i2 + 422lA'il 

- 16#ll2A"l2]ai22 + 6(#H22 - #221l)ai212 = 0. 

(5.24) 

Equations (5.19)-(5.24) constitute a system of six equations for six unknowns. 
Thus a necessary condition for the existence of a quadratic integral is that the asso
ciated 6x6 matrix should be singular. Furthermore it is clear just from (5.19)-(5.21), 
that if (4.7) is not satisfied that the 6 x 6 matrix has rank at least two. However, we 
claim that it actually must have rank of at least three if a nonzero quadratic integral 
is to exist. 

The proof of the preceding remark proceeds as follows. Suppose that the matrix 
of coefficients of the unknowns an, ai2, a22, am> "122, a i 2 i 2 has rank two. Use the 
top three rows and last three columns to write down the determinants of various 
3 x 3 minors. The upper right 3 x 3 block gives a condition on just #y& and # y y 
which is found to be the same as (4.15) with Qy set to zero. From the remaining 
3 x 3 minors one finds the following conditions that are linear in # y M m : in each case 
we have used either the last two columns or top two rows of the upper right 3 x 3 
block in the 6 x 6 matrix in question: 

Accordingly 

(5.25) 

(5.26) 

5#U2#221#H211 + 5(#H 2 ) 2 #U21 2 

+ #112l[#112(#22H - 6#H22) - 7#ll 2 l#22l] = 0 

5#112#221#22121 + 5(#i12)
2#22122 

+ # 2 21 2[#11 2(# 221 — 6#H22) — 7#H21#22l] = 0 



5Bn2(B22i)2Bn2i2 - 5B112(B22i)2B22111 + 5(Bn2)2B221B112n 

(5.27) - 5(Bn2)2B221i322j2i + 5BU 2 (5 2 2 i ) 3 i s : u - 5(Bn2)B22lK22 

+ (B1122 - -B22n)(J3ii2(B22ii - 6Bii22) - 75 1 m(5 2 2 1 ) ) = 0 

35(i?22l)2i?11222 - 10(B22l)2i322121 -45Bjl2i3221 B22122 

(5.28) + 12J32212J322U-&221 - 72B22i2Bn22B22i + 84Bi12(52212)2 

- 35(B22i)
3Ki2 - 35B112(B22ifK22 = 0 

-45(B22l) #11211 - 10i?ll2i?221 J5n212 +35511252215221!! 

(5.29) + 125 u 2 1 5 2 2 1 1 5 2 2 i - 725ii2i51 1 2 252 2 j + 84B112Bn2iB2212 

- 35Bn2(B221)
2Kn - 35Bn2B221K12 = 0 

—40(5221) 5ii2i2 - 5Bn2B22iBi\222 + (5221) 52 2 m 

(5.30) + 40BU2B221B22121 - 5(B22i)
2Kn + 5(5221)2B22 lK22 

+ 6(5ii22 — 522ii)(75u2522i2 + B22i(B22ii — 65n2 2)) = 0. 
In fact (5.25)-(5.30) are not independent because ( 2 5 u 2 - 9522i)95221(5.25) + 
(9(BU 2)2 - 2(5221)2)9522i(5.26) + 635U25221(5.27) + (9(5 U 2 ) 3 - 25 U 2 (5 2 2 i ) 2 ) 
(5.28) + 2 ( (5 U 2 ) 3 - 95U2(5221)2)(5.29) + 14(5U2)2B221(5.30) is zero. 

Now (5.27) and (5.30) together with (4.15) imply (4.20). Similarly (4.21) and 
(4.22) may be obtained. Thus the assumption that the 6 x 6 matrix corresponding 
to equations (5.19)-(5.24) has rank two entails that (4.15) and (4.23) are satisfied. 

Accordingly in this case there must exist a linear integral of motion. The argument 
to show that rank two of the 6 x 6 matrix is impossible will be completed in a new 
section. 

6. CONNECTIONS WITH DEGREE ONE INTEGRALS AGAIN 

We saw above that if the 6 x 6 matrix corresponding to eqs. (5.19-24) has rank two 
and if a quadratic integral exists then necessarily the connection has a linear integral 
that may be identified with a one-form on M. There are two local coordinate normal 
forms for V depending on whether the one-form is of form dy or x dy, namely 

(6.1) x = -(ax2 + 2bxy + cy2), y = 0 

or 

(6.2) x = -(ax2 + 2bxy + cy2), y = - ^ 
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Indeed in both (6.1) and (6.2) the form maybe further simplified by the requirement 
that Kij be symmetric which entails the existence of a function <p such that a and b 
are given by <px and <py respectively. However, the connection in (6.2) is projectively 
related in the sense that 

(6.3) T)k =T)k + 5)Qk+&iQj 

to a connection with the geodesies 

(6.4) x = -(<p-hi(x))xi
2-2<pyiy-cy2, y = 0, 

where g is the closed one-form with components (—5^,0). This projective change 
preserves all properties of first integrals; for example a homogeneous polynomial 
integral of degree n with symmetric tensor a corresponds to an integral with tensor 
ae2np where p is the function whose differential is g. Thus the projective change 
takes the connection determined by (6.2) to one of the type given by (6.1) with <p 
replaced by <p — ]ax. Thus it is sufficient to consider connections of the type given 
by (6.1). Furthermore by a transformation that keeps y fixed we even can assume 
and will that c is transformed to zero in (6.1). Of course the preceding argument is 
a short cut and in no way conforms to the procedure of section 2. However, Killing's 
equations are of considerable interest in their own right and there may be situations 
in practice where one can eliminate some steps in the algorithm. 

