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VALUATIONS ON MODULAR LATTICES
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Summary. It is well-known that there exist infinite modular lattices possessing no non-trivial
valuations. In this paper a class X" of modular lattices is defined and it is proved that each lattice
belonging to X" has a nontrivial valuation. Next, a result of G. Birkhoff concerning valuations
on modular lattices of finite length is generalized.
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We denote by A the class of all modular lattices L which satisfy the following
conditions:

(i) Lhas a prime interval.

(i) If @, be L, a < b, then there are ay, a,, a,, ..., a, in Lsuch that a = g, <
<a; <...<a,=>b and for each ie{1,2,...,n} either a;_, is covered by a;,
or the lattice [a;_;, a;] has no prime interval.

It will be proved that each lattice belonging to J possesses a nontrivial valuation
(Theorem 1). The notion of discrete valuation will be introduced. Theorem 2 con-
cerning discrete valuations generalizes Birkhoff’s theorem concerning valuations on
modular lattices of finite length ([1], Chap. X, Theorem 7).

Valuations, metrics associated with valuations, and applications of this theory
(including the applications in social sciences) were investigated in the expository
paper [3].

In what follows we assume that L is a lattice belonging to X"

For a, b e L with a < b we denote by S(a, b) the set of all finite sequences
(a0, ay, ..., a,) with the properties as in the condition (ii) above. If s = (a, ay, ..., a,) €
€ S(a, b), then we put I{s) = {ie{1,2,...,n}: a;; < a;}, where < is the symbol
denoting the covering relation.

Lemma 1. Let a,be L,a < b, s = (a,, ay, ..., a,) € S(a, b), s = (bo, by, ..., bp) &
€ S(a, b). Then

(i) card I(s) = card I(s');

(i1) if card I(s) + 0, then there exists a one-to-one mapping @ of I{s) onto I(s’)
such that for each iecl(s) the interval [a;-,, a;] is projective to the interval

[btp(!’— 1) b‘P(i)]‘
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Proof. This is an immediate consequence of the Schreier-Zassenhaus Theorem;
cf. also [1], Chap. I, Theorem 9, and Corollary to this theorem.

Let P be the set of all prime intervals of L. We denote by R the set of all reals.
Let f: P — R be a mapping such that f([u,, v;]) = f([4,, v,]) whenever [u,, v,] and
[, v,] are projective prime intervals of L.

For a, be Lwith a < b and s = (ay, a,, a, ..., a,) € S(a, b) we put

d(a, b; f,s) =Y. f(ai-y,a;) (iel(s)).
From Lemma 1 we obtain:
Lemma 2. Let a,be L, a < b. Next, let s and s’ be elements of S(a, b). Then
d(a, b; f,s) = d(a, b; f, &).

In view of Lemma 2 we shall write d(a, b; f) instead of d(a, b; f, s). Next, Lemma 2
yields:

Lemma 3. Let a, b,ce L,a < b < c. Then d(a, ¢; f) = d(a, b; f) + d(b, c; f)-
If a = b, then we set d(a, b) = 0.
Lemma 4. Let a,b,ceL,a v b £ c. Then
d(a,a v b;f) —d(b,a v b; f) = d(a,c; f) — d(b, c; f) .
Proof. In view of Lemma 3 we have
d(a,c;f) =d(a,a v b; f) + d(a v b, c; f),
d(b,c;f) =d(b,a v b;f) + d(a v b,c; f),

which implies the assertion of the lemma.
The following lemma is a consequence of the well-known facts concerning PIo-
jectivity in modular lattices; the proof will be omitted.

Lemma 5. Let [a, b] and [a’, b'] be projective intervals in L. Then d(a, b; f) =
= d(a’, b'; f).
Let x, be a fixed element of L. For each a € L we put

vi(a) = d(xo, %o v a; f) — d(a, xo v a5 f).
In view of Lemma 4 we have

v/(a) = d(xo, ¢; ) — d(a, c; f)

for each c e Lwith ¢ = x, Vv a.

Lemma 6. Let a,be L,a < b. Then
vy(b) — v/{a) = d(a, b; f).
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Proof. Put ¢ = x4 v b. Then
v/(b) = d(xo, ¢; f) — d(b, c; f)
v(a@) = d(xo, ¢; f) — d(a, c; f) .

Now it suffices to apply Lemma 3.

Lemma 7. v, is a valuation on the lattice L.

Proof. Let a, b € L. We have to verify that
(1) vi(a) — va A b) = vila v b) — v,(b)

is valid. In view of Lemma 6,

va) —oa A b)y=d(a A b,a;f),
vi{a v b)—v(b)=d(b,av b;f).
Since the intervals [a A b, a] and [b, a v b] are projective, in view of Lemma 5 we
infer that (1) is valid.
We can choose, e.g., v{[a;, b;]) = 1 for each prime interval of L; then, because L
has at least one prime interval, the valuation v, is nontrivial (i.e., there are a, be L
with v{(a) % v/(b)). Hence we obtain

Theorem 1. Let L be a lattice belonging to the class A". Then L possesses a non-
trivial valuation.

A valuation v on L will be said to be discrete if, whenever a, b are elements of L
such that a < b and the lattice [a, b] has no prime interval, then v(a) = b).

