Elena Wisztová
Hamiltonian connectedness and a matching in powers of connected graphs

Persistent URL: http://dml.cz/dmlcz/126003

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz
HAMILTONIAN CONNECTEDNESS AND A MATCHING IN POWERS OF CONNECTED GRAPHS

ELENA WISZTOVÁ, Žilina

(Received March 24, 1994)

Summary. In this paper the following results are proved:
1. Let P_n be a path with n vertices, where $n \geq 5$ and $n \neq 7, 8$. Let M be a matching in P_n. Then $(P_n)^4 - M$ is hamiltonian-connected.
2. Let G be a connected graph of order $p \geq 5$, and let M be a matching in G. Then $G^5 - M$ is hamiltonian-connected.

Keywords: power of a graph, matching, hamiltonian connectedness

AMS classification: 05C70, 05C45

1. INTRODUCTION

By a graph we mean a finite undirected graph with no loops or multiple edges (a graph in the sense of [1] and [2]). If G is a graph, then we denote by $V(G)$, $E(G)$ and $\delta(G)$ the vertex set, the edge set and the diameter of G, respectively. The number $|V(G)|$ is called the order of G. If $u, v, w \in V(G)$, then the degree of u in G and the distance between v and w in G will be denoted by $\deg(u)$ and $d_G(v, w)$, respectively. If $W \subseteq V(G)$, then we denote by $(W)_G$ the subgraph of G induced by W.

A path connecting vertices u and v in G is referred to as a $u - v$ path in G. We say that a graph G is hamiltonian-connected if for every pair of distinct vertices u and v of G, there exists a hamiltonian $u - v$ path in G.

If a spanning subgraph F of G is a regular graph of degree one, then we say that F is a 1-factor of G. A set $M \subseteq E(G)$ is called a matching in G if no two edges in M are incident with the same vertex. We denote by $M(G)$ and $H(G)$ the set of matchings in G and the set of hamiltonian paths of G, respectively.
For every integer $n \geq 1$, by the n-th power G^n of G we mean the graph with $V(G^n) = V(G)$ and

$$E(G^n) = \{uv; u, v \in V(G) \text{ and } 1 \leq d_G(u, v) \leq n\}.$$

We now mention some results concerning hamiltonian properties of powers of connected graphs.

Theorem A. [5] If G is a nontrivial connected graph, then G^3 is Hamilton-connected.

Theorem B. [6] Let G be a connected graph of order $p \geq 4$ and let M be a matching in G. Then there exists a Hamiltonian cycle C of G^4 such that $E(C) \cap M = \emptyset$.

Theorem C. [3] Let G be a connected graph of order $p \geq 4$. Then for every matching M in G^4 there exists a Hamiltonian cycle C of G^4 such that $E(C) \cap M = \emptyset$.

2. RESULTS

In the present paper we prove the following two theorems:

Theorem 1. Let P_n be a path with n vertices, where $n \geq 5$ and $n \neq 7, 8$. Let M be a matching in P_n. Then $(P_n)^4 - M$ is Hamilton-connected.

Theorem 2. Let G be a connected graph of order $p \geq 5$ and let M be a matching in G. Then $G^5 - M$ is Hamilton-connected.

To prove Theorem 1 we will use two lemmas and five remarks. The following lemma immediately follows from Theorem B.

Lemma 1. Let M be a matching in a complete graph K_n, where $n \geq 5$. Then $K_n - M$ is Hamilton-connected.

The following notation will be useful for us.

Let $n \geq 1$ be an integer, and let w_1, \ldots, w_n be mutually distinct vertices. We denote by A_n the path with

$$V(A_n) = \{w_1, \ldots, w_n\} \quad \text{and} \quad E(A_n) = \{w_iw_{i+1}; 1 \leq i \leq n-1\}.$$
A permutation \((k_1, k_2, \ldots, k_n)\) of the set \(\{1, 2, \ldots, n\}\) with the property that
\(|k_i - k_{i+1}| \leq k\) for every \(i \in \{1, 2, \ldots, n-1\}\) determines the hamiltonian path
\(P \in \mathcal{H}(\mathcal{A}_n^k)\) with \(E(P) = \{w_1, w_2, w_3, \ldots, w_k, \ldots, w_{k-1}, w_k\}\). The path \(P\) is a
\(w_{k+1} - w_{k+1}\) path of \((\mathcal{A}_n)^k\) and also a \(w_{k+1} - w_{k+1}\) path of \((\mathcal{A}_n)^k\).

