Ladislav Nebeský
A matching and a Hamiltonian cycle of the fourth power of a connected graph

Mathematica Bohemica, Vol. 118 (1993), No. 1, 43–52

Persistent URL: http://dml.cz/dmlcz/126012
A MATCHING AND A HAMILTONIAN CYCLE
OF THE FOURTH POWER OF A CONNECTED GRAPH

LADISLAV NEBESKÝ, Praha

(Received July 27, 1991)

Summary. The following result is proved: Let G be a connected graph of order ≥ 4. Then for every matching M in G^4 there exists a hamiltonian cycle C of G^4 such that $E(C) \cap M = \emptyset$.

Keywords: power of a graph, matching, hamiltonian cycle

AMS classification: 05C70, 05C45

Let G be a graph (in the sense of the book [1], for example) with a vertex set $V(G)$ and an edge set $E(G)$; note that the number $|V(G)|$ is referred to as the order of G. If n is a positive integer, then by the n-th power G^n of G we mean the graph G' such that $V(G') = V(G)$ and vertices u and v are adjacent in G' if and only if $1 \leq d_G(u,v) \leq n$, where d_G denotes the distance in G.

Chartrand, Polimeni and Stewart [2] and Sumner [6] have proved that if G is a connected graph of an even order, then G^2 has a 1-factor. As follows from Sekanina's paper [5], if G is a connected graph of order ≥ 3, then G^3 has a hamiltonian cycle. The existence of 1-factors and/or a hamiltonian cycle of the fourth power of a connected graph was investigated in [3], [7], [4] and [8].

Let G be a connected graph of an even order ≥ 4. The present author [3] proved that G^4 has a 3-factor each component of which is K_4 or $K_2 \times K_3$, where \times denotes the cartesian product of graphs. Consequently, G^4 has tree mutually edge-disjoint 1-factors. Wisztová [7] proved that there exist a hamiltonian cycle C of G^3 and a 1-factor F of G^4 such that $E(F) \cap E(C) = \emptyset$. This result was improved by the present author [4] as follows: for any factor H of G^3 such that H contains no triangle and the maximum degree of H does not exceed 2, there exists a 1-factor F of G^4 such that $E(F) \cap E(H) = \emptyset$. Consequently, for every hamiltonian cycle C of G^3 there exists a 1-factor F of G^4 such that $E(F) \cap E(C) = \emptyset$.

43
Recently, Wisztová [8] has proved that if G is a connected graph of an order ≥ 4 and M is a matching in G, then there exists a hamiltonian cycle C of G^4 such that $E(C) \cap M = \emptyset$. In the present paper the result obtained in [8] will be improved as follows: if G is a connected graph of an order ≥ 4 and M is a matching in G^4, then there exists a hamiltonian cycle C of G^4 such that $E(C) \cap M = \emptyset$.

Before proving the main result of the paper we shall introduce some auxiliary notions and prove three lemmas.

If F_1 and F_2 are graphs, then we denote by $F_1 \cup F_2$ the graph F' with $V(F') = V(F_1) \cup V(F_2)$ and $E(F') = E(F_1) \cup E(F_2)$. If F is a graph and u and v are distinct vertices, then we denote by $F + uv$ the graph F'' with $V(F'') = V(F) \cup \{u, v\}$ and $E(F'') = E(F) \cup \{uv\}$. If H is a graph and W is a nonempty subset of $V(H)$, then we denote by $(W)_H$ the subgraph of H induced by W.

An ordered pair (T, v), where T is a tree and $v \in V(T)$ will be referred to as a rooted tree. We say that rooted trees (T_1, v_1) and (T_2, v_2) are isomorphic if there exists an isomorphism f of T_1 onto T_2 such that $f(v_1) = v_2$.

Now, let $k \geq 1$ and $m \geq 1$ be integers, and let $u_0, \ldots, u_k, w_1, \ldots, w_m$ be mutually distinct vertices. We shall generalize some constructions used in [8]. By a Y_m-tree ($m \geq 5$) we mean a tree T such that

$$V(T) = \{w_1, \ldots, w_m\},$$
$$\{w_jw_{j+1}; 1 \leq j \leq m-2\} \subseteq E(T),$$
and
either $w_mw_1 \in E(T)$ or $w_1w_m \in E(T)$.

