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N O T E ON SIMULTANEOUS SOLUTIONS 

OF A SYSTEM OF SCHRODER'S EQUATIONS 

JAN ČERMÁK, Brno 

(Received November 22, 1993) 

Summary. We investigate simultaneous solutions of a system of Schroder's functional 
equations. Under certain assumptions these solutions are used in transformations of 
functional-differential equations the initial set of which consists of the initial point only. 

Keywords: functional equation, simultaneous solution, differential equation with delays, 
global transformation 

AMS classification: 39B05, 39B62; 34K05 

The aim of this paper is to find a simultaneous solution <p of a system of Schroder's 
equations 

, , . f{f{x)) = Xf<p{x) ' 
(1) on /, 

<p{g{x)) = Xg<p{x) 

where Xf, Xg $ {-1,0,1} are constants and /, g are given continuous bijections 
mapping an interval / with endpoints a, b onto itself. For reasons that will be 
mentioned later we wish to receive some reasonable conditions on / and g which 
guarantee the existence of an n-times differentiable solution (n > 1) with a positive 
derivative on /. 

Throughout this paper suppose that fn means the n-th iterate of a function / for 
positive integers n, f° is the identity function and / " is the (-n)-th iterate of the 
inverse function f~1 for negative integers n. Further, we say that f{x) — 0{v{x)} 

as x —> x*, x* e I if there are positive constants K, e such that 

\f{x)\^K\v{x)\ for x e {x* -e,x*+e), 

where e is sufficiently small. 
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Finally, define R+ = [0,co) and R~ = ( -00,0] . 

Proposi t ion 1. Let system (1) has a solution with <p'(x) > 0 on I. Then each of 

the functions f, g has at most one fixed point in I which is necessarily the same for 

both the functions f and g. 

P r o o f . Suppose on the contrary that there exist fixed points p, q e I, p ^ q oi 

/ and g, respectively. Then <p(p) = <p(q) = 0 which contradicts <p'(x) > 0 on I. D 

R e m a r k 1. If bijections / , g have no fixed point in / then they are necessarily 

increasing ones. Substituting then a(x) = \og<p(x), we convert system (1) into a 

system of Abel's equations 

a(f(x))=a(x)+cs 
(2) on / , 

a(g(x)) =a(x)+cg 

where cs = log A/, cg = logAg are nonzero constants. Since simultaneous solutions 

of system (2) were studied and fully described in [5] and [9], in the sequel we deal 

with the case when the functions / , g have a unique (necessarily the same) fixed 

point in I. 

The conditions which we must impose on / or g to ensure the existence of a solution 

<p e Cn(I), <p'(x) > 0 on I are known provided a single equation from system (1) is 

considered (see [4] or [1]). To recapitulate them we introduce the set 

Vp
n(I) = {/ e Cn(I); / ( / ) = I, f(p) = p, f(x) +xioxx+p, 

f'(x) ¥= 0, \f'(P)\ ^ 1, f'(x) = f'(p) + 0{(x - p)s} as x -> p, S > 0}, 

where n >. 1 and p £ I. Note that the asymptotic property 

/ ' ( * ) = / ' ( ? ) + 0{(x - p)s} asx^p 

is satisfied for any / € Cn(I), n >. 2. 

Then we have 

Theorem 1. Let f <= Vn(I) for some n > 1. Then Schroder's equation 

f(f(x)) = Xf<p(x) on I, 



where \f = f'(p), aas a unique one parameter family ofn-times differentiate solu­

tions, with a positive (negative) derivative on I given by the formula 

<p(x)=c\im fk(*i~P on I, 
A-+700 \jk 

where 7 = sgn(log \f>\p<j\) and c is any positive (negative, respectively) real constant. 

Moreover, if p = a (p ~ b, p e (a,b)) then <p is a bijection of I onto R+ (01 ' , ~, 

respectively). 