Finally, we define
\[A_n = w_{n-1}w_n + w_{n-2}w_n\] for \(n \geq 3\).

Remark 1. Let \(M\) be a matching in \(\mathcal{A}_n\). Then there exist hamiltonian \(w_1 - w_3\),
\(w_2 - w_3\) and \(w_2 - w_4\) paths of \((\mathcal{A}_n)^3\) - \(M\).

Let \(T\) be a tree of order \(p = 4\) which is not isomorphic to \(\mathcal{A}_4\). Then \(T\) is isomorphic
to \(\mathcal{A}_4\). For the sake of simplicity we will assume that \(T = \mathcal{A}_4\). Let \(M\) be a matching
in \(T\). For every \(j, j \in \{1, 3, 4\}\), there exists a hamiltonian \(w_2 - w_3\) path of \(T^3 - M\).

Remark 2. Let \(M\) be a matching in \(\mathcal{A}_n\). Clearly, \((\mathcal{A}_n)^4\) is the complete graph.
It follows from Lemma 1 that \((\mathcal{A}_n)^4 - M\) is hamiltonian-connected.

We define the following matchings in \(\mathcal{A}_5\):

\[M_1 = \{w_1w_2, w_3w_4\},\ M_2 = \{w_1w_2, w_4w_5\}, \ M_3 = \{w_2w_3, w_4w_5\}\]

For every matching \(M' \in \mathcal{M}(\mathcal{A}_5)\) there exists \(k \in \{1, 2, 3\}\) such that \(M' \subseteq M_k\).

The permutations

\[
(1, 3, 5, 4, 2), (1, 4, 5, 2, 3), (1, 3, 2, 5, 4), (1, 4, 2, 3, 5), (2, 4, 1, 3, 5), \\
(3, 1, 4, 2, 5), (4, 1, 3, 2, 5) \quad \text{for } k = 1,
\]

\[
(1, 4, 3, 5, 2), (1, 4, 2, 5, 3), (1, 3, 5, 2, 4), (1, 4, 3, 2, 5), (2, 4, 1, 3, 5), \\
(3, 1, 4, 2, 5), (4, 1, 3, 2, 5) \quad \text{for } k = 2,
\]

\[
(1, 4, 3, 5, 2), (1, 4, 2, 5, 3), (1, 3, 5, 2, 4), (1, 3, 4, 2, 5), (2, 1, 4, 3, 5), \\
(3, 4, 1, 2, 5), (4, 2, 1, 3, 5) \quad \text{for } k = 3
\]

of the set \(\{1, 2, 3, 4, 5\}\) determine in \((\mathcal{A}_5)^3 - M_k\) the hamiltonian \(w_1 - w_j\) and \(w_1 - w_i\)
paths, where \(1 \leq i < j \leq 5\).

Hence for every \(i, j, i \in \{1, 2, 3, 4\}\) and \(j \in \{2, 3, 4, 5\}\) there exist hamiltonian
\(w_i - w_5\) and \(w_1 - w_j\) paths of \((\mathcal{A}_5)^3 - M\).

Remark 3. Let \(M\) be a matching in \(\mathcal{A}_n\). The permutations
of the set \{1, \ldots, 6\} determine the hamiltonian \(w_i - w_j\) paths of \((A_6)^4 - M\), where \(1 \leq i < j \leq 6\).

This means that \((A_6)^4 - M\) is hamiltonian-connected.

Remark 4. Let \(M\) be a matching in \(A_7\). The permutations

\[(1,4,6,3,5,2), (1,4,6,2,5,3), (1,3,5,2,6,4), (1,3,6,2,5,4), (3,6,2,4,1,5), (3,5,1,4,2,6), (4,1,3,6,2,5), (4,1,3,5,2,6), (5,2,4,1,3,6)\]

of the set \{1, \ldots, 7\} determine the hamiltonian \(w_i - w_j\) paths of \((A_7)^4 - M\), where \(i \in \{1,2,6,7\}\), \(j \in \{1,2,\ldots,7\}\) and \(i \neq j\).

The permutations

\[(3,6,2,7,5,1,4), (3,6,2,7,4,1,5), (4,1,3,6,2,7,5)\]

of the set \{1, \ldots, 7\} determine the hamiltonian \(w_i - w_j\) paths of \((A_7)^4 - M\), where \(i \in \{1,2,6,7\}\), \(j \in \{1,2,\ldots,7\}\) and \(i \neq j\).

If \(M = \{w_1w_2, w_6w_7\}\), then there exist no hamiltonian \(w_3 - w_4, w_3 - w_5, w_4 - w_5\) paths of \((A_7)^4 - M\).