By a Y^*_m-tree ($m \geq 5$) we mean a tree isomorphic to a Y_m-tree. By an X_m-tree ($m \geq 5$) we mean a tree T' such that

$$V(T') = \{w_1, \ldots, w_m\},$$
$$\{w_jw_{j+1}; 2 \leq j \leq m-2\} \subseteq E(T'),$$
and
either $w_1w_2 \in E(T')$ or $w_1w_3 \in E(T')$, and
either $w_mw_2 \in E(T')$ or $w_mw_3 \in E(T')$.

By an X^*_m-tree ($m \geq 5$) we mean a tree isomorphic to X_m-tree. By a $U_{k,m}$-tree we mean a rooted tree (T'', u_0) such that

$$V(T'') = \{u_k, \ldots, u_0, w_1, \ldots, w_m\},$$
$$\{u_{i+1}u_i; 1 \leq i \leq k-2\} \cup \{u_1u_0, u_0w_1\} \cup \{w_jw_{j+1}; 1 \leq j \leq m-2\} \subseteq E(T'');$$
if $k = 2$, then $u_2u_1 \in E(T'')$,
if $k \geq 3$, then either $u_ku_{k-1} \in E(T'')$ or $u_ku_{k-2} \in E(T'')$,
if $m = 2$, then $w_1w_2 \in E(T'')$, and
if $m \geq 3$, then either $w_mw_{m-2} \in E(T'')$ or $w_{m-1}w_m \in E(T'')$.

44
Finally, by a $U_{k,m}$-tree we mean a rooted tree isomorphic to $U_{k,m}$.

Lemma 1. Let $m \geq 5$ be an integer, let T be a Y_m-tree, and let M be a matching in T^3. Then there exists a hamiltonian w_1-w_2 path P of T^3 such that $E(P) \cap M = \emptyset$.

Proof. We shall construct a hamiltonian w_1-w_2 path P of T^3 such that $E(P) \cap M = \emptyset$.

First, let $m = 5$. We put

$$E(P) = \{w_1w_3, w_3w_4, w_4w_5, w_5w_2\} \text{ if } w_3w_5 \in M,$$

$$E(P) = \{w_1w_4, w_4w_3, w_3w_5, w_5w_2\} \text{ if } w_4w_5 \in M,$$

$$E(P) = \{w_1w_3, w_3w_5, w_5w_4, w_4w_2\} \text{ if } (w_3w_5, w_4w_5 \notin M, w_2w_3 \in M)$$

$$\text{or } (w_2w_3, w_3w_5, w_5w_6 \notin M, w_1w_4 \in M),$$

$$E(P) = \{w_1w_4, w_4w_5, w_5w_3, w_3w_2\} \text{ if } w_1w_4, w_2w_3, w_3w_5, w_4w_5 \notin M.$$

Now let $m = 6$. We put

$$E(P) = \{w_1w_3, w_3w_6, w_6w_5, w_5w_4, w_4w_2\} \text{ if } w_2w_3, w_4w_6 \in M,$$

$$E(P) = \{w_1w_4, w_4w_5, w_5w_6, w_6w_3, w_3w_2\} \text{ if } w_2w_3 \notin M, w_4w_6 \in M,$$

$$E(P) = \{w_1w_3, w_3w_5, w_5w_6, w_6w_4, w_4w_5, w_5w_2\} \text{ if } (w_2w_3 \in M, w_4w_6 \notin M)$$

$$\text{or } (w_2w_3, w_4w_6 \notin M, w_1w_4, w_3w_5 \in M) \text{ or } (w_2w_3, w_4w_6 \notin M, w_1w_4 \in M, w_3w_5 \notin M, w_5w_6 \in M),$$

$$E(P) = \{w_1w_3, w_3w_4, w_4w_6, w_6w_5, w_5w_2\} \text{ if } \begin{cases} w_2w_3 \in M, & w_4w_6 \notin M, \\
 w_5w_6 \notin M, & w_1w_4 \in M \text{ or } (w_2w_3, w_4w_6 \notin M, w_1w_4 \notin M, w_3w_5 \in M), \\
 w_1w_4 \notin M, & w_3w_5 \in M, \end{cases}$$

$$E(P) = \{w_1w_4, w_4w_3, w_3w_6, w_6w_5, w_5w_2\} \text{ if } w_2w_3, w_4w_6 \notin M,$$

