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Summary. The paper is concerned with the existence of non-negative or positive solutions 
to Af = /?, where A is the vertex-edge incidence matrix of an undirected graph. The paper gives 
necessary and sufficient conditions for the existence of such a solution. 
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1. INTRODUCTION AND DEFINITIONS 

Let G = [V(G), E(G)~] be a connected non-directed graph without loops or multiple 
edges with n vertices denoted by vl9 v2,..., vrt, and let /? = (bx, b2,..., bn) be an 
n-dimensional vector of positive real numbers. The graph G is called ^-non-negative 
or ^-positive if there exists a non-negative or positive solution f to the system of 
linear equations 

Z Vfat' e) • f(e) = ht f o r / = 1, 2,. . . , n , 
eeE(G) 

where rj(vh e) = 1 when the vertex vt and the edge e are incident or 0 otherwise. In 
other terms, if there exist non-negative or positive edge labels such that the sum of 
labels incident to vt is bt for all 1 ^ i ^ n. 

The solution f is called a ^-non-negative or ^-positive labelling of G with the in­
dexing vector p. We use this terminology in accordance with [6], where another 
characterization of jS-positive graphs was given. 

If we consider the vector /? and the solution of non-negative integers our problem 
coincides with the problem known as perfect b-matchings (see the book [5, p. 271]). 

In the special case when /? is a stationary vector of integers, the jS-positive graph has 
been called a regularisable graph in Berge's paper [l] (see also [5, p. 218]), or 
a semimagic graph in [2], [3] and [7]. 

The aim of this paper is to characterize all vectors /? for which the given graph G 
is j?-non-negative or /?-positive, respectively. Tutte's characterization of perfect 
2-matching graphs [5, p. 216] î  a particular case of our Theorem 1. 

We use the terminology of Griinbaum's book [4]. Under an elementary vector ejy 
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assigned to the edge (vh Vj) we understand an w-dimensional vector with the i-th 
and I-th coordinates equal to 1 and all others equal to 0. The set of all elementary 
vectors assigned to edges of E(G) will be denoted by s/G. We say that the subset 
of E(G) is linearly independent if the set of assignment vectors is linearly independent. 
The edges of a factor F of G are linearly independent iff every connected component 
of F is a tree or has exactly one odd circuit. By the symbol Jf G we denote the set of 
all admissible indexing vectors of the given graph G. Evidently, every vector of XG 

is a linear combination of vectors of s4G with non-negative coefficients. This yields 

Lemma 1. Jf G is a cone generated by vectors of s/G with the apex (0, 0,..., 0). 

2. RESULTS CONCERNING THE CONE XG 

Lemma 2. The dimension of Jf G is n if G is a non-bipartite graph and n — 1 if 
G is a bipartite graph. 

Lemma 2 is similar to Theorem 1 of [3]. 
In view of Theorem 1 of [4, p. 31] and [5, p. 256] the following assertion is true: 

Lemma 3. If G is a non-bipartite graph, then tfG is the intersection of a finite 
family 3tf of closed half spaces. 

Let H1? H2 , . . . , Hk be the boundaries of halfspaces of ̂ f. Each of these hyperplanes 
is determined by the origin and n — 1 linearly independent vectors of s/G. We denote 
by St the normal vector of the hyperplane H„ i = 1,2,..., k. Without loss of generali­
ty, we assume that for every index i, S( is a normal vector such that its first non-zero 
coordinate is 1 or - 1 and for all j8 e XG the scalar product </?. Sty is non-positive. 

By the symbol Q) we denote the set {Sl9 S2,..., Sk} of all normal vectors considered. 

Corollary 1. XG is the set of all n-dimensional vectors ft such that <J?. 5f> ^ 0 
for i = 1,2,...,*. 

3. THE STRUCTURE OF VECTORS OF 9 

Let H be a hyperplane of an arbitrary halfspace of Jf and let S = (du d2>..., dn) e 
€ 3) be its normal vector. 

We divide the vertices of G into three sets: 

if d{ > 0 then vt e S{ , 

if d( < 0 then vt e Si. x, and 

if d( = 0 then v{ e Sj . 

By G6 we denote the factor of G consisting of all edges assigned to the elementary 
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vectors forming the hyperplane H. The edges of the factor Gd are linearly independent. 
Since the cardinality of E(G6) is n — 1, therefore exactly one component of Gs is 
a tree Tand each other component contains one odd circuit C. 

Let M be a component of G5 having one odd circuit C. The relation <<5. sl7> = 0 
holds for all edges (vh Vj) e E(M) only if every vertex of the circuit C belongs to S0, 
and consequently every vertex of the component M belongs to S0, too. The non-zero 
coordinates of 8 are associated only to vertices of T. 