P r o o f . The proof was given in [1]. • 

Now consider a function / e Vn(I) for some n >. 1 and let <p be a Cn-

diffeomorphism on / such that 

f(x) = <p-\\;<p(x)) on I, 

where A/ = f'(p). Then denote by {/"} or {fu} the family of functions defined 

respectively by the relation 

fu(x) = <p-1(\\f\
u<p(x)) on I, 

or 

fu(x)=<p~1H\f\u<p(x)) on I, 

where u e R. Note that for an increasing / the class {/"} is identical with the 

continuous iteration group fulfilling f+(x) = x and f+(x) = f(x) for x e I. The 

same is not true for the class { /"}; in fact we have fu°fv_ = / " + " . Since the 

classes {/+}, {/"} involve functions generated by the same bijection <p, we put 

{/(v)} = {/?}u{/«}. 

Propos i t ion 2. Consider system (1), where f, g e Vn(I) for some n>-\. Then 

(1) has a solution <p e Cn(I) with <p'(x) > 0 on I if and only if g e {f(<p)}-

P r o o f . System (1) has a solution <p with the above stated properties if and 

only if 

f(x) = <e-\X,v(x)) on I 
and 

g(x)=<p-1(\g<p(x)) on I. 

Putt ing u = !°gL4 we can rewrite the last relation as 

g(x) = <p-l(i\\f\
u<p(x)) on / , 

where 7 = sgn As and vice versa. • 
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Lemma. Suppose f £ Vn(I) for some n ^ I and denote # / = {g £ Cn(I); 

g(I) = I,gof = fog}. Then $f = {/(</>)}• 

P r o o f . Let 3 £ {/(¥>)}, i.e. 

s(x) =</>~1(.7|A/|Mz)) o n / 

for a suitable Cn-diffeomorphism <p on I and u £ R, where 7 = sgng'(p). Then p is 

obviously an rc-times differentiable function mapping / onto itself and 

/ o g(x) = <p~l (\f<p(g(x))) = <p~l (A/7IA/IM*)) = V"1 ( 7 | A / | M / ( ~ 0 ) ) = 9 ° / ( * ) 

for every a; £ / , hence g £ $f. 

Further, suppose g £ # / . Since there exists <p £ Cn(I), <p'(x) > 0 on | such that 

the equation 

¥>(/(*)) = A/VW 

is fulfilled for every a; £ / , we have 

¥>(3 o / (* ) ) = <p(f o g(x)) = \f<p(g(x)) on I. 

Thus we have obtained the same Schroder's equation as above with the function <pog 

as a C n solution having a nonzero derivative on I. Hence, due to Theorem 1 

<p(g(x)) = c<p(x) on / 

must hold for a suitable real constant c. Put u = ^ K . Then c = ~j\\s\
u, where 

7 = sgnp'(p) and 

g(x) = <p'x (~i\\s\
u<p(x)) on / , 

i.e. 9 e {/(v)}. • 

Now we can summarize these results in the following statement giving a simple 

necessary and sufficient condition which guarantees the existence of a solution <p of 

system (1) with the required properties. 

Propos i t ion 3 . Let / £ Vn(J) for some n ^ 1 and let g: I ^ 4 I be a Cn 

function. Then system (1) has a solution <p £ Cn(I), <p'(x) > 0 on I if and only if 

fog = gofonI. 

E x a m p l e 1. Consider a system of Schroder's equations 

<p(xr) = r<p(x) 

<p(g(x)) = \9<p(x), 
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where x e (0,oo), r $ { -1 ,0 ,1} is a real constant and g is an infinitely smooth 

function mapping the interval (0, oo) onto itself. Then according to Proposition 3 

this system has a solution tp e C°°((0, oo)), ip'(x) > 0 on (0,oo) iff g(xr) = (g(x))T. 

The only differentiable solutions of the above equation are functions g(x) = xs, 

i £ ( 0 , o o ) , s / 0 (see [4], p.121). 

R e m a r k 2. The previous statement can be easily generalized to the case when 

simultaneous solutions of a system of m Schroder's equations (m >• 2) are investi­

gated. 