$$w_5w_6 \notin M, w_1w_4 \notin M,$$

$$E(P) = \{w_1w_3, w_3w_5, w_5w_6, w_6w_4, w_4w_2\} \text{ if } w_2w_3, w_4w_6 \notin M,$$

$$w_1w_4 \in M, w_3w_5 \notin M, w_5w_6 \notin M,$$

$$E(P) = \{w_1w_4, w_4w_6, w_6w_3, w_3w_5, w_5w_2\} \text{ if } w_2w_3, w_4w_6 \notin M,$$

$$w_1w_4 \notin M, w_3w_5 \notin M, w_5w_6 \in M,$$

$$E(P) = \{w_1w_4, w_4w_6, w_6w_5, w_5w_3, w_3w_2\} \text{ if } w_2w_3, w_4w_6 \notin M,$$

$$w_1w_4 \in M, w_3w_5 \notin M, w_5w_6 \notin M.$$

Finally, let $m \geq 7$. We assume that for $m-2$ the statement of the lemma is proved. Denote $T_0 = T - w_1 - w_2$ and $M_0 = M \cap E((T_0)^3)$. According to our assumption, there exists a hamiltonian w_3-w_4 path P_0 of $(T_0)^3$ such that $E(P_0) \cap M_0 = \emptyset$. We
Thus, the proof of the lemma is complete. \(\square\)

As immediately follows from Lemma 1, if \(m \geq 5\) is an integer, \(T\) is a \(Y_m\)-tree, and \(M\) is a matching in \(T^4\), then there exists a hamiltonian \(w_1 - w_2\) path \(P\) of \(T^4\) such that \(E(P) \cap M = \emptyset\).

In the proof of the next lemma an idea from the proof of Lemma 3 in [8] will be used.

Lemma 2. Let \(m \geq 5\) be an integer, let \(T\) be an \(X_m\)-tree, and let \(M\) be a matching in \(T^4\). Then there exists a hamiltonian cycle \(C\) of \(T^4\) such that \(E(C) \cap M = \emptyset\).

Proof. Obviously, if \(m = 5\) then \(T^4 = K_5\), and if \(m = 6\) then \(T^4 = K_6 - e\) or \(K_6\). Thus, we can see that if \(m = 5\) or \(6\), the statement of the lemma holds.

Let \(m \geq 7\). Denote \(T_0 = T - w_1 - w_2\). Clearly, \(T_0\) is a \(Y_{m-2}\)-tree. According to Lemma 1, there exists a hamiltonian \(w_3 - w_4\) path \(P_0\) of \((T_0)^3\) such that \(E(P_0) \cap m = \emptyset\).

First, let \(w_1w_2 \in M\). Obviously, there exists \(w \in V(T_0 - w_3)\) such that \(w_3w \in E(P_0)\). We put

\[C = P_0 - w_3w + w_2w_3 + w_3w_1 + w_1w_4. \]

Now let \(w_1w_2 \notin M\). We put

\[C = P_0 + w_3w_1 + w_1w_2 + w_2w_4 \quad \text{if} \quad w_1w_4 \in M \quad \text{or} \quad w_2w_3 \in M, \quad \text{and} \]

\[C = P_0 + w_3w_2 + w_2w_1 + w_1w_4 \quad \text{if} \quad w_1w_4, \ w_2w_3 \notin M. \]

We can see that \(C\) is a hamiltonian cycle of \(T^4\) such that \(E(C) \cap M = \emptyset\). Thus, the proof of the lemma is complete. \(\square\)

Lemma 3. Let \(T\) be a tree of an order \(n \geq 4\), and let \(M\) be a matching in \(T^4\). Then there exists a hamiltonian cycle \(C\) of \(T^4\) such that \(E(C) \cap M = \emptyset\).

Proof. We proceed by induction on \(n\). If the diameter of \(T\) does not exceed four, then \(T^4\) is a complete graph and thus the statement of the lemma holds. If \(T\) is an \(X_n^*\)-tree, then—according to Lemma 2—the statement of the lemma holds, too.