Consider then the connection whose geodesies are given by 

(6.5) x = -<pxi
2 - 2<pyiy, y = Q. 

Its Ricci tensor is easily found to be 

(6-6) K i ] = \ l <Pyy + (^ 
One may then check that all the components Bi,2, Bii2j. Bu-2jk, Bu2ju -.•• • a r e zero. 

We shall arrive at a contradiction to the hypothesis that the above-mentioned 
6 x 6 matrix has rank two by assuming that B221 is not zero. For the connection 
corresponding to (6.5) the third column of the 6 x 6 matrix is zero and since B221 is 
non-zero, the third and fifth rows must each be multiples of the first which necessi
tates that 

(6.7) 6 (B22i i ) 2 -5B22iS 2 2 i i i=0 

(6.8) 6B2 2 1 2B2 2 U - 5B22iB22i2i = 0 

(6-9) 7 B 2 2 n B 2 2 m - 5B22iJ522iiii = 0 

(6-10) 7B2212B22111 - 5B22iB221211 = 0 



Now (6.7) and (6.8) imply that the fifth and six columns of the 6 x 6 matrix are 

proportional. If we delete from it the third and fifth rows and third and fifth columns, 

we obtain the following 4 x 4 matrix that will have rank two: 

(6.11) 
Bггiг -Bггi 

~ß 2 2 l 2 2 -Bггuг 

-(Bггi ггг+SBггiKггг) i Bггi iгг+Bггч Kгг+SBi 

Bггv. ггi-BггuKгг -Bггuгi 

7B22i2 5B2 2i 
I K J M 9B22i22+20B22iiÍ22 12B221; 

If we delete the third row and first column from (6.11), set the resulting deter
minant of the 3 x 3 matrix to zero and make use of (6.7) and (6.8) we eventually 
obtain 

(6-12) (B221l)2-B2212 = °-

Hence from (6.8) 

(6.13) B2 2 1 2 1 = 0 

The argument now bifurcates assuming first that B2211 is zero and secondly that 
-B22i2 is zero but B221 is non-zero. In the former case we find that B2 2 1 2 2 1 hence 
•B22ii22 is zero and hence from row three and column two of (6.11) that K221 is zero. 
Considering now (6.5) it follows that .B221 is zero. Hence (6.11) is the zero matrix. 

In the case where #2212 is zero since B22121 IS also zero we write out the covariant 
derivative B2211 in the a;1-direction using (6.5). Since we are now assuming that 
-02211 is non-zero we conclude that F}2 is zero, hence the connection of (6.5) is flat. 
This completes the proof of the fact that the 6 x 6 matrix we are studying cannot 
have rank two. 

We summarize the preceding discussion as follows. 

Theorem 6.1. The dimension of the space of quadratic Killing tensors for a two-

dimensional non-Hat symmetric connection whose Ricci tensor is symmetric is less 

than or equal to three. 

We remark finally that this Theorem strengthens a result of Kalnins and Miller 
[8] in two ways. First of all in [8] it is shown only that four is the upper bound 
for the dimension of the space Killing tensors. Secondly the argumentation given 
here applies to symmetric connections whose Ricci tensor i symmetric. In [8] the 
argument applies to metric tensors and depends on using isothermal coordinates for 
the metric. 



7. EXAMPLES 

In this Section we give some explicit examples which are obtained by using the 
theory of the previous Sections. We omit the details and invite the reader to verify 
the calculations. 

1) Choose A to be a function of y and B and C functions of x. Define the geodesies 
of a connection by 

,„ , AB" + C" , 2A'B' A" . . . 
(7.1) x = - ^ — — ^ - - — - . - . x y , y = 0 . 

Then one may check that Ricci is symmetric and that the quantities y, i—-^—^ + 

By, —-—-jr—— — Cy are three independent integrals. 

2) Choose <p to be a function of x and y subject only to the inequation 

(7.2) (p„+<p2
y)x^0. 

Define the goedesics of a connection by 

(7.3) x = -pxx
2 - 2ipyxy, y = 0. 

Then the unique linear integral is y up to scaling by a constant. 

3) Let ip be a function of x and y such that pxy is non-zero and consider the 
system 

(7.4) x = -<pxx
2, y = <pyy

2. 

Then one may verify that there is at most one linearly independent Killing covector. 
An example of a system with one is given by supposing that <p satisfies 

(7.5) e2<Vy = fx 

in which case e^x + e"ipy is a first integral. 
4) Let s be a function of x and t be a function of y. Consider the two-dimensional 

Lorentzian metric given by 

(7.6) y = (s + t)((dx)2-(dy)2). 

Then the Levi-Civita connection of g possesses the quadratic integral of motion 
(s + t)(tx2 + sij2). This example is essentially the only class of Lorentzian metrics 
that have genuine quadratic integrals besides the metrics themselves. 
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