Let v be a discrete valuation on L. For each prime interval [a,, b,] in Lput

f([as, by]) = t(by) — ofay) .
If [a,, b,] and [a,, b,] are projective prime intervals of L, then we clearly have
f([ay, by]) = f([a2, b,]). The mapping f will be said to be generated by the valua-
tion v. Let x, be a fixed element of L; next, let v, and d have the same meaning as
above.

Lemma 8. Let v be a discrete valuation on Land let the mapping f be generated
by v. Let a,be L, a < b. Then v(b) — v(a) = d(a, b; f).

Proof. Choose (ao, ay, ..., a,) € S(a, b). Then
v(b) — v(a) = Y (v(a;) — a;—,)) (i=1,2,....n).
Because v is a discrete valuation, we obtain
ub) — va) = ¥ (o(a;) — ai-y) (i€X(S)),
hence v(b) — v(a) = d(a, b; f).

393



Theorem 2. Let Lbe a lattice belonging to the class A ". Assume that v is a discrete
valuation on L. Let f: P - R be a mapping of the set of all prime intervals of L
into R which is generated by v. Let xo € L and let v; be defined as above. Then
o(a) = v(x,) + v{a) for each a € L.

Proof. According to the definition of v (a) and in view of Lemma 8 we have

vi(a) = d(xo, %o v a; ) — d(a,xo v a; f) =
= 1v(xo vV a) — v(x,) — (v(xo v a) — ¥a)) = v(a) — v(x,).

If L is a modular lattice such that each bounded chain in Lis finite and card L > 1,
then obviously Le J'; moreover, each valuation on such a lattice is discrete. Hence
Theorem 7 in Chap. X, [1] is a consequence of Theorem 2 above.

A valuation v on a lattice L, will be said to be an i-valuation if v{x) is an integer
for each x € L,.

By looking at the proof of Theorem 1 we see that this result can be sharpened as
follows: Each lattice belonging to " possesses a nontrivial i-valuation.

A valuation v on a lattice L, will be called positive if, whenever a, b € L, and
a < b, then v(a) < v(b).

Let us denote by 2", the class of all modular lattices L; such that no interval
of L, is projective to a proper part of itself.

It is obvious that if L, is a lattice which does not bzlong to X,, then L, does not
possess any positive valuation.

In [1] (Problem 8.1) the question was proposed concerning the existence of non-
trivial valuations on lattices belonging to X ",. As far as I know, this problem is still
open.

On the other hand, the existence of a nontrivial valuation on a lattice does not
imply that this lattice belongs to J&,.

The following example shows that there exists Le X" with the property that there
is an interval in Lwhich is projective to a proper part of itself.

Example. Let C be the interval [0, 1] of reals with the natural linear order. Let M
be as in [2], § IV 1, Exercise 28. Next, let A = {0, 1} be a two-element lattice and
L= M x A. According to Exercise 29 (1b1d) M is a modular lattice. Hence L is
a modular lattice as well.

It is easy to verify that there is no prime interval in M. If m e M, then [(m, 0),
(m,1)] is a prime interval in L. Let (my, ay), (m,, a,) € L, (my, a;) < (my, a,). If
ay = a,, then there is no prime interval in the lattice [(m,, a,), (m,, a,)] (since this
is isomorphic to the interval [m,, m,] of M). If a, < a,, then [(my, a,), (my, a;)] is
a prime interval and the lattice [(m,, a,), (M3, a,)] does not contain any prime inter-
val. Thus Lbelongs to the class X .

Let x be areal, 0 < x < 1. Put

1 =(0,0,0), m;=(x,0,0), m3=(1,0,0).
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Then m;e M (i = 1,2, 3) and clearly the interval [my, m,] is a proper subset of
[my, ms]. In view of Exercise 30 (ibid.) the intervals [m,, m,] and [m,, m3] of M
are projective (the results of the Exercises quoted above are due to E. T. Schmidt
[4)).

Denote v; = (m;,0) (i = 1,2, 3). Then the interval [v,, v,] is a proper subset
of [vy, v3], and the two intervals are projective in L.

A prime interval [x, y] of a lattice L, will be said to be regular if the following
condition is satisfied:

(iii) Whenever a, b€ L, and a < b, then there are a,, a,, 4, ..., a, in L, such that
a=a,<a,<a,<..<a,=>b and for each ie{l,2,...,n} either [a;,,, a;]
is projective to [x, y], or no subinterval of [a;_,, a;] is projective to [x, y].

Theorem 3. Let L, be a modular lattice possessing a regular prime interval
[x, y]. Then there exists an i-valuation v on L, such that o(y) — v{x) = L.

The proof requires steps analogous to those which are applied in the proof of
Theorem 1 (with the distinction that the system of all prime intervals is now replaced
by the system of all prime intervals which are projective to [x, y]). The details will
be omitted.

The following questions remain open:

(1) Does there exist a lattice possessing a nontrivial valuation which has no non-
trivial i-valuation?

(2) Let L, be a modular lattice having a prime interval; does L, possess a non-
trivial valuation?
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Stihrn

VALUACIE NA MODULARNYCH ZVAZOCH
JAN JakuBfk
Je zname, Ze existujd moduldrne zvdzy, na ktorych nie je moZné definovat netrivialnu va-
lu4ciu. V praci sa definuje trieda & modularnych zvizov a dokazuje sa, %e pre kaZdy sviz tejto

triedy existuje netrividlna valuacia. Dalej sa v &lanku zovSeobeciiuje veta G. Birkhoffa o valu4-
ciach modularnych zvizov kone&nej dizky.
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