We shall assume that the diameter of \(T\) is at least five and \(T\) is not a \(X_n^*\)-tree. This implies that \(n \geq 7\). We distinguish the following cases and subcases:

1. Assume that there exist mutually distinct vertices \(v, v_1, v_2, v_3\) such that \(vv_1, vv_2, vv_3 \in E(T)\) and \(v_1, v_2, v_3\) are vertices of degree one in \(T\). Obviously, there
exist distinct \(g, h \in \{1, 2, 3\} \) such that \(v_g v_h \notin M \). Without loss of generality, let
\(v_2 v_3 \notin M \). Denote \(T_0 = T - v_2 - v_3 \). Since \(|V(T_0)| = n - 2 \geq 5 \), it follows from
the induction hypothesis that there exists a hamiltonian cycle \(C_0 \) of \((T_0)^4 \) such that
\(E(C_0) \cap (M - \{v_{v_2}, v_{v_3}\}) = \emptyset \). Since \(v_1 \) is a vertex of degree one in \(T_0 \), there exists
\(v_0 \in V(T_0 - v_1) \) such that \(v_0 v_1 \in E(C_0) \) and \(d_T(v, v_0) \leq 3 \). We put
\[
C = C_0 - v_0 v_1 + v_0 v_2 + v_2 v_3 + v_3 v_1 \quad \text{if } v_1 v_2 \in M \text{ or } v_0 v_3 \in M,
C = C_0 - v_0 v_1 + v_0 v_3 + v_2 v_3 + v_3 v_1 \quad \text{if } v_1 v_2, v_0 v_3 \notin M.
\]
Obviously, \(C \) is a hamiltonian cycle of \(T^4 \) and \(E(C) \cap M = \emptyset \).

2. Assume that for every vertex \(v \) of \(T \), at most two vertices adjacent to \(v \) have
degree one. It is not difficult to see that there exist positive integers \(k \) and \(m \),
a vertex \(u \) of a degree \(\geq 3 \) in \(T \) and a subtree \(T' \) of \(T \) with the properties that
\(3 \leq k + m \leq n - 4 \), \(u \in V(T') \), the degree of \(u' \) in \(T' \) is equal to the degree of \(u' \) in
\(T \) for each \(u' \in V(T' - u) \), and \((T', u) \) is a \(U_{k,m} \)-tree.

For the sake of simplicity we shall assume that \((T', u) \) is a \(U_{k,m} \)-tree. Thus \(u = u_0 \)
and \(V(T_0) = \{u_k, \ldots, u_0, w_1, \ldots, w_m\} \). Without loss of generality we assume that
(1) \[k \geq 2; \text{ if } m = 2, \text{ then } k \leq 3; \text{ if } m = 3, \text{ then } k = 3; \]
if \(m = 4 \), then \(k \leq 4 \).

Denote \(T_0 = T - w_1 - \ldots - w_m \) and \(M_0 = M \cap E((T_0)^4) \). Since \(5 \leq |V(T_0)| \leq n - 1 \),
it follows from the induction hypothesis that there exists a hamiltonian cycle \(C_0 \) of
\((T_0)^4 \) such that \(E(C_0) \cap M_0 = \emptyset \). We shall construct a hamiltonian cycle \(C \) of \(T^4 \)
such that \(E(C) \cap M = \emptyset \).

2.1. Let \(m \neq 2, 3, 4 \).

2.1.1. Assume that
(2) there exist mutually distinct \(v_{i1}, v_{i2}, v_{i1}, v_{i2} \in V(T) \)
such that \(v_{i1} v_{i2} \in E(C_0), d_T(u_0, v_{i1}) \leq d_T(u_0, v_{i2}) \leq 3 \)
and \(d_T(u_0, v_{i1}) + d_T(u_0, v_{i2}) \leq 4 \) for \(i = 1 \) and \(2 \).

Without loss of generality we assume that \(v_{i2} w_1, v_{i2} w_1 \notin M \).

2.1.1.1. Let \(m = 1 \). We put
\[
C = C_0 - v_{i1} v_{i2} + v_{i1} w_1 + w_1 v_{i2}.
\]

2.1.1.2. Let \(m \geq 5 \). Obviously, \(v_{i1} w_2, v_{i2} w_1 \in E(T^4) \) and if \(d_T(v_{i1}, w_2) = 4 \), then
\(d_T(v_{i2}, w_2) = 4 \).