This means that \((A_7)^5 - M\) is hamiltonian-connected and for every \(j, j \in \{4,6,7,8\}\), there exists a hamiltonian \(w_i - w_j\) path \(P \in \mathcal{H}(A_7)^4 - M\).

Remark 5. Let \(M\) be a matching in \(A_8\).

1. We denote

\[M_1 = E(A_8 - w_1) \cap M.\]

Then \(M_1 \in \mathcal{M}(A_8 - w_1)\). It follows from Remark 4 that for every \(j, j \in \{2,4,5,6,7,8\}\), there exists a hamiltonian \(w_3 - w_j\) path \(P_1 \in \mathcal{H}(A_8 - w_1)^4 - M_1\).

Then

\[P = P_1 + w_1w_3\] is a hamiltonian \(w_3 - w_j\) path of \((A_8)^4 - M_1\).

2. We denote

\[M_1 = E(A_8 - w_2 - w_3) \cap M.\]

Then \(M_1 \in \mathcal{M}(A_8 - w_2 - w_3)\). It follows from Remark 2 that for every \(j, j \in \{4,6,7,8\}\), there exists a hamiltonian \(w_5 - w_j\) path \(P_1 \in \mathcal{H}(A_8 - w_2 - w_3)^4 - M_1\).
We put

$$P = P_1 + w_3 w_3 + w_3 w_1 + w_1 w_2 \quad \text{if} \quad w_1 w_2 \notin M,$$

$$P = P_1 + w_3 w_1 + w_1 w_3 + w_3 w_2 \quad \text{if} \quad w_1 w_2 \in M.$$

Then P is a hamiltonian $w_2 - w_j$ path of $(A_8)^4 - M$.

Further, we put

$$P = P_1 + w_j w_1 + w_1 w_3 + w_3 w_2 \quad \text{if} \quad j = 4 \quad \text{and} \quad w_2 w_3 \notin M,$$

$$P = P_1 + w_j w_1 + w_1 w_3 + w_2 w_2 \quad \text{if} \quad j = 4 \quad \text{and} \quad w_2 w_3 \in M.$$

Then P is a hamiltonian $w_2 - w_3$ path of $(A_8)^4 - M$.

The path

$$P = P_1 + w_3 w_1 + w_1 w_2 + w_2 w_j \quad \text{if} \quad j = 4$$

is a hamiltonian $w_2 - w_3$ path of $(A_8)^4 - M$.

Analogously we can show that for every j, $j \in \{1, 2, \ldots, 6, 8\}$, there exists a hamiltonian $w_i - w_j$ path of $(A_8)^4 - M$.

3. The permutations

$$(3, 8, 6, 2, 7, 5, 1, 4), (3, 8, 6, 2, 7, 4, 1, 5), (3, 8, 5, 2, 7, 4, 1, 6),$$

$$(4, 1, 3, 8, 6, 2, 7, 5), (4, 1, 3, 8, 5, 7, 2, 6), (5, 1, 3, 8, 4, 7, 2, 6)$$

of the set $\{1, \ldots, 8\}$ determine the hamiltonian $w_i - w_j$ paths of $(A_8)^5 - M$, where $3 \leq i < j \leq 6$.

4. If $M = \{w_1 w_2, w_3 w_4, w_5 w_6, w_7 w_8\}$, then for $i, j, 3 \leq i < j \leq 6$ there exists no hamiltonian $w_i - w_j$ path of $(A_8)^6 - M$.

This means that $(A_8)^6 - M$ is hamiltonian-connected and for $i \in \{1, 2, 7, 8\}$, $j \in \{1, 2, \ldots, 8\}$, $i \neq j$ there exists a hamiltonian $w_i - w_j$ path of $(A_8)^7 - M$.

Lemma 2. Let $n \geq 9$, and let M be a matching in A_n. Then $(A_n)^4 - M$ is hamiltonian-connected.

Proof. We distinguish the following cases and subcases:

1. Let $n = 9$. In $(A_9)^4 - M$ we shall construct hamiltonian $w_i - w_j$ paths, where $1 \leq i < j \leq 9$. Denote

$$W_1 = \{w_1, \ldots, w_9\}, \quad W_2 = \{w_9, \ldots, w_1\},$$

$$G_1 = (W_1)_{A_9} \quad \text{and} \quad G_2 = (W_2)_{A_9}.$$
Moreover, denote by M_1 and M_2 the matchings with the properties

$$M_1 \in \mathcal{M}(G_1), \quad M_2 \in \mathcal{M}(G_2) \quad \text{and} \quad M_1 \cup M_2 = M.$$

1.1. $1 \leq i < j \leq 5$ or $5 \leq i < j \leq 9$.