N o t a t i o n . Suppose that / , g e V™(I) for some n >. 1 are commuting func­

tions. Then for every x e I denote C(x) = {/* o gl(x); k,l e 2} and let Ix be 

an interval with endpoints ax, bx, where ax = vaiC(x) and bx = supC(s ) . The 

endpoints belong to Ix provided they belong to / as well. 

C o r o l l a r y 1. Let f,g£ V*(I) for some n >. 1 and / o g = g o / . Then the 

following statements are equivaient: 

(i) / * = gl for suitable nonzero integers k, I; 

(ii) (f'(p))k = (g'(p))1 for the same integers k, I as in (i) (if they exist); 

(iii) C(x) is not dense in Ix for any x € I, x jtp. 

P r o o f . Using Proposition 3 we get the relations 

f\x) = <p-1((f'(p))kiP(x)) 

gl(x)=<p-1{(g'(p)y<p(x)) 
on I, 

where k, I are integers and <p is a suitable C-diffeomorphism on / . This implies the 

equivalences (i) and (ii). 

Further, rewrite the previous relations as 

V,(C(x)) = {<p(fkog>(x)); k,lel} = {(f'(p))k(g'(p))l
V(x); k, I € Z} , 

where x £ I. Now we have to distinguish three cases with respect to the position of 

p. First, e.g., let p be the left endpoint of / . In this case Ix = [a, b), <p(Ix) = R+ 

and therefore C(x) is dense in Ix (x e (a, b)) if and only if the set {(f'(p))k(g'(p))lt; 

k,lel] is dense in R+ (t = ip(x) > 0). This holds iff (f'(p))k ± (g'(p)Y for any 

couple of nonzero integers k, I. 

The equivalence of (ii) and (iii) can be similarly proved provided p e (a,b) or 

p = b. • 
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Corollary 2. Let f,ge Vj?(I) for some n>-\, f o g = go f and f'(p) = g'(p). 

Then f = g. 

Now we make two remarks in which the assumptions imposed on / and g in 

Proposition 3 are weakened. 

R e m a r k 3. Assuming that the above considered Cn bijections / , g are con­

tinuous only we may expect only invertible continuous solutions of (1) instead of 

smooth solutions with a nonzero derivative. As in the previous part we introduce 

the set V°(J) which consists of all continuous bijections of / onto itself such that 

f(p) = p, f2(x) ^ x for x ^ p and sgn( / 2 (x i ) - xi) = sgn(z2 - f2(x2)) for some 

(then any) x\ € (a,p), x2 £ (p, b). Then we have 

Propos i t ion 4. Let f e V°(I). Then there exists an invertible continuous solu­

tion <p of the equation 

(3) <p(f(x)) = Xf<p(x) on J, 

Xf being a suitable real constant, which depends on an arbitrary function. 

P r o o f . Take x* e I, x* ^ p and for the sake of simplicity let x* > p (i.e. 

p^b). Assuming that / is an increasing bijection from V°(I) we consider a positive 

real constant Xf satisfying sgn(logXf) = sgn( / ( i*) — x*) and a continuous function 

ip defined on [x*,f(x*)] or [f(x*),x*] such that f(f(x*)) = Xftp(x*). Then with 

respect to [3], p.48 there exists a continuous solution <p of (3) fulfilling <p(x) = ip(x) 

on [x*,f(x*)] or [f(x*),x*]. Obviously, if -0 is invertible then <p is invertible as well. 

Provided a decreasing bijection / from V°(I) is considered we investigate the 

equation 

V*(/2(^)) = yfV>*(x) on I. 

Since f2 is an increasing bijection from V°(I) we get an invertible continuous solution 

<p* of this equation depending on an arbitrary function. Then it is easy to verify that 

the function 

{ <p*(x), for x £ / , x ^ p, 

Xf<p*(f~1(x)), iorxeI,x>p, 
where Xf = —./Xf, is an invertible continuous function satisfying (3). 