2.1.1.2.1. Assume that \(v_{i1} w_2 \notin M \) or \(d_T(v_{i1}, w_2) = 4 \). According to Lemma 1
there exists a hamiltonian \(w_1 - w_2 \) path \(P \) of \(((\{w_1, \ldots, w_m\})^T)^4 \). We put
\[
C = (C_0 - v_{i1} v_{i2}) \cup P + v_{i1} w_2 + w_1 v_{i2} \quad \text{if } v_{i1} w_2 \notin M, \text{ and}
C = (C_0 - v_{i1} v_{i2}) \cup P + v_{i1} w_1 + w_2 v_{i2} \quad \text{if } v_{i1} w_2 \in M \text{ and } d_T(v_{i1}, w_2) = 4.
\]
2.1.1.2.2. Assume that $v_{11}w_2 \in M$ and $d_T(v_{11}, w_2) \leq 3$. Then $v_{11}w_3 \in E(T^4) - M$. Moreover, $w_1w_2, w_2w_3 \notin M$.

First, let $m = 5$. We put

$$C = C_0 - v_{11}v_{12} + v_{11}w_3 + w_3w_4 + w_4w_2 + w_2w_5 + w_5w_1 + w_1v_{12}$$

if $w_4w_5 \in M$,

$$C = C_0 - v_{11}v_{12} + v_{11}w_3 + w_3w_2 + w_2w_5 + w_5w_4 + w_4w_1 + w_1v_{12}$$

if $w_4w_5 \notin M$, $w_1w_5 \in M$, and

$$C = C_0 - v_{11}v_{12} + v_{11}w_3 + w_3w_2 + w_2w_4 + w_4w_5 + w_5w_1 + w_1v_{12}$$

if w_4w_5, $w_1w_5 \notin M$.

Now let $m \geq 6$. According to Lemma 1 there exists a hamiltonian $w_2 - w_3$ path P' of $\left(\{w_2, \ldots, w_m\}\right)_T^4$. We put

$$C = (C_0 - v_{11}v_{12}) \cup P' + v_{11}w_3 + w_2w_1 + w_1v_{12}.$$

2.1.2. Assume that (2) does not hold. According to (1), $k \geq 2$. It is not difficult to see that $k \geq 4$ and there exists $v \in V(T_0 - u_0 - \ldots - u_k)$ such that $d_T(u_0, v) \leq 3$ and $C_0 - u_1 - \ldots - u_k$ is an $u_0 - v$ hamiltonian path of $(T_0 - u_1 - \ldots - u_k)^4$. Moreover, we can see that if $k = 4$, then $u_0u_4 \in E(C_0)$ and therefore $u_0u_4 \notin M$.

2.1.2.1. Let $vw_1 \in M$. First, let $k = 4$. Recall that $u_0u_4 \notin M$. We put

$$C = (C_0 - u_1 - u_2 - u_3 - u_4) + u_0u_2 + u_2u_4 + u_4u_3 + u_3w_1$$

+ $w_1u_1 + u_1v$ if $u_2u_3 \in M$,

$$C = (C_0 - u_1 - u_2 - u_3 - u_4) + u_0u_4 + u_4u_2 + u_2u_3 + u_3w_1$$

+ $w_1u_1 + u_1v$ if $u_3u_4 \in M$, and

$$C = (C_0 - u_1 - u_2 - u_3 - u_4) + u_0u_4 + u_4u_3 + u_3u_2 + u_2w_1$$

+ $w_1u_1 + u_1v$ if $u_2u_3, u_3u_4 \notin M$.

Now let $k \geq 5$. As follows from Lemma 1, there exists a hamiltonian $u_1 - u_2$ path P of $\left(\{u_1, \ldots, u_k\}\right)_T^4$. We put

$$C = (C_0 - u_1 - \ldots - u_k) \cup P + u_0w_1 + w_1u_2 + u_1v.$$

2.1.2.1.2. Let $vw_1 \notin M$. According to Lemma 1, there exists a hamiltonian $w_1 - u_0$ path P of $\left(\{w_1, u_0, \ldots, u_k\}\right)_T^4$. We put

$$C = (C_0 - u_1 - \ldots - u_k) \cup P + w_1v.$$

2.1.2.2. Assume that $m \geq 5$.

48
2.1.2. Let \(k = 4 \). First, let \(v w_1 \in M \) or \(u_1 w_2 \in M \). Then \(v u_1 \notin M \). There exists a hamiltonian \(u_0 - w_1 \) path \(P \) of \(\langle \{u_0, w_1, \ldots, w_m\} \rangle_T^4 \). Clearly, \(u_1 u_4 \notin M \) or \(u_3 w_1 \notin M \). We put