We prove the proposition of Lemma 2 for the case $1 \leq i < j \leq 5$.

If $5 \leq i < j \leq 9$, then the proof is analogous.

It follows from Remark 2 that there exists a hamiltonian $w_i - w_j$ path $P_1 \in \mathcal{H}((G_1)^4 - M_1)$ and a hamiltonian $w_5 - w_6$ path $P_2 \in \mathcal{H}((G_2)^4 - M_2)$. If $w_j = w_6$, then according to Remark 2 there exists a hamiltonian $w_i - w_5$ path $P_1 \in \mathcal{H}((G_1)^4 - M_1)$. This implies that there exists $x \in V(G_1)$ such that $xw_5 \in E(P_1)$ and $x \neq w_1$.

Then $d_{A_4}(x, w_6) \leq 4$. We put

$$P = (P_1 \cup P_2) - xw_5 + xw_6.$$

Then P is a hamiltonian $w_1 - w_j$ path of $(A_9)^4 - M$.

1.2. $1 \leq i < 5$ and $5 < j \leq 9$.

According to Lemma 1 there exists a hamiltonian $w_i - w_5$ path $P_1 \in \mathcal{H}((G_1)^4 - M_1)$ and a hamiltonian $w_5 - w_j$ path $P_2 \in \mathcal{H}((G_2)^4 - M_2)$. We put

$$P = P_1 \cup P_2.$$

Then P is a hamiltonian $w_i - w_j$ path of $(A_9)^4 - M$.

From these two subcases it follows that $(A_9)^4 - M$ is hamiltonian-connected.

2. Let $n > 10$. Assume that for every tree A_m, where $9 \leq m < n$, it is proved that $(A_m)^4 - M^*$ is hamiltonian-connected for any matching $M^* \in \mathcal{M}(A_m)$.

In $(A_n)^4 - M$ we shall construct hamiltonian $w_i - w_j$ paths, where $1 \leq i < j \leq n$.

2.1. $1 \leq i < j \leq 5$ or $(n - 4) \leq i < j \leq n$.

We prove the proposition of Lemma 2 for the case $1 \leq i < j \leq 5$. If $(n - 4) \leq i < j \leq n$, then the proof is analogous.

Denote

$$W_1 = \{w_1, \ldots, w_5\}, \quad W_2 = \{w_5, \ldots, w_n\},$$

$$G_1 = \langle W_1 \rangle_{A_4} \quad \text{and} \quad G_2 = \langle W_2 \rangle_{A_4}.$$

Moreover, denote by M_1 and M_2 the matchings with the properties

$$M_1 \in \mathcal{M}(G_1), \quad M_2 \in \mathcal{M}(G_2) \quad \text{and} \quad M_1 \cup M_2 = M.$$

It follows from the induction hypothesis and Remarks 3, 4, 5 that there exists a hamiltonian $w_5 - w_6$ path $P_2 \in \mathcal{H}((G_2)^4 - M_2)$. It follows from Remark 2 that 310
there exists a hamiltonian $w_i - w_j$ path $P_1 \in \mathcal{H}((G_1)^k - M_1)$ and if $w_j = w_k$, then $P_1 \in \mathcal{H}((G_j)^k - M_1)$. This implies that there exists $x \in V(G_1)$ such that $xw_3 \in E(P_1)$ and $x \neq w_1$. Then $d_{A_n}(x, w_3) \leq 4$ and

$$P = (P_1 \cup P_2) - xw_3 + xw_6$$

is a hamiltonian $w_i - w_j$ path of $(A_n)^k - M$.

2.2. 1 $\leq i \leq 4$ and 6 $\leq j \leq n$ or 5 $\leq i < j \leq n - 4$ or 5 $\leq i \leq n - 5$ and $n - 3 < j \leq n$.

2.2.1. There exists $w_k \in V(A_n)$ with the property

$$i < k < j \quad \text{and} \quad 5 \leq k \leq n - 4.$$

Denote

$$W_1 = \{w_1, \ldots, w_k\}, \quad W_2 = \{w_k, w_{k+1}, \ldots, w_n\},$$

$$G_1 = (W_1)_{A_n} \quad \text{and} \quad G_2 = (W_2)_{A_n}.$$

Further, denote by M_1 and M_2 the matchings with the properties

$$M_1 \in \mathcal{M}(G_1), \quad M_2 \in \mathcal{M}(G_2) \quad \text{and} \quad M_1 \cup M_2 = M.$$

According to the induction hypothesis and Remarks 2, 3, 4, 5 there exists a hamiltonian $w_i - w_j$ path $P_1 \in \mathcal{H}((G_1)^k - M_1)$ and a hamiltonian $w_k - w_j$ path $P_2 \in \mathcal{H}((G_2)^k - M_2)$. Then

$$P = P_1 \cup P_2$$

is a hamiltonian $w_i - w_j$ path of $(A_n)^k - M$.