The case p = b can be dealt with quite similarly. • 

In the sequel we want to find conditions under which system (1) has an invertible 

continuous solution. Consequently, in accordance with Proposition 3, we take into 

our considerations commuting bijections / , g from V°(I). However, this property 
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is now only a necessary, but not a sufficient condition for the existence of such a 
solution. Indeed, consider functions f(x) = x2 and 

g(x) = (6 2Vx~ - 8)2" for x e (22", 2 2 " + ' ] , 

n £ 1 and put g(l) = 1. Then even if / , g e Vi0([l,oo)) and 

/ o 9(x) = ((6 >Vx~ - 8)2" )2 = (6 2"+V^ - 8)2"+ 1 =gof(x) 

for every x € [1, oo), system (1) has no invertible continuous solution on [1, oo). It is 

a consequence of the relation / (2 2 ") = g(22") which is valid for any n (S 1 and which 

contradicts the fact that if system (1) has an invertible continuous solution then / , 

g have to fulfil precisely one of the following conditions: 

(a) fk = gl for suitable nonzero integers k, I, 

(b) fk(x) ^ g'(x) for all nonzero integers k, I and all x 6 / , x ^ p. 

Indeed, if fk(x0) = gl(x0) for an x0 6 / , x0 ^ p then we get 

V>- 1(A^(i 0)) = V- 1 (A>( io ) ) , 

hence with respect to <p(x0) ^ 0, 

\) = \g. 
Consequently, 

fk(x) = •fi-1(\kMx)) = f-\\l
g<p(x)) = gl(x) 

for all x G J, x jt p. 

In the sequel we denote by A/ the set of all \f € R such that equation (3) has 

an invertible continuous solution. Then we can formulate the following sufficient 

condition for (1) to have an invertible continuous solution. 

Proposit ion 5. Suppose that f, g e V°(I), f o g = g o f and let hypothesis 

(a) be fulfilled. Then system (1) has an invertible continuous solution for any reals 

\f S A/ , \g € A9 such that A* = A^. Moreover, this solution depends on an arbitrary 

function. 

P r o o f . Assume that at least one of the functions / , g is decreasing. Let, e.g., 

/ have this property. Since the functions / 2 , g2 are increasing bijections of / onto 

itself satisfying f2k = g21, due to Theorem 3 in [8] there exists an increasing bijection 
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h: I ^ / and integers r = - ^ , s = ^ such that f2 = hr,g2 = hs. Obviously 

h £ V°(I) and due to Proposition 4 the equation 

<p*(h(x)) = \h<p*(x) on I, 

where \ h is a suitable positive real constant, has an invertible continuous solution 

<p* depending on an arbitrary function. Then the function <p* is a solution of the 

system 
<p*(f2(x)) = \r

h<p*(x), 
, on / 

<p*(g2(x)) = Kv *(*) 
as well. Putt ing \f = - ^ / A J and As = 7 \ A I (7 = 1 or 7 = - 1 for an increasing or 

decreasing g, respectively) we can see that the function 

for x Є /, x ^ p, 
»*(*) = S 

"-Ҷae)), f o r z Є / , ж > p 

is a solution of system (1) with the required properties. 

Provided both / and g are increasing bijections from V°(I) it is enough to consider 

functions / , g instead of / 2 , g2 in the previous part of the proof and put A/ = \h, 

\g = A£ and <p(x) = <p*(x) on I. • 

R e m a r k 4. As mentioned above, functions / , g with different fixed points 

cannot yield a solution <p of (1) with a positive derivative. In such a case we will 

consider rather a more general system. As an example we show that the system 

<p(hi(x)) = \i<p(x), 
(4) on J, 

<p(h2(x)) = \2<p(x) +UJ 

where the bijections hi have a unique fixed point pi e I (i = 1, 2), pi ^ p2, can be, 

under certain assumptions, fulfilled by a function <p having the required differential 

properties. Note that by differentiating this system and putting x = pi we get 

with respect to <p'(x) > 0 on / that A; = h'{(pi) (i = 1,2). If \h{(pi)\ = 1 then the 

only continuous solutions of the first equation from system (4) are constant functions. 

Similarly, the latter equation from (4) has no required solution provided | /i2 (P2) I = 1. 

That is why the functions ht must belong to the class V£(I) (i = 1,2) if we wish 

to obtain an n-times differentiable solution of (4) for some n >. 1 with a positive 

derivative on / . 