\[
C = (C_0 - u_1 - u_2 - u_3 - u_4) + P + v u_1 + u_1 u_3 + u_3 u_4 + u_4 u_2 + u_2 w_1
\]

if \(u_2 u_3 \in M \),

\[
C = (C_0 - u_1 - u_2 - u_3 - u_4) + P + v u_1 + u_1 u_2 + u_2 u_4 + u_4 u_3 + u_3 w_1
\]

if \(u_2 u_3, u_3 w_1 \notin M, u_1 u_4 \in M \),

\[
C = (C_0 - u_1 - u_2 - u_3 - u_4) + P + v u_1 + u_1 u_4 + u_4 u_3 + u_3 u_2 + u_2 w_1
\]

if \(u_2 u_3, u_1 u_4 \notin M, u_3 w_1 \notin M, u_2 u_4 \in M \),

\[
C = (C_0 - u_1 - u_2 - u_3 - u_4) + P + v u_1 + u_1 u_4 + u_4 u_2 + u_2 u_3 + u_3 w_1
\]

if \(u_2 u_3, u_1 u_4, u_3 w_1, u_2 u_4 \notin M \).

Now let \(v w_1, u_1 w_2 \notin M \). According to Lemma 1 there exist a hamiltonian \(u_0 - u_1 \) path \(P' \) of \(\langle \{u_0, \ldots, u_4\} \rangle_T^4 \) and a hamiltonian \(w_1 - w_2 \) path \(P'' \) of \(\langle \{w_1, \ldots, w_m\} \rangle_T^4 \). We put

\[
C = (C_0 - u_1 - u_2 - u_3 - u_4) \cup P' \cup P'' + v w_1 + w_2 u_1.
\]

2.1.2.2. Let \(k \geq 5 \). According to Lemma 1 there exist hamiltonian \(u_1 - u_2 \) path \(P \) of \(\langle \{u_1, \ldots, u_k\} \rangle_T^4 \) and a hamiltonian \(w_1 - w_2 \) path \(P' \) of \(\langle \{w_1, \ldots, w_m\} \rangle_T^4 \). Obviously, \(v w_1 \notin M \) or \(v u_1 \notin M \). Without loss of generality we assume that \(v w_1 \notin M \). We put

\[
C = (C_0 - u_1 - \ldots - u_k) \cup P \cup P' + u_0 u_1 + u_2 w_2 + w_1 v
\]

if \(u_0 u_2 \in M \) or \(u_1 w_2 \in M \), and

\[
C = (C_0 - u_1 - \ldots - u_k) \cup P \cup P' + u_0 u_2 + u_1 w_2 + w_1 v
\]

if \(u_0 u_2, u_1 w_2 \notin M \).

2.2. Let \(m = 2 \). According to (1), \(k = 2 \) or 3. It is easy to see that there exist \(u_1', u_2' \in V(T_0) \) with the properties that \(u_1' \neq u_1, u_2' \neq u_2, u_1 u_1', u_2 u_2' \in E(C_0), u_1 u_1' \neq u_2 u_2', d_T(u_0, u_1') \leq 3 \) and \(d_T(u_0, u_2') \leq 2 \). We put

\[
C = C_0 - u_1 u_1' - u_2 u_2' + u_1 w_1 + w_1 u_1' + u_2 w_2 + w_2 u_2'
\]

if \(w_1 w_2 \in M \),

\[
C = C_0 - u_2 u_2' + u_2 w_1 + w_1 w_2 + u_2' w_2'
\]

if \(w_1 w_2 \notin M \) and \(u_2' w_1 \in M \),

\[
C = C_0 - u_2 u_2' + u_2' w_1 + w_1 w_2 + w_2 u_2
\]

if \(w_1 w_2, u_2' w_1, w_2 u_2 \notin M \).

2.3. Let \(m = 3 \). According to (1), \(k = 3 \).
2.3.1. Assume that

(3) there exist \(u_1' \in V(T_0 - u_1) \) such that \(u_1u_1' \in E(C_0) \) and \(d_T(u_0, u_1') \leq 2 \).