2.2.2. There exists no $w_k \in V(A_n)$ with the property (1). Then $w_iw_j \in E(A_n)$ and $5 \leq i < j \leq n - 4$. Hence $w_j = w_{i+1}$.

We denote by G_1 or G_2 the component of $A_n - w_iw_{i+1}$ which contains w_i or w_{i+1}, respectively. Further, we denote by M_1 and M_2 the matchings with the properties

$$M_1 \in \mathcal{M}(G_1), \quad M_2 \in \mathcal{M}(G_2), \quad M_1 = M \cap E(G_1) \quad \text{and} \quad M_2 = M \cap E(G_2).$$

It follows from the induction hypothesis and Remarks 2, 3, 4, 5 that there exists a hamiltonian $w_{i-1} - w_i$ path $P_1 \in \mathcal{H}((G_1)^k - M_1)$ and a hamiltonian $w_{i+1} - w_{i+2}$ path $P_2 \in \mathcal{H}((G_2)^k - M_2)$. Then

$$P = P_1 \cup P_2 + w_{i+1}w_{i+2}$$

is a hamiltonian $w_i - w_j$ path of $(A_n)^k - M$.

From this subcases it follows that $(A_n)^k - M$ is hamiltonian-connected. Thus the proof of Lemma 2 is complete.

\[\square\]

311
Theorem 1 immediately follows from Lemma 2 and Remarks 2 and 3.

To prove Theorem 2 we will use the previous lemmas and remarks as well as the two following lemmas.

Lemma 3. Let T be a tree of order $p \geq 5$ and let M be a matching in T. Then $T^5 - M$ is hamiltonian-connected.

Proof. The cases when $p \in \{5,6,7\}$ follows immediately from Lemma 1 and Remark 4.

Let $p = 8$. If T is isomorphic to A_8, or $\delta(T) \leq 5$, then the proposition of Lemma 3 follows from Remark 5 and Lemma 1.

Denote

$T_1 = A_8,$

$T_2 = A_8 - w_2w_9 + w_5w_8,$

$T_3 = A_8 - w_7w_9 + w_4w_8,$

$T = \{T_1, T_2, T_3\}.$

If T is not isomorphic to A_8 and $\delta(T) > 5$, then T is isomorphic to one of the elements of T. For the sake of simplicity we shall assume that $T \in T$. Further, we denote

$M_0 = E(T - w_8) \cap M.$

Then $T - w_8 = A_7$ and $M_0 \in M(A_7)$. It follows from Remark 4 that there exists a hamiltonian $w_i - w_j$ path $P_0 \in H((A_7)^5 - M_0)$, where $i, j \in \{1,\ldots,7\}, i \neq j$. Since $|E(P_0)| = 6$, there exist integers $k, l \in \{1,\ldots,7\}, k \neq l$, such that $w_kw_l \in E(P_0)$ and

$k, l \notin \{1,6\} \text{ if } T = T_1,$

$k, l \neq 5 \text{ if } T = T_2,$

$k, l \neq 4 \text{ if } T = T_3.$

Then

$P = P_0 - w_kw_l + w_kw_9 + w_lw_8$ is a hamiltonian $w_i - w_j$ path of $T^5 - M$, where $i, j \in \{1,\ldots,7\},$

$P = P_0 + w_jw_9$ is a hamiltonian $w_i - w_j$ path of $T^5 - M$ if $j = 3$ and $i \in \{1,2,4,5,6,7\},$

$P = P_0 + w_kw_9$ is a hamiltonian $w_j - w_k$ path of $T^5 - M$ if $i = 2$ and $j = 3$.

This means that for $p = 8$ the statement of Lemma 3 is correct.

Let $p \geq 9$. Assume that for every tree T^* of order p^*, where $5 \leq p^* < p$, it is proved that $(T^*)^5 - M^*$ is hamiltonian-connected for any matching $M^* \in M(T^*)$.

312
If T is isomorphic to A_p, or if $\delta(T) \leq 5$, then the result follows from Lemma 2 or Lemma 1. We shall assume that T is not isomorphic to A_p and $\delta(T) > 5$.

