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0. INTRODUCTION 

All manifolds are assumed to be finite dimensional, HausdorfF, without boundary 
and C°°. Mappings are assumed to be C°° and foliations are assumed to be C°° and 
without singularities. (For equivalent definitions of foliations see [2].) 

From now on we fix two natural numbers n and p such that p < n. Suppose that 
to any ;>-dimensional foliation F defined on an n-manifold M there corresponds a 
foliation L(F) on TM projecting (by the tangent bundle projection) onto F. Ac­
cording to the general theory of natural transformations, see [1], we introduce the 
following definition. 

Definition 0.1. A correspondence L as above is called a natural lifting of folia­
tions to the tangent bundle iff the following naturality condition is satisfied: for any 
foliation F of dimension p on an n-manifold M and any diffeomorphism <p from an 
n-manifold IV onto an open subset of M we have L(<p~lF) = (d<p)~lL(F)} where 
<p~1F is the inverse image of F and d<p denotes the differential of <p. 

We have the following examples of natural liftings of foliations to the tangent 
bundle. 

E x a m p l e 0.1. Let F be a p-dimensional foliation on an n-manifold M. It is 
well-known that the tangent bundle TM admits canonically defined foliations L\(F) 
of dimension 2p and L2(F) of dimension p + n projecting (by the tangent bundle 
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projection *M : TM —> M) onto the initial foliation F. More precisely, L2(F) = 
Trjj^F, the inverse image, and L\(F) is defined by a cocycle (*jj/(t/|),d/,-,(i</i;), 
where (f/i, fi*9ij) is a cocycle defining F. It is easy to verify that the correspondence 
F —> Li(F), i = l , 2 , are natural liftings of foliations to the tangent bundle. 

The main theorem in this paper is the following one. 

Theorem 0.1, Any natural lifting of foliations to the tangent bundle belongs to 
the set {Li, L2} described in Example 0.1. 

1. NOTATION 

From now on we use the following notation. We denote by d\) ..., dn the canonical 
vector fields on Rn, by d the vector 5n|0, by ir: TRn —• Rn the tangent bundle 
projection and by Fp the standard p-dimensional foliation on Rn spanned by 3i, ..., 
dp. By et- we denote the vector (0 , . . . , 1, . . . , 0) E Rn, 1 in the t'-th position. 

From now on we identify a foliation with its tangent distribution. 

2. REDUCIBILITY LEMMA 

The following Lemma plays an essential role in the proof of the main theorem. 

Lemma 2.1. Let La and Lb be two natural liftings of foliations to the tan­
gent bundle. Suppose that La(F

p)d C Lb(F
p)d. Then La(F) C Lh(F) for any 

p-dimensional foliation F on an n-manifold. In particular, if La(F
p)a = Lb(F

p)e, 
then La = Lb. 

P r o o f . Let F be a p-dimensional foliation on an n-manifold M. Consider 
z € TM \ F. By the Frobenius theorem there exists a diffeomorphism <p from 
an open subset U C Rn onto an open subset of N such that <p~lF = i~lFp and 
d<p(d) = Zi where i: U —* Rn is the inclusion and 8 E TU is the vector such that 
di(d) = d. Using the naturality condition we see that La(F)z = d(d(p)(La(i"

1 FP)Q) 
and d(di)(La(i~

%Fp)$) = La(F
p)z, and similarly for Lb. Therefore the assumption 

of the Lemma implies that La(F)z C Lb(F)z. Since TM\F is dense in TM, we 
deduce that La(F) C Lb(F). • 
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3. ADMISSIBLE SUBSPACES 

We introduce the following definition. 

Definition 3.1. Let z G T0R
n be a vector. A global diffeomorphism <p: Rn -> Rn 

is called z-admissible iff <p~lFp = Fp and d<p(z) = z. A subspace W C TjTRn is 
called z-admissible iff for any z-admissible diffeomorphism <p we have d(d<p)(W) = W 
and dir(W) = F0

P. 