We put

\[
C = C_0 - u_1u_1' + u_1w_3 + w_3w_2 + w_2w_1 + w_1u_1' \quad \text{if} \quad w_1w_3 \in M,
\]
\[
C = C_0 - u_1u_1' + u_1w_3 + w_3w_1 + w_1w_2 + w_2u_1' \quad \text{if} \quad w_2w_3 \in M,
\]
\[
C = C_0 - u_1u_1' + u_1w_1 + w_1w_3 + w_3w_2 + w_2u_1' \quad \text{if} \quad w_1w_3, w_2w_3 \notin M,
\]
\[
\text{and (}u_1w_2 \in M \text{ or } u_1u_1' \in M, \text{)} \quad \text{and}
\]
\[
C = C_0 - u_1u_1' + u_1w_2 + w_2w_3 + w_3w_1 + w_1u_1' \quad \text{if} \quad w_1w_3, w_2w_3, u_1w_2, u_1u_1' \notin M.
\]

2.3.2. Assume that (2) does not hold. Then there exist mutually distinct \(u_1', u_1'', u_2' \in V(T_0 - u_1 - u_2) \) such that \(u_1u_1', u_1u_1'', u_2u_2' \in E(C_0) \) and \(d_T(u_0, u_1') \leq 2 \). Clearly, \(d_T(u_0, u_1') = 3 = d_T(u_0, u_1'') \). Obviously, \(u_1'w_1 \notin M \) or \(u_1''w_1 \notin M \). Without loss of generality we assume that \(u_1'w_1 \notin M \). We put

\[
C = C_0 - u_1u_1' + u_1w_3 + w_3w_2 + w_2w_1 + w_1u_1' \quad \text{if} \quad w_1w_3 \in M,
\]
\[
C = C_0 - u_1u_1' - u_2u_2' + u_1w_3 + w_3w_1 + w_1u_1' + u_2w_2 + w_2u_2' \quad \text{if} \quad w_2w_3 \in M,
\]
\[
C = C_0 - u_2u_2' + u_2w_1 + w_1w_3 + w_3w_2 + w_2u_2' \quad \text{if} \quad w_1w_3, w_2w_3 \notin M
\]
\[
\text{and (}u_2w_2 \in M \text{ or } u_2u_2' \in M, \text{)} \quad \text{and}
\]
\[
C = C_0 - u_2u_2' + u_2w_2 + w_2w_3 + w_3w_1 + w_1u_2' \quad \text{if} \quad w_1w_3, w_2w_3, u_2w_2, u_2u_2' \notin M.
\]

2.4. Let \(m = 4 \). According to (1), \(2 \leq k \leq 4 \). Without loss of generality we assume that

(4) if \(k = 4 \) and \(w_3w_4 \in M \), then \(u_3u_4 \in M \).

2.4.1. Assume that

(5) there exist \(v_{11}, v_{12}, v_{21}, v_{22} \in V(T_0) \) such that

\[
v_{12} \neq v_{22}, v_{11} \neq v_{12} \neq v_{21}, v_{11} \neq v_{22} \neq v_{21}, v_{11}v_{12},
\]
\[
v_{21}v_{22} \in E(C_0), d_T(u_0, v_{11}) \leq 1, d_T(u_0, v_{12}) \leq 3,
\]
\[
d_T(u_0, v_{21}) \leq 1 \text{ and } d_T(u_0, v_{22}) \leq 3.
\]

Obviously, \(v_{12}w_1 \notin M \) or \(v_{22}w_1 \notin M \). Without loss of generality we assume that \(v_{12}w_1 \notin M \). We put
\[C = C_0 - v_{11}v_{12} + v_{11}w_2 + w_2w_3 + w_3w_4 + w_4w_1 + w_1v_{12} \]
\[
\text{if } w_2w_4 \in M, \\
C = C_0 - v_{11}v_{12} + v_{11}w_3 + w_3w_2 + w_2w_4 + w_4w_1 + w_1v_{12} \\
\text{if } w_3w_4 \in M, \\
C = C_0 - v_{11}v_{12} + v_{11}w_3 + w_3w_4 + w_4w_2 + w_2w_1 + w_1v_{12} \\
\text{if } (w_2w_4, w_3w_4 \notin M, v_{11}w_2 \in M) \\
\text{or } (v_{11}w_2, w_2w_4, w_3w_4 \notin M, w_1w_3 \in M), \text{ and} \\
C = C_0 - v_{11}v_{12} + v_{11}w_2 + w_2w_4 + w_4w_3 + w_3w_1 + w_1v_{12} \\
\text{if } v_{11}w_2, w_1w_3, w_2w_4, w_3w_4 \notin M. \\
\]

2.4.2. Assume that (5) does not hold. Then \(k = 4 \) and \(u_1u_4 \in E(C_0) \) and \(d_T(u_0, u_4) = 4 \).

We first assume that \(u_2u_3, u_2u_4 \in E(C_0) \). Then there exist \(u'_1, u'_3 \in V(T_0 - u_1 - u_3) \) such that \(u'_1 \neq u'_3, u_1u'_1, u_3u'_3 \in E(C_0), d_T(u_0, u'_1) \leq 3 \) and \(d_T(u_0, u'_3) \leq 1 \), which contradicts (5).

