Petr Emanovský
Convex isomorphism of Q-lattices

mathematica bohemica, Vol. 118 (1993), No. 1, 37–42

Persistent URL: http://dml.cz/dmlcz/126019

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz
CONVEX ISOMORPHISM OF Q-LATTICES

PETR EMANOVSKÝ, Olomouc

(Received June 28, 1991)

Summary. V. I. Marmazejev introduced in [3] the following concept: two lattices are convex isomorphic if their lattices of all convex sublattices are isomorphic. He also gave a necessary and sufficient condition under which the lattices are convex isomorphic, in particular for modular, distributive and complemented lattices.

The aim of this paper is to generalize this concept to the q-lattices defined in [2] and to characterize the convex isomorphic q-lattices.

Keywords: q-lattice, convex subq-lattice, convex isomorphism

AMS classification: 06A10, 06B15

1. THE LATTICE OF CONVEX SUBq-LATTICES

I. Chajda studied in [2] properties of the sets with a quasiorder (i.e. reflexive and transitive binary relation). If relation Q is a quasiorder over a set A then $E_Q = Q \cap Q^{-1}$ is an equivalence relation on A. Let us denote by A/E_Q the partition of A induced by E_Q. Then the relation Q/E_Q is an order over A/E_Q; this order will be denoted by \leq_Q. In [2] the author described especially the L-quasiordered set (i.e. a quasiordered set (A, Q) such that $(A/E_Q, \leq_Q)$ is a lattice). For $x \in A$ we will denote by $[x]$ the set $\{y \in A; yE_Qx\}$. We can choose a choice function κ over the power set $\operatorname{Exp}(A)$ of A such that $\kappa(B) \in B$ for each $b \in A/E_Q$. If A is the L-quasiordered set then we can define two binary operations \lor, \land on A as follows: $x \lor y = \kappa(\sup([x], [y]))$, $x \land y = \kappa(\inf([x], [y]))$. The algebra (A, \lor, \land) is then a q-lattice in the sense of the following definition: An algebra (A, \lor, \land) is called
A q-lattice (A, \vee, \wedge) induces the quasiorder Q as follows: aQb if and only if $a \vee b = b \vee a$.

Let $A = (A, Q)$ be a quasiordered set. We say that its subset $C = (C, Q)$ is convex if for each $x \in A$ the following implication holds: if $a, b \in C$, aQx and xQb, then $x \in C$. It is clear that \emptyset, A are convex subsets of A. A one-element subset of A need not be convex, e.g. $\{a\}$ is not convex in $(\{a, b\}, Q)$, where aQb, bQa. Let (A, \vee, \wedge) be a q-lattice and $S \subseteq A$ such that $x \vee y \in S$, $y \wedge y \in S$ for each $x, y \in S$. Then we say that (S, \vee, \wedge) is the subq-lattice of (A, \vee, \wedge).

Let (A, \vee, \wedge) be a q-lattice and (A, Q) its induced L-quasiordered set. We say that (S, \vee, \wedge) is a convex subq-lattice of (A, \vee, \wedge) if (S, \vee, \wedge) is a subq-lattice of (A, \vee, \wedge) and (S, Q) is a convex subset of (A, Q).

We will denote by $Cq(A)$ the set of all convex subq-lattices of a q-lattice A together with \emptyset. Let $Cq_A(X_i, i \in \mathbb{I}) = \{Z \in Cq(A); X_i \subseteq Z \ \forall i \in I\}$.

Lemma 1. Let $\{X_i; i \in \mathbb{I}\}$ be an arbitrary system of convex subq-lattices of a q-lattice A. Then $\bigcap \{X_i; i \in \mathbb{I}\} \in Cq(A)$.

The proof is evident.

Theorem 1. Let (A, \vee, \wedge) be a q-lattice and $\{X_i; i \in \mathbb{I}\}$ an arbitrary system of convex subq-lattices of A. Then $(Cq(A), \subseteq)$ is a complete lattice, where $\bigwedge \{X_i; i \in \mathbb{I}\} = \bigcap \{X_i; i \in \mathbb{I}\}$ and $\bigvee \{X_i; i \in \mathbb{I}\} = \bigcup Cq_A(X_i, i \in \mathbb{I})$ are the infimum and the supremum, respectively.

The proof follows immediately from Lemma 1 and Theorem 17 in [4].

2. **Convex isomorphic q-lattices**

We say that q-lattices A, B are convex isomorphic if the lattices $(Cq(A), \subseteq)$ and $(Cq(B), \subseteq)$ are isomorphic.

For a quasiordered set (A, Q), $a, b \in A$, aQb we say that the set $[a, b] = \{x \in A; aQx, xQb\}$ is the segment of (A, Q) determined by the elements a, b (if Q is an order then $[a, b]$ is called an interval).
Example 1. The \(q \)-lattices \(A, B, C, D, E \) in Figure 1 are convex isomorphic.

Example 2. Unlike the lattices and the ordered sets, a segment \([a, a]\) need not be a one-element set, e.g. for the segment \([a, a]\) of \(B \) in the foregoing example, we have \([a, a] = \{a, c\} = [c, c]\).

Example 3. The \(g \)-lattices \(A, B, C, D, E, F \) in Figure 2 are convex isomorphic.

Theorem 2. An arbitrary \(q \)-lattice \((A, \vee, \wedge)\) and its induced lattice \((A/E_Q, \leq_Q)\) are convex isomorphic.