Using the naturality condition it is easy to verify the following Lemma. 

Lemma 3.1. If L is a natural lifting of foliations to the tangent bundle, then 
L(Fp)z is z-admissible for any z £ T0R

n. 
Therefore, to prove Theorem 0.1 it is sufficient to verify the following proposition. 

Proposition 3.1. Any d-admissible subspace contains L\(Fp)e. Any 0-admiss-
ible subspace strictly containing L\(Fp)0 is equal to L2(Fp)o, where L\, L2 sure 
described in Example 0.1. 

From Proposition 3.1 and Lemmas 2.1 and 3.1 we deduce Theorem 0.1 in the 
following way. Consider a natural lifting L ^ L\. By Lemmas 3.1 and 2.1 and 
Proposition 3.1 it follows that L(Fp)d £ L\(Fp)d. Then (by Lemma 2.1 and the 
dimension argument) L(Fp)o 2 £1(^)0 and then (from Proposition 3.1) L(Fp)o has 
dimension p+ n. Therefore L(Fp)a has dimension p+ n, too. On the other hand. 
L(Fp)d C (ddir)'l(FS) = L2(F

p)d. Hence L(Fp)d = L2(F
p)d. Therefore L = L2 

because of Lemma 2.1. 

4. TRANSFORMATION RULES 

We trivialize TRn by the diffeomorphism 

(4.1) / : TRn - R2n, / (~7(0<=o) = (T(0), V(0)), 

where ^T(0<=O is the vector generated by 7. Denote by (5<) the canonical vector 
fields on R2n. In the vector spaces TaTR* and T0TRn (0 € T0R

n) we fix thfe following 
bases: 

(4.2) Xi = dr1(di\(0,en))) K = d/-1(5,+„|(0)en)) 

and 
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(4.3) x? = drl0i\o)t v? = drl(8i+n\o), 

i = 1, ..., n. We have the following transformation rules. 

Lemma 4.1. Let <p = (y?1,.. . , ^ n ) : Rn —• Rn be a diffeomorphism such that 
d<p(d) = 9. Then for any i = 1, ..., n we have 

(4.4) d(d<p)(Vi) = di^(0)Vj 

and 

(4.5) d(d^)(Xt) = 0<(W)(O)V} + drf(0)Xh 

j = 1, ...., n (We use Einstein summation convention). Similarly; ifi/>: Rn —* Rn is a 
iinear isomorphism, then for any i = 1, ..., n we .have 

(4.6) d(dV)( V,0) = ft** (0) V?, j = 1, . . . , n. 

P r o o f . We prove only formula (4.5). It is obvious that 

d/ o d(d<p)(Xi) = d/ o d(d<p)dl~l (^(i*,*n)t=o) 

=i ( / o d K^^^ 
= ^ M ^ ) , d n ^ e t ) ) t : = 0 

= d.V(O)0;|(O, en) + d tan^(0)d i + n | (0,en) . 

This implies formula (4.5) immediately. We get (4.4) and (4.6) similarly. • 

5. THE ADMISSIBLE SUBSPACES GIVEN BY LI AND L2 

Let Li and L2 be as in Example 0.1 and let X,-, K, X$, V{° be as in Section 4. 
We see that 

(5.1) d*(Vi) = d7r(K°) = 0 and d^r(Xt) = dir(Xf) = dt|0 

fori = 1, ... , n and 

d(d/)(K) = d(d/)(K°) = d(d/)(X.) = d(d/)(X?) = 0 
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for t = 1, ..., p, where / : Rn -+ Rn~*, f(x) = (*p+1,... ,xn). Since Fp is given by 
the cocycle (Rn,/,td), LX(FP) is given by the cocycle (TRn,d/,td), and then 

Li(F*)n = (d,df)-X(0) 

for any z G T0R
n. Obviously 

W*)n = (dB*Tx(Ft) 

for any 2: € 7oRn. The above facts complete the proof of the following formulas: 