Proposi t ion 6. Let hi e V£(I), h2 = f o g e V£(I) for some n>-\, where g: 

I ^ 4 / is a Cn function commuting with hi, and let for every x e I 

,. g2k(f(x))-g2k(x) 
l i m j — - rr^T = C ^ U , 

*->7oo (g'(pi))2k 
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where 7 = sgn(log \g'(pi)\)- Then system (4) has a Cn solution with a positive 

derivative on I if and only if \i = h[(pi), \2 = h'2(p2) = g'(p±) and OJ = c. 

P r o o f . Using Proposition 3 we can obtain the existence of a function <p e Cn(I), 

<p'(x) > 0 on / such that 

<p(hi(x)) = \i<p(x) 
on I, 

<p(g(x)) = \2<p(x) 

where Ai = h[(pi) and A2 = g'(pi). Then according to the formula mentioned in 

Theorem 1 we have 

— 1" g w —'-'. v ' — lim v v " — lim 
C-k{\™oo (g'(Pi))2k ~kToo (g'(pi))2k

 tiJSo (g'(Pl))
2 

= V(f[x)) - <p(x), 

hence 

<p(h2(x)) = <p(f(g(x))) = y>(s(x)) + c = \2<p(x) + c. 

E x a m p l e 2. We investigate the system 

<p(xr) = \i<p(x) 
on (0,oo), 

<^(o2;s) = \2<p(x) + u; 

where o > 0, r, s <f. { -1 ,0 ,1} . The functions hi(x) = xr and h2(x) = axs are 

C°° bijections of (0,00) onto itself with unique fixed points pi = 1 and p2 = "{l\, 

respectively, lying in (0,oo). The function h2 can be expressed as the composition 

fog, where f(x) = ax and g(x) = xs. It is easy to check that all the assumptions 

of Proposition 6 are satisfied. Particularly, 

.. (ax)s2 - xs2 .. a"2 - 1 
lim rr = hm 57— = In a, 

k-tyoo S2k k-tjoo S2k 

where 7 = sgn( ln | j | ) . Then the system considered has a solution <p(x) = \nx 

provided A! = h[(pi) = r, \2 = h'2(p2) = s and to = In a. 

Now we give an application of the previous results to the theory of pointwise 

transformations of differential equations with several delays (for similar situations 

see [5], [6] and [1]). 
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Consider an equation of the n-th order with delays T\ ,..., Tm 

n - l n - 1 m 

(5) j/(n)(„) + V;p i (_) j / W(„) + V ; V J f e - ( „ ) j / « ( T J ( „ ) ) = 0 on [so,6). 
i=0 i=0 j=l 

The most general pointwise transformation converting any equation (5) into a linear 

homogeneous differential equation of the same order with an independent variable 

t e J , a dependant variable z and delays fi\,... ,fim has the form 

(6) z(t) = g(t)y(h(t)), 

where ft is a Cn-diffeomorphism of J = h~1([x0,b)) onto [x0,b), h'(t) > 0 on J, 

g _ Cn(J), g(t) 5- 0 on J and 

(7) TJ o h = ho HJ on J 

for j = l , . . . , m (see [7]). To be more precise, this transformation converts the 

graph of every solution y(x) of (5) into a graph of a solution z(t) of the transformed 

equation. 

Then using (6) and (7) we can prove 

T h e o r e m 2. Consider equation (5) with p{, q{j ~ C°([_0 , b)), p n _ i _ C n _ 1 ([„0, &)), 

Tj S Vr
1„([_o,6)) for n = 1, Tj _ V?+l([x0,b)) for n >- 2, T , ( „ I ) < Xl and r j (_i) > 0 

for some (then anyj Xi 6 (x0,b) (i = 0 , . . . ,n — 1, j = 1 , . . . ,m) . I / T ^ OT,-2 = T,-2 OT,-, 

for aii j i , j2 6 {1, • . . ,m) then equation (5) can be transformed to the equation 

(8) _ W ( t ) + £ r i ( t ) „ W ( t ) + £ f ; S i j ( t ) _ ( i ) ( A j r ) = 0 on R+, 
i=0 i=0 j = l 

where n , s y e C°(R+) and Aj = rj(_0) (i = 0 , . . . ,n - 1, j = 1 , . . . ,m) . 