Proof. Since \(E_Q \) is a congruence on \((A, \vee, \wedge)\) (see [2]) we can write \(X = \bigcup\{Y_i : i \in I\} \) uniquely for every set \(\emptyset \neq X \in Cq(A) \), where \(Y_i \in A/E_Q \) for each \(i \in I \) and \(Y_i \neq Y_j \) whenever \(i \neq j \) for any \(i, j \in I \). Therefore we can define a mapping \(F: Cq(A) \rightarrow \text{Exp}(A/E_Q) \) as follows:

(i) \(F(\emptyset) = \emptyset \),

(ii) \(F(X) = \{Y_i : Y_i \in A/E_Q ; X = \bigcup\{Y_i : i \in I, Y_i \neq Y_j \text{ for any } i, j \in I, i \neq j\}\} \) for \(\emptyset \neq X \in Cq(A) \).
We will show that F is an isomorphism of $Cq(A)$ onto $Cq(A/E_Q)$. We have $xQzQy$ for $x, y, z \in X \in Cq(A)$ if and only if $[x] \leq_Q [z] \leq [y]$ for $[x], [y], [z] \in F(X)$, and also $z \in X$ if and only if $[z] \in F(X)$, according to the definition of the relation \leq_Q. Thus $F(X)$ is a convex subset of A/E_Q. Furthermore, $x, y, z \in X \in Cq(A)$ if and only if $[x], [y] \in F(X), [x \vee y] = \sup ([x], [y]) \in F(X)$ and $[x \wedge y] = \inf ([x], [y]) \in F(X)$, so $F(X)$ is a sub-q-lattice of A/E_Q. It is evident that F is a bijection of $Cq(A)$ onto $Cq(A/E_Q)$, and for arbitrary $X, Y \in Cq(A)$ we have $X \subseteq Y$ if and only if $F(X) \subseteq F(Y)$, according to the definition of the mapping F. So F is an isomorphism of the lattices $(Cq(A), \subseteq)$ and $(Cq(A/E_Q), \subseteq)$. □

The following theorem is a corollary of Theorem 2 and Theorem 1 in [3].

Theorem 3. Let (A, \vee, \wedge), (A', \vee, \wedge) be q-lattices, Q, Q' their induced quasiorders. Then the following conditions are equivalent:
a) \((A,\vee,\wedge), (A',\vee,\wedge)\) are convex isomorphic.
b) \((A/EQ,\leq_Q), (A'/EQ',\leq_{Q'})\) are convex isomorphic.
c) There exists a bijection \(f: A/EQ \to A'/EQ'\) such that
\[
\left[\inf_Q (f(X), f(Y)), \sup_{Q'} (f(X), f(Y))\right] \text{ for each } X, Y \in A/EQ.
\]

Remark. Let \((A,\leq)\) be an ordered set. We say that its subset \(S = (S,\leq)\) is convex if for each \(x \in A\) the following implication holds: if \(a, b \in S, a \leq x \leq b\) then \(x \in S\). In [1] the author studied the lattice \((CS(A),\subseteq)\) of all convex subsets of ordered set \(A\). There is also given the following necessary and sufficient condition under which \((CS(A),\subseteq) \simeq (CS(A'),\subseteq)\) for any ordered sets \(A, A'\) (i.e. \(A\) and \(A'\) are convex isomorphic) in [1]: The ordered sets \(A, A'\) are convex isomorphic if and only if there exists a bijection \(f: A \to A'\) such that \(f(CS_A(a,b)) = CS_{A'}(f(a), f(b))\) for each \(a, b \in A\), where \(CS_A(a,b) = [a, b]\) for \(a \leq b\) and \(CS_A(a,b) = \{a, b\}\) for \(a \parallel b\).

Let us consider the more general class of quasiordered sets. Similarly, we can study the lattice \((CS(A),\subseteq)\) of all convex subsets of a quasiordered set \(A\). We can see that \((CS(A),\subseteq) \simeq (CS(A/EQ),\subseteq)\) for any quasiordered set \(A\). Consequently, if \((A,Q), (A',Q')\) are any quasiordered sets, we have \((CS(A),\subseteq) \simeq (CS(A'),\subseteq)\) if and only if there exists a bijection \(f: A/EQ \to A'/EQ'\), such that \(f(CS_{A/EQ}(X,Y)) = CS_{A'/EQ'}(f(X), f(Y))\) for each \(X, Y \in A/EQ\).

The concepts of distributive and modular \(q\)-lattices were defined in [2]. We say that the \(q\)-lattice \((A,\wedge,\vee)\) is distributive if \(a \lor (b \land c) = (a \lor b) \lor (a \land c)\) for each \(a, b, c \in A\) and \((A,\wedge,\vee)\) is modular if \(a \land ((a \land b) \lor c) = (a \land b) \lor (a \land c)\) for each \(a, b, c \in A\).
We can also define the complemented q-lattices. A q-lattice \(A \) has zero 0 or unit 1 if \(x \land 0 = 0 \) and \(x \lor 1 = 1 \) for each \(x \in A \). A q-lattice \((A, \land, \lor) \) with 0 and 1 is complemented if for each \(a \in A \) there exists \(b \in A \) such that \(a \lor b = 1 \) and \(a \land b = 0 \); \(b \) is called the complement of \(a \). According to [2] a q-lattice \((A, \land, \lor) \) is distributive (modular, complemented) if and only if its induced lattice \((A/EQ, \leq_Q) \) has the same property. Thus we have the following corollary with respect to Theorem 6 in [3] and Theorem 3:

Corollary. Let \((A, \land, \lor), (A', \land, \lor) \) be convex isomorphism q-lattices. Then \((A, \land, \lor) \) is distributive (modular, complemented) if and only if \((A', \land, \lor) \) has the same property.

References

Author’s address: Pedagogická fakulta UP, Žižkovo nám. 5, 771 40 Olomouc.