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Summary. The domination number and the domatic number of a certain special type of 
Kneser graphs are determined. 
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Here we will determine the domination number and the domatic number of Kneser 
graphs A'(n,2). 

Let G be a finite undirected graph without loops and multiple edges. The vertex 
set of G is denoted by V(G), its edge set by E(G). Two edges are called adjacent, if 
they have a common end vertex. 

A set D C V(G) is called dominating in G, if for each vertex x G V(G) — D 
there exists a vertex y E D adjacent to x. The minimum number of vertices of a 
dominating set in G is called the domination number of G and denoted by 6(G). 

A partition of V(G), all of whose classes are dominating sets in G, is called a 
domatic partition of G. The maximum number of classes of a domatic partition of 
G is called the domatic number of G and denoted by d(G). 

The domatic number of a graph was introduced by E. J. Cockayne and S. T. Hedet-
niemi in [1]. 

Now let k, n be two integers such that 2 ^ k < n. Then the Kneser graph A'(n, k) 
is defined in the following way. Let M be a set, \M\ = n. Let V(K(n,k)) be the 
set of all subsets of M which have the cardinality k. The vertex set of K(n,k) is 
V(K(n,k)) and two vertices are adjacent in K(n,k) if and only if they are disjoint 
(as sets). 
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This concept was introduced by M. Kneser [4] and studied by L. Lovasz [5]. A 
particular case when n = 2k + 1 was studied by H. M. Mulder [6] under the name of 
an odd graph. 

In this paper we shall consider the particular case when k = 2. At proving theo­
rems we shall use the following proposition whose proof is straightforward. 

Proposition 1. Tiie Kneser graph A'(n,2) for each n ^ 3 is isomorphic to the 
complement of the line graph of the complete graph Kn. 

We determine the domination number of A'(n,2). 

Theorem 1. The domination number of the Kneser graph A'(n, 2) for each n ^ 3 
is equal to 3% The set D = {u\, 1/2,1/3} is dominating in K(ny 2) forn^b if and only 

if either u\ D u2 = u\ H1/3 = u2 01/3 = 0, or \u\ Uu 2 U u%\ = 3. 

P r o o f . If D fulfils the above described condition, then each set from 
V(K(n,2)) — D is disjoint at least with one element of D, therefore D is a dom­
inating set in A'(?i,2). As such a set exists in each A'(n,2) for n ^ 3, we have 
6(A'(n,2)) ^ 3. Suppose that there exists a two-element dominating set {v\,v2} in 
K(n,2). The vertices v\t v2 are distinct two-element subsets of M and thus the set 
differences v\ — v2j v2 — v\ are non-empty. If a G v\ — v2i b G v2 — t>i, then the 
set {a,6} is an element of V(A'(n,2)) - {i>i,i>2} and has non-empty intersections 
with both v\, v2. This is a contradiction with the assumption that {v\,v{\ is a 
dominating set in A'(n,2). Hence t5(A'(n,2)) = 3. 

In the rest of the proof we use Proposition 1 for simplifying the considerations. 
We shall consider A'(n,2) as the complement of the line graph of Kn. Let D = 
{ui,U2,U3} be a dominating set in A'(n,2). Then ui , 1/2, 1/3 are such edges of Kn 

that no other edge of Kn is adjacent to all of them. The condition described in the 
theorem means that 1/1, u2, 1/3 either are pairwise non-adjacent, or form a triangle. 
Let us look at the other cases which can occur for three edges. If these edges form a 
path of length 3, then, without loss of generality, ui = {a, &}, u2 = {6, c}, 1/3 = {c, d}, 
where a, 6, c, d are pairwise different elements of M. Then {a,c} has non-empty 
intersections with each of 1/1,1/2,1/3. If u\, U2,1/3 form two disjoint paths of lengths 2 
and 1, then, without loss of generality, u\ = {a, 6}, u2 = {6, c}, 1/3 = {rf, e} and {6, d} 

has non-empty intersections with each of 1/1, i/2, 1/3. If u1} i/2, 1/3 form a star, then, 
without loss of generality, ui = {a, 6}, u2 = {a, c}, 1/3 = {a, d}. As we have supposed 
n ^ 5, there exists e G M — {a, 6, c, d} and {a,e} has non-empty intersections with 
all ui , U2, U3. We have exhausted all possible cases and thus we have proved the 
necessity of the above mentioned condition. D 
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Now we shall study the domatic number. We shall start with a proposition. 

Proposition 2. Tine domatic number satisfies 

d(A'(5,2)) = 2. 