(5.2) L1(F*>)e = sp&n(Vlt...tVptXlt...tXp)t 

(5.3) L1(F<>)o = sp&n(V1
0
t...tVp

0
tX

0
lt...tX})t 

(5.4) L2(F*)9 = sp*n(Vu...tVn,Xu...,Xp) and 

(5.5) L2(F»)o = span( V?,. . . , Vn°, X°lt...,X°) 

6. PROOF OF THE MAIN THEOREM 

It is sufficient to prove Proposition 3.1. By formulas (5.1) it follows that 

(6.1) Wc(ddw)~l(Fi;) = sI>zn(Vlt...tVntXlt...tXp) 

for any d-admissible subspace W. Similarly, for any O-admissible subspace W we 
have 

(6.2) W C span(l? . . . , V* X°, . . . , X°) 

First we prove the second part of Proposition 3.1. Let W be a O-admissible sub-
space, such that W 2 ^1(^)0- Then formulas (6.2) and (5.3) imply that there 
exists a vector Y € W \ {0} of the form 

Y = a'+1v£+1 + ... + anvn
d. 

Let us consider a number k € {p+ lt...tn). There exists a linear isomorphism $: 
Rn —> Rn such that ^(et) = ef- for t = 1, ..., p and 

i/>(ek) = a*>+lep+x + ... + anen. 

Then V"1 is O-admissible and d(d(^ -1))(y) = Vg because of formula (4.6). Since 
W is O-admissible and Y € Wt we have V? e W. Hence W = L2(F*>)0. 
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It remains to prove the first part of Proposition 3.1. Let W be a d-admissible 

subspace. Then djr(W) = Ffi. Therefore formulas (5.1) imply that for any j € 

{ 1 , . . . , p} there exist Zj € span(V\ , . . . , Vp) and Yj £ span(VJ>+i, • • •, Vn) such that 

(6.3) Zj + Yj + Xj e W. 

Hence the first part of Proposition 3.1 is a consequence of the following inclusions: 

(6.4) sp*n(V\,...tVp)cW and 

(6.5) WCspMVu--->Vp>Xu'->Xp)nW®spzn(Vp+lt...tVn)C\W. 

(In fact, formulas (6.5) and (6.3) yield that Xj + Zj € Wt and then Xj G W for 

j = 1, . . . , p because of formula (6.4). Therefore L\(FP)Q C W as follows from 

formulas (6.4) and (5.2).) First we prove inclusion (6.5). Let <p: Rn —• Rn be the 

diffeomorphism given by <p(yl,..., yn) = (2yl,..., 2tft yP+l,..., yn). Then <p is d-

admissible. Consider an arbitrary Y € W. Inclusion (6.1) implies that Y = Y1 + Y2
t 

where Yl £ span(V^ + i , . . . , Vn) and Y2 G span(Vi, . . . , Vpt X\,..., Xp) are vectors. 

Using Lemma 4.1 we see that d(d<p)(Y) = Y1 + 2Y2. Since Y E W and W is 

d-admissible we have Y1 + 2Y2 € W and then Yl
t Y2 € W. Inclusion (6.5) is 

proved. 

Now, we prove inclusion (6.4). Consider a number k 6 {1, • . . ,p} . Let * : Rn —• Rn 

be given by 

* ( y 1 , . . , y n ) = (y1, . . ^ y * " 1 , ^ - ! - ^ s in (y n ) ,y* + 1 , . . . y n ) . 

Then * is a global diffeomorphism. Evidently $ is d-admissible. Let X = Zk + 

Yk + Xk £ W be as in formula (6.3). It follows from Lemma 4.1 that d(d*)(X) = 

X + \Vk. (For d(d*)(K) = Vit i = 1, . . . , n, i.e. d(d*)(Z* + Yk) = Z , + Y*, and 

d(d*)(.X*) = Xk + \Vk.) Since W is d-admissible and X € W\ we get that V* € W. 

Inclusion (6.4) is proved. 

Theorem 0.1 is proved. • 
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