Now we assume that \(u_2u_3 \notin E(C_0) \) or \(u_2u_4 \notin E(C_0) \). Then there exists \(u'_2 \in V(T_0 - u_2) \) such that \(u_2u'_2 \in E(C_0) \) and \(d_T(u_0, u'_2) \leq 2 \).

2.4.2.1. Let \(w_3w_4 \notin M \). Obviously, \(u_2w_1 \notin M \) or \(u'_2w_1 \notin M \). Without loss of generality we assume that \(u_2w_1 \notin M \). We put

\[C = C_0 - u_2u'_2 + u_2w_1 + w_1w_3 + w_3w_4 + w_4w_2 + w_2u'_2 \\
\text{if } w_2w_3 \in M \text{ or } (w_1w_4 \in M, u'_2w_2 \notin M), \\
C = C_0 - u_2u'_2 + u_2w_2 + w_2w_4 + w_4w_3 + w_3w_1 + w_1u'_2 \\
\text{if } u'_2w_2, w_1w_4 \in M, \\
C = C_0 - u_2u'_2 + u_2w_2 + w_2w_3 + w_3w_4 + w_4w_1 + w_1u'_2 \\
\text{if } u'_2w_2 \in M, w_1w_4 \notin M, \text{ and} \\
C = C_0 - u_2u'_2 + u_2w_1 + w_1w_4 + w_4w_3 + w_3w_2 + w_2u'_2 \\
\text{if } u'_2w_2, w_1w_4, w_3w_3 \notin M. \\
\]

2.4.2.2. Let \(w_3w_4 \in M \). According to (4), \(u_3u_4 \in M \). Therefore, \(u_3u_4 \notin E(C_0) \).

There exists \(u''_3 \in V(T_0 - u_2 - u_3) \) such that \(u'''_3u''_3 \in E(C_0) \). Since \(u_3u_4 \notin E(C_0) \) and \(d_T(u_0, u_3) = 3 \), we have \(d_T(u_0, u''_3) \leq 1 \). We put \(v_{11} = u''_3 \) and \(v_{12} = u_3 \). Since \(u_3u_4 \in M \), we have \(v_{12}w_1 \notin M \). Thus we can construct \(C \) in the same way as in 2.4.1.

The proof of the lemma is complete.

The following theorem is the main result of the present paper:
Theorem. Let G be a connected graph of an order ≤ 4. Then for every matching M in G^4 there exists a hamiltonian cycle C of G^4 such that $E(C) \cap M = \emptyset$.

Proof. Consider an arbitrary spanning tree T of G. Denote $M_0 = M \cap E(T^4)$. Obviously, M_0 is a matching in T^4. According to Lemma 3, there exists a hamiltonian cycle C of T^4 such that $E(C) \cap M_0 = \emptyset$. Clearly, C is a hamiltonian cycle of G^4. Since $E(C) \subseteq E(T^4)$, we can see that $E(C) \cap M = \emptyset$, which completes the proof.

As follows from [2] and [5], if G is a connected graph of an even order, then G^2 has a 1-factor. Combining this result with our theorem, we get the following corollary:

Corollary. Let G be a connected graph of an even order ≥ 4. Then there exist a 1-factor F of G^2 and hamiltonian cycle C of G^4 such that $E(C) \cap E(F) = \emptyset$.

References

Souhrn

PÁROVÁNÍ A HAMILTONOVSKÁ KRUŽNICE ČTVRTÉ MOCNINY SOUVISLÉHO GRAFU

LADISLAV NEBESKÝ

Nechť G je souvislý graf s alespoň čtyřmi uzly. V článku je dokázáno, že pro každé párování M v grafu G^4 existuje hamiltonovská kružnice grafu G^4, jejíž žádná hrana do M nepatří.