Let x and y be arbitrary distinct vertices of T. We shall construct a hamiltonian $x - y$ path P of $T^5 - M$.

We denote by t_x, t_y the vertices of T with the following properties:

1. $t_x, t_y \in E(T)$,
2. t_x, t_y belong to the $x - y$ path in T,
3. $0 \leq d_T(t_x, x) < d_T(t_y, x)$.

Then $T - t_x t_y$ has two components. We denote by T_x or T_y the component of $T - t_x t_y$ which contains x, t_x or y, t_y, respectively. Further, we denote by M_x and M_y the matching with the properties

$$M_x \in \mathcal{M}(T_x), \quad M_y \in \mathcal{M}(T_y), \quad M_x = M \cap E(T_x) \quad \text{and} \quad M_y = M \cap E(T_y).$$

We define graphs T_1 and T_2:

$$T_1 = T_x \quad \text{and} \quad V(T_2) = V(T_y) \cup \{t_x\}, \quad E(T_2) = E(T_y) \cup \{t_x t_y\}.$$

Finally, we denote by M_1 and M_2 the matchings with the properties

$$M_1 \in \mathcal{M}(T_1), \quad M_2 \in \mathcal{M}(T_2), \quad M_1 = M_x \quad \text{and} \quad M_2 = M \cap E(T_2).$$

We distinguish the following cases and subcases:

1. There exist $t_x, t_y \in V(T)$ with the properties (1)–(3) such that $|V(T_x)| \geq 5$ and $|V(T_y)| \geq 5$. Then $|V(T_1)| \geq 5$ and $|V(T_2)| \geq 5$.

 1.1. Let $t_x \neq x$. According to the induction hypothesis there exists a hamiltonian $x - t_x$ path $P_1 \in \mathcal{H}((T_x)^5 - M_1)$ and a hamiltonian $t_x - y$ path $P_2 \in \mathcal{H}((T_y)^5 - M_2)$. We put

 $$P = P_1 \cup P_2.$$

 1.2. Let $t_x = x$. We denote by x_1 the vertex of T_x with the property that $xx_1 \in E(T_x)$. If $t_y = y$, then we denote by y_1 the vertex of T_y with the property that $yy_1 \in E(T_y)$. Then $d_T(x_1, t_x) = 2$ and $d_T(x_1, y_1) = 3$. It follows from the induction hypothesis that there exists a hamiltonian $x - x_1$ path $P_1 \in \mathcal{H}((T_x)^5 - M_1)$ and a hamiltonian path $P_2 \in \mathcal{H}((T_y)^5 - M_2)$. Let us suppose that

 $$P_1 \text{ is a hamiltonian } t_x - y \text{ path if } t_x \neq y \quad \text{and} \quad P_2 \text{ is a hamiltonian } y_1 - y \text{ path if } t_x = y.$$
We put

\[P = P_1 \cup P_2 + x_1 t_y \quad \text{if} \quad t_y \neq y \]
\[P = P_1 \cup P_2 + x_1 y_1 \quad \text{if} \quad t_y = y. \]

2. For every two vertices \(t_x, t_y \) with the properties (1)-(3) we have \(|V(T_x)| < 5 \) or \(|V(T_y)| < 5 \). We put \(t_y = y \). Without loss of generality we assume that \(|V(T_y)| < 5 \).

2.1. Let \(|V(T_y)| = 1 \). Then \(V(T_y) = \{y\} \) and \(|V(T_x)| \geq 3 \). There exists \(u \in V(T_x) \) such that \(u \neq x, u \neq t_y \) and \(1 \leq d_T(u, t_y) < 2 \). Then \(2 \leq d_T(u, y) \leq 3 \). It follows from the induction hypothesis that there exists a hamiltonian \(x - u \) path \(P_1 \in \mathcal{H}(T_x)^5 - M_x \). We put

\[P = P_1 + uy. \]

2.2. Let \(|V(T_y)| = 4 \). According to Remark 1 there exists a hamiltonian \(y - v \) path \(P_2 \in \mathcal{H}(T_y)^5 - M_y \), where \(v \in V(T_y) \) and

\[d_T(v, y) = 1 \quad \text{if} \quad T_y \text{ is not isomorphic to } A_4, \]
\[d_T(v, y) = 2 \quad \text{if} \quad T_y \text{ is isomorphic to } A_4. \]