P r o o f . Consider the complete graph A'5. In it no three edges are pairwise 
non-adjacent. Therefore three edges of A'5 form a dominating set in the complement 
of the line graph of A'5 if and only if they form a triangle. In A5 there exists a pair of 
edge-disjoint triangles, therefore d(K(bt 2)) ^ 2. But if we take any two edge-disjoint 
triangles in A'5, then the set of all edges not belonging to them forms a quadrangle. 
The set of all edges of a quadrangle in A'5 is not dominating in the complement 
of the line graph of A'5, because an edge forming a diagonal of this quadrangle is 
adjacent to all these edges. As A(5,2) has ten edges, any partition of its edge set 
into three classes of cardinalities at least 3 has two three-element classes and one 
four-element class. Therefore there is no domatic partition of A'(5,2) with three 
classes and </(A'(5,2)) = 2. • 

Note that A(5,2) is the Petersen graph. 
Now we shall prove a theorem. 

Theorem 2. Let n be an integer, n ^ 3, n ^ 5. Tiien the domatic number 

satisfies 

'rf(ff(n,2))=[in(n-l)J. 

P r o o f . The graph A'(3,2) consists of three isolated vertices and thus 
a,(A'(3,2)) = 1. The graph A'(4,2) consists of three pairwise disjoint copies of 
A'2 and thus rf(A'(4,2)) = 2. Now consider n ^ 6. We shall again use Proposition 1. 

Let n = 0 (mod 6). Then we may write n = 6p, where p is an integer. The 
complete graph K$p can be decomposed into 6p — 1 pairwise edge-disjoint linear 
factors; each of them has 3p edges. In each of these factors we choose a partition of 
its edge set into p classes, each having three elements. Each class consists of three 
pairwise non-adjacent edges and therefore these classes form a domatic partition 
of the complement of the line graph of A'n. The total number of these classes is 
p(6p — 1) = ^n(n — 1). As S(K(n/2)) = 3, a domatic partition cannot have more 
classes and d(A'(n,2)) = ^n(n - 1). 

Let n = 1 (mod 6). Then we may write n = 6p + 1. The graph A6p.fi can 
be decomposed into 6p + 1 maximal matchings, each having 3p edges. We proceed 
analogously as in the preceding case and obtain p(6p+l) = ^n(n—1) pairwise disjoint 
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dominating sets of the complement of the line graph of Kn. Again d(K(n,2)) = 
i n ( n - l ) . 

Let 71 = 2 (mod 6). Then we may write n = 6p-{- 2. We choose two vertices «i, 
ii2 °f I*n and consider the complete graph KQP obtained by deleting these vertices. 

This graph can be decomposed [3] into one linear factor and 3p — 1 Hamiltonian 
circuits. We choose one Hamiltonian circuit C of them and denote the vertices of 
A'ep by v\, . . . , VQP in such a way that the edges of C are v,tIi+1 for i = 1, . . . , 6p, 
the subscripts being taken modulo 6p. We consider 6p triples of edges of the form 
{tiiv,-,ti2Va+i, ^t+2^+3} (as 6p > 3, these edges are pairwise non-adjacent) for i = 1, 
. . . , 6p, subscripts being taken modulo 6p. These triples form a partition of the set of 
edges of C and all edges joining a vertex of {«i, u%} with a vertex of Iv"6p. Further, 
for each of the Hamiltonian circuits of the decomposition which are different from 
C we choose, a partition of its edge set into 2p classes, each having three pairwise 
non-adjacent edges (evidently such a partition exists). Finally, with the linear factor 
of the decomposition we proceed as in the case ?i =. 0; we obtain p new dominating 
sets. The remaining edge 1*1 W2 can be added to an arbitrary one of them. The total 
number of the dominating sets constructed is 6p -f (3p - 2)2p ~\- p = p(6p -f 3) = 
1„(„ - 1) - i =-[!„(„- l ) j . 

Let n = 3 (mod 6). Then we may write n = 6p-f 3. The graph I\"6P+3 can be de­
composed [3] into 3p-f 1 pairwise edge-disjoint Hamiltonian circuits. In each of them 
we choose a partition of its edge set into 2p -f 1 classes, each having three pairwise 
non-adjacent edges. These classes form a dornatic partition of the complement of the 
line graph of Kn. The total number of these classes is (3p-f l)(2p-f 1) = ^Ji(n — 1). 