Lemma 4. If the edge e = (vh Vj) e E(Gd) and the vertex i>j e Sl5 then Vj e S i x . 
The proof follows from the fact that if the edge (vi9 v3) e E(G), then the assigned 

elementary vector eiy- e XG and so <el>y. <5> = d( + dj ^ 0. 

Lemma 5. The coordinates of the vector 8 are 1 or — 1 or 0. 

Proof. The first non-zero coordinate of 5, dt = 1 or - 1 corresponds to the 
vertex vt which belongs to the component Tof G5 which is a tree. We have <e,7 . <5> = 
= 0 for all edges of E(T) and consequently, if the coordinate dt = — 1, then di = 1 
or if dt = 1, then dj = — 1. So all vertices of T can be divided into two independent 
sets V! and V2 such that if d{ = 1 then vt e Vx and if d} = — 1 then ^ e V2. 

Corollary 2. Tfte set Sj is independent in V(G) and the set of the neighbour 
vertices /"(Sj) is equal to the set S i j . 

4. CHARACTERIZATION OF J9-NON-NEGATIVE GRAPHS 

Theorem 1. Let G be a connected graph with n vertices vl9 v2,..., vn and let ft = 
= (bi9 bl9..., bn) be a vector of non-negative numbers. The graph G is p-non-
negative if and only if 

(1) £ bi = £ bj for all independent S * 0 0f G. 
vteS Vjer(S) 

Proof. Since no two vertices of S are joined by an edge the necessity of condition 
(1) is evident. 

Let G be a non-bipartite graph. The set S\ is independent in V(G) and S i t = 
= r(S\) and so the scalar product </?. <5> satisfies 

<P • <*> = I h - 2 &^ 0 
vteS!* vjer{Si*) 

for all vectors of 2, i.e. the vector p e XG. 
Let G be a bipartite graph with the partition Vu V2 of the vertex set V(G) and let 

|V(G)| = 3 (otherwise it is trivial). Then (l) implies 

(2) E - N - I i V 
vteVt vjeVi 
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Now we form a non-bipartite graph G' by adding to edges of G one new edge 
connecting two vertices vt and Vj of Vx. The graph G' has a /^-labelling f. Evidently 
f(ih Vj) = 0 and so f is a /?-non-negative labelling of G. 

5. CHARACTERIZATION OF ^-POSITIVE GRAPHS 

Using the previous Lemmas and Corollaries and Theorem 1 it is easy to prove our 
main results. 

Theorem 2. Let G be a non-bipartite connected graph with n vertices vu v2,..., vn 

and let /? = (bu b2,..., bn) be a vector of positive real numbers. The graph G is 
p-positive if and only if 

(3) Y bt < Y tbj f o r a 1 1 independent S * 0 of G . 
vteS vjer(S) 

Proof. For every independent S there exists at least one edge joining some vertex 
of F(S) with a vertex v $ S. Therefrom the necessity of (3) follows. 

We define a new vector />' with the coordinates b\ = b{ — [i deg (vt), i = 1, 2,.. ., n, 
where 

\i = \ min { Y bj - Y bt: S + 0 is an independent subset of V(G)} . 
vjer(S) vteS 

Theorem 1 implies that G is a /T-non-negative graph with the labelling f'. So G is 

a ^-positive graph with a labelling f such that f(e) = f'(e) -f fi for all edges. 

Theorem 3. Let G be a bipartite graph with a partition Vu V2 having n vertices, 
and let f$ = (bl9 b2, ..., bn) be a vector of positive real numbers. The graph G is 
ft-positive if and only if 

(4) Ibt = l ь , 
VІЄVÍ vjвV2 

(5) Y bi < Y bj for all independent S =j= 0 , VltV2. 
vteS vj^r(S) 
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Súhrn 

O ZOVŠEOBECNENÍ ÚPLNÉHO 6-SPÁRENIA 

EUBICA ŠÁNDOROVÁ, MARIÁN TRENKLER 

Práca sa zaoberá existenciou nezáporných* resp. kladných rieŠení systému lineárnych rovnic 
Af -= /?, kde A je vrcholovo-hranová incidenčná matica neorientovaného grafu a /? n-rozmerný 
vektor z reálných čísel. V práci sú uvedené nutné a postačujúce podmienky pře existenciu takých-
to riesení. 

Authoťs address: Department of Mathematics, P. J. Šafárik University, Jesenná 5, 041 54 
Košice. 
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