Since \(|V(T_y)| = 4 \) and \(p \geq 9 \), we have \(|V(T_x)| \geq 5 \). We denote by \(u \) the vertex with the properties
\[u \in V(T_x), \quad u \neq x \quad \text{and} \quad d_T(u, y) \leq 2. \]
Then \(d_T(u, v) \leq 4 \). It follows from the induction hypothesis that there exists a hamiltonian \(x - u \) path \(P_1 \in \mathcal{H}(T_x)^5 - M_x \). We put

\[P = P_1 + vu. \]

2.3. Let \(1 < |V(T_y)| < 4 \). Let \(S_1, \ldots, S_m \) be all components of \(T - t_x \) which are different from \(T_y \). We denote by \(L_1, \ldots, L_m \) the matchings in \(S_1, \ldots, S_m \) such that \(L_j = M \cap E(S_j) \) for \(j = 1, \ldots, m \).

2.3.1. There exists \(i, i \in \{1, \ldots, m\} \) such that \(|V(S_i)| \geq 5 \). Then there exist \(u_1, u_2 \in V(S_i) \) such that \(u_1 \neq u_2 \neq x, d_T(u_1, t_y) \leq 2, 1 < d_T(u_2, t_y) \leq 3 \), and if \(x \notin V(S_i) \), then \(d_T(u_1, t_y) = 1 \). According to the induction hypothesis there exists a hamiltonian path \(P_1 \in \mathcal{H}(S_i)^5 - L_i \). Let us suppose that

\[P_1 \text{ is a hamiltonian } u_1 - u_2 \text{ path if } x \notin V(S_i), \]
\[P_1 \text{ is a hamiltonian } u_2 - x \text{ path if } x \in V(S_i). \]

Denote

\[T_0 = T - V(S_i). \]
Then T_0 is a tree, $|V(T_0)| \geq 3$ and $y \in V(T_0)$. Further we denote by M_0 the matching in T_0 such that $M_0 = M \cap E(T_0)$.

2.3.1.1. Let $|V(T_0)| = 3$. Then $m = i = 1$ and there exists $v \in V(T_0)$ such that $V(T_0) = \{i, y, v\}$ and $E(T_0) = \{i y, v y\}$. If $x \notin V(S_i)$, then $x = t_x$. We put

$P = P_1 + u_1 v + v x + u_2 y$ if $x \notin V(S_i)$,
$P = P_1 + u_2 v + v x + t_x y$ if $x \in V(S_i)$ and $t_x y \notin M$,
$P = P_1 + u_2 t_x + t_x v + v y$ if $x \in V(S_i)$ and $t_x y \in M$.

2.3.1.2. Let $|V(T_0)| = 4$. Assume that $x \in V(S_i)$. Then according to Remark 1 there exists a hamiltonian $y - v$ path $P_2 \in \mathcal{H}((T_0)^3 - M_0)$, where $v \in V(T_0)$, $v \neq y$ and

$$d_T(t_x, v) = 2 \text{ if } \deg_T t_x = 1,$$
$$d_T(t_x, v) = 1 \text{ if } \deg_T t_x = 2.$$

Then $d_T(v, u_2) \leq 5$. We put

$P = P_1 \cup P_2 + u_2 v$.

Let $x \notin V(S_i)$. There exist $v_1, v_2 \in V(T_0)$ such that $v_1 \neq v_2 \neq t_x \neq y$. Then $V(T_0) = \{t_x, y, v_1, v_2\}$. We put

$P = P_1 + u_1 v_2 + v_2 y + u_3 v_1 + v_1 x$ if $x = t_x$ and $E(T_0) = \{x y, y v_1, v_1 v_2\}$,
$P = P_1 + u_1 v_2 + v_2 y + v_1 x + u_2 y$ if $x = t_x$ and $E(T_0) = \{x y, y v_1, v_2 x\}$

or if $x = t_x$ and $E(T_0) = \{x y, y v_1, x v_2\}$,
$P = P_1 + u_3 y + u_2 t_x + t_x v_1 + v_1 x$ if $x = v_2$ and $E(T_0) = \{x t_x, t_x y, v_2 x\}$.

2.3.1.3. Let $|V(T_0)| \geq 5$. Since $|V(T_0)| < 5$ or $|V(T_y)| < 5$ for every two vertices t_x, t_y of T with the properties (1)–(3), we have $x \notin V(S_i)$. It follows from the induction hypothesis that there exists a hamiltonian $x - y$ path $P_2 \in \mathcal{H}((T_0)^3 - M_0)$. Since $|V(T_0)| \geq 4$, there exists $v \in V(T_0)$ such that $v y \in E(P_2)$ and $d_T(v, t_x) \leq 4$. We put

$P = P_1 \cup P_2 - v y + u_1 v + u_2 y$ if $v \neq t_x$,
$P = P_1 \cup P_2 - v y + u_2 v + u_1 y$ if $v = t_x$.