P r o o f . Put /_j(<) = Xjt, where Aj = T J ( _ 0 ) and <p = ft-1 on J. Thus relation 

(7) between r , and /ij can be rewritten as 

¥>(T,-(_)) = Aiy;(„) on h(J) = [x0, b), 

j = 1 , . . . ,m. Due to Proposition 3 and Remark 2 there exists a simultaneous solution 

of this system which is (similarly as its inverse h) at least n-times differentiable and 

has a positive derivative on the definition interval. 
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Further, it was derived in [6] that putting 

rh(t) 
9(t) 

{ 1 t w ) , •-» 
= exp { — I pn-i(s) ds >(h'(t)) 2 on J, 

I n L« J 
the equation received from (5) by means of transformation (6) has a vanishing co­

efficient at the (n — l)-st derivative of the unknown function z(t). The form of the 

transformed interval follows from the properties of the solution ip given in Theorem 1; 

particularly tp(x0) = 0 and lim ip(x) = co provided lim TJ(X) = 6, j = 1 , . . . ,m. 

D 

R e m a r k 5. The form of equation (8) as well as of equation (5) is not uniquely 

determined by its space of solutions. The form of (8) was chosen so that it corre­

sponds to the used transformation (6) substituted to the form of equation (5). 

Corollary 3 . Consider an equation 

(9) y'(x)+p(x)y(x) + qx(x)y(n(x)) + q2(x)y(T2(x)) = 0 on [x0,b), 

where p, qi, q2 ' C°([x0,b)), n, T2 ~ C2([x0,b)) are commuting bijections of the 

interval [x0,b) onto itself, Tj(x) < x on (x0,b), Tj(x) > 0 on [x0,b) and T'J(X0) ^ 1, 

i = l , 2 . 

Then transformation (6) with g(t) = ex~ { fx p(s) ds} and h = ip-1, <p(x) = 

lim (T[(X0))~
U(TX(X) -X0), globally converts every solution of (9) into a solution of 

the equation 

z'(t) + S!(t)z(\it) + s2(t)z(\2t) = 0 on R+, 

where Sj(t) = exp { J * ^ , p(s) ds}qj(h(t))h'(t) on R+ and A; = T J ( X 0 ) , j = 1,2. 

P r o o f . Substituting z(t) = g(t)y(h(t)) (with the above given g and h) into the 

form of the transformed equation we get 

2 ,t) ( rrj(h(t)) ^ 

2/'(Mt)) + E / ^ ) e x P \ X t P(s)dsjy(Tj(h(t))) = 0 o n R + , 

which compared with (9) gives the form of sx and s2. D 

R e m a r k 6 . The problem of the transformation of a nonlinear differential equa­

tion with above introduced delays T; into a differential equation with delays /J,J (t) = 

\jt leads again to finding a simultaneous solution of the system tp(Tj(x)) = \j(p(x). 

Then the change of the independent variable t = ip(x), ip being a sufficiently smooth 

function with a positive derivative on the definition interval, enables us to carry out 

such a transformation. 
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Further, let us remark that the case when delays TJ intersect the identity function 

at the initial point is usually refered to as the singular case (see [2]). 

E x a m p l e 3. The equation 

y'(x) + py(x) + qiy(x°") + q2y(xa*) = 0 on [l,oo), 

where p, q\, q2 € R and a . , <*2 € (0,1) are constants, has a unique one-parameter 

family of solutions y(x) defined on [l,oo) (see, e.g. [2]). These solutions can be 

converted to the functions z(t) = exp { p / e x p ds}y(expt) which form the space of 

solutions of the equation 

z'(t) + s1(t)z(a1t) + s2(t)z{a2t) = 0 on R+, 

where Sj(t) = qjexp{t +pexpt — pexp(ajt)}, j = 1,2. 
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