Let n = 4 (mod 6). Then we may write n = 6p-f 4. We choose four vertices tii, t*2, 
i*3, U4 of Kn and consider the complete graph KeP obtained by deleting them. This 
graph can be decomposed [3] into one linear factor and 3p — 1 Hamiltonian circuits. 
We choose two Hamiltonian circuits Ci, C2 of them. Now we proceed analogously as 
in the case n = 2, taking tii, 1*2, Ci and w3, w4, C2. We have 12p triples of pairwise 
non-adjacent edges which form a partition of the set of all edges of Ci and C2 and 
all edges joining a vertex of {uu . . . , u4} with a vertex of Kep. With all Hamiltonian 
circuits of the decomposition which are different from Ci and C2 we proceed as in 
the case n = 2 with circuits; we obtain 2p(3p — 3) triples of pairwise non-adjacent 
edges. Further, we take the edges of the linear factor of the decomposition and choose 
three of them, ci, e2, e3. We consider three triples {ei, 1*^2,^*4}, {e2,111^3,112^4}, 
{e3,tiiti4,ti2ti3} and p— 1 triples of edges of the linear factor different from ei, e2, 
e3. All described sets form a dornatic partition of the complement of the line graph 
of Kn with 12p -f 2p(3p - 3) + 3 + p - 1 = (3p -f 2)(2p -f 1) = \n(n - 1) classes. 

Finally, let n = 5 (mod 6). We may write n = (6p + 3) -f 2. We choose two 
vertices u\, t*2 of Kn and consider the complete graph A'6p+3 obtained by deleting 
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these vertices. This graph can be decomposed [3] into 3p + 1 pairwise edge-disjoint 
Hamiltonian circuits. As p ^ 1, we may proceed analogously as in the case n = 2 
(except the linear factor). In this way we obtain 6p+ 3 + 3p(2p + 1) = [^n(n — 1)J 
pairwise disjoint dominating sets of the complement of the line graph of Kn. This 
proves the theorem. • 

Now we shall add some results on the total dominating number and the total 
domatic number. 

A subset D C V(G) is called a total dominating set in G, if for each vertex 
x E V(G) there exists a vertex y G D adjacent to x. The minimum number of 
vertices of a total dominating set in G is called the total domination number of G 
and denoted by 6t(G). 

A partition of G, all of whose classes are total dominating sets in G, is called a 
total domatic partition of G. The maximum number of classes of a total domatic 
partition of G is called the total domatic number of G and denoted by dt(G). 

The total domatic number of a graph was introduced by E. J. Cockayne, R. M. 
Dawes and S. T . Hedetniemi in [2]. Note that a total dominating set can exist only 
in a graph without isolated vertices and thus 6t(G) and dt(G) are well-defined only 
for such graphs. 

Theorem 3. For the total domination number of the Kneser graph K(ny2) the 
following holds: 

MK(4,2)) = 6, 

*t(tf(5,2)) = 4, 

6t(A'(n,2)) = 3forn5>6. 

The set D = {u\, u2,1/3} is a total dominating set in A'(n, 2) if and only ifu\ C\u2 = 
U\ Otl3 = W2 H«3 = 0. 

R e m a r k . The graph A'(3,2) consists of three isolated vertices and therefore 
«t(A'(3,2)) is not defined. 

P r o o f . In Theorem 1 two cases were described when the set D = {t/i, 112,1*3} 
is dominating, and a set can be total dominating only if it is dominating. In the 
case |wi U U2 U U3I = 3 the set D is not total dominating, because for no element 
of D there exists another element of D disjoint with it. On the other hand, if 
u\ f) u2 = wi H M3 = u2 C\ 1/3 = 0, this set is total dominating. In A'(4,2) and 
in A'(5,2) no such set exists. The graph A'(4,2) is regular of degree 1 and thus 
<$t(A'(4,2)) = |V(A'(4, 2))| = 6. The graph K(5,2) is the Petersen graph. It contains 
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ten stars K\ts and the vertex set of each of them is total dominating in it; hence 
6t(K(5,2)) = 4. In Kn for n ^ 6 there exist three pairwise non-adjacent edges and 
thus««(A:(n,2)) = 3. • 

Theorem 4. Let n be an integer, n ^ 6. Then 

dt(K(n,2))=[±n(n-l)\. 

P r o o f . The domatic partition of such a graph constructed in the proof of 

Theorem 2 is also a total domatic partition, which implies the assertion. • 

At the end we shall express a proposition concerning the remaining cases. 

Proposition 3. The total domatic numbers satisfy 

dt(K(4,2))=l, 

dt(K(5,2)) = 2. 

P r o o f . The graph K(4,2) has vertices of degree 1, therefore [2] its total domatic 
number is I. The total domatic number of A'(5,2) cannot exceed its domatic number 
equal to 2. There exists a partition of K(b, 2) (the Petersen graph) into two classes, 
each of which induces a circuit of length 5. This is a total domatic partition of 
K(5,2) and therefore rf«(tf(5,2)) = 2. D 
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