2.3.2. For every $i, i \in \{1, \ldots, m\}$ we have $|V(S_i)| < 5$. Denote

$$T_0 = T - V(T_y), \quad M_0 = M \cap E(T_0).$$

315
Then $|V(T_0)| > 5$, $M_0 \in \mathcal{M}(T_0)$, $x \in V(T_0)$ and for every $i, i \in \{1, \ldots, m\}$, we have $V(S_i) \subset V(T_0)$. There exists $v \in V(T_0)$ such that $v \neq x$ and $1 \leq d_T(v, t_x) \leq 2$. It follows from the induction hypothesis that there exists a hamiltonian $x - v$ path $P_0 \in H((T_0)^5 - M_0)$. Since $|V(T_0)| \in \{2, 3\}$ and $\delta(T) > 5$, there exists $k, k \in \{1, \ldots, m\}$, such that S_k is isomorphic to one of the elements of A, where

$$A = \{A_2, A_3, A_4\}.$$

For the sake of simplicity we shall assume that $S_k \in A$. Then

$$V(S_k) = \{w_1, \ldots, w_n\}, \text{ where } n \in \{3, 4\},$$

$$d_T(w_j, t_x) = j \quad \text{for every } j, j \in \{1, 2, 3\},$$

$$d_T(w_4, t_x) = 4 \quad \text{if } S_k = A_4 \text{ and } d_T(w_4, t_x) = 3 \quad \text{if } S_k = A_4.$$

Let a_2 and a_3 be distinct vertices of T_0 such that $a_2w_2, a_3w_3 \in E(P_0)$. If $S_k = A_4$, then there exists $h, h \in \{2, 3\}$, such that $a_h \neq w_4$. Then $d_T(a_h, t_x) \leq 3$. The component T_y is isomorphic to one of the elements of B, where

$$B = \{A_2, A_3, A_3\}.$$

We denote the vertices of T_y by $t_1, \ldots, t_n \ (n \in \{2, 3\})$ so that

$$d_T(t_j, t_x) = j \quad \text{if } j \in \{1, 2\},$$

$$d_T(t_3, t_x) = 3 \quad \text{if } T_y \text{ is isomorphic to } A_2,$$

$$d_T(t_3, t_x) = 2 \quad \text{if } T_y \text{ is isomorphic to } A_3.$$

Then $t_1 = y, d_T(a_h, t_2) \leq 5, d_T(w_2, t_2) = 4, d_T(w_3, t_2) = 5$ and $d_T(v, t_2) \leq 5$. We put

$$P = P_0 - a_hw_n + vy + a_h t_2 + w_h t_2 \quad \text{if } T_y \text{ is isomorphic to } A_2,$$

$$P = P_0 - a_hw_n + v3y + a_h t_2 + w_h t_2 \quad \text{if } T_y \text{ is isomorphic to } A_3,$$

$$P = P_0 - a_hw_n + vy + a_h t_2 + t_2t_3 + t_3w_n \quad \text{if } T_y \text{ is isomorphic to } A_3.$$

We can see that in each subcase P is the hamiltonian $x - y$ path of $T^5 - M$. Thus the proof of Lemma 3 is complete.

Lemma 4. ([4] p.63) Let G be a connected graph and let L be a subgraph of G which contains no cycle. Then there exists a spanning tree T of G such that L is a subgraph of T.

Proof of Theorem 2. Let G be a graph satisfying the conditions of Theorem 2 and let M be an arbitrary matching in G. As follows from Lemma 4, there exists a spanning tree T of G such that M is a matching in T. According to Lemma 3, $T^5 - M$ is hamiltonian-connected. Thus $G^5 - M$ is also hamiltonian-connected. □
Remark 6. Let $n \geq 1$ be an integer, and let G be the tree of order $p = 4n + 4$ which is given in Fig. 1. Let

$$M = \{u_{i1}u_{i2}, u_{i3}u_{i4} ; 1 \leq i \leq n\} \cup \{xy, w_3w_4\}$$

be a matching in G. Then there exists no hamiltonian $x - y$ path of $G^4 - M$.

This means that the value 5 of the power in Theorem 2 is the best possible.

References

Author's address: Elena Wisztová, Vysoká škola dopravy a spojov, Hurbanova 15, 010 26 Žilina, Slovakia.