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Summary. This paper establishes effective sufficient conditions for existence and unique-
ness of periodic solutions of a one-parameter differential equation y"” — ¢(t)y = f(t,9,9’, s)
vanishing at an arbitrary but fixed point.
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1. INTRODUCTION

In this paper we shall consider the second-order differential equation

(1) y” - q(t)y = f(ta v, !/a “)

with ¢ € C°(R), f € C°(R3 x I) w-periodic functions in the variable ¢, g(t) > 0 for
t € R, where I = (a,b), —00 < a < b < 00, containing a parameter p. Let ¢; € R
be an arbitrary but fixed number. The problem considered is to determine sufficient
conditions on ¢, f such that it is possible to choose the parameter u so that there
exists an w-periodic solution y of (1) satisfying

(2) y(t1) = 0.

Similarly, the problem of uniqueness of w-periodic solutions of (1) satisfying (2) is
discussed.
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2. NOTATION, PRELIMINARY RESULTS
Let u, v be solutions of the differential equation

(@) ¥ =qtly (1€ C°R),q(t+w)=q(t) >0fort €R)

satisfying the initial conditions u(t;) = 0, w'(t;) = 1, v(t1) = 1, v'(t1) = 0, where
t1 € R is an arbitrary but fixed number. Define functions r: R? = R and r{: R? - R
by r(t, 8) := u(t)v(s) — u(s)v(t) and ri(t, s) := u'(t)v(s) — u(s)v'(t) (= &(t,5)).

Lemma 1 ([2]). r(t,8) >0 fort > s, r(t,s) <0 fort < s, ri(t,s) > 1fort#s
and ri(t,t)=1fort €R.

Lemma 2. Let a function k: (t;,t; + w) — R be defined by

® . ky=Bted

/ /
= ) [Pt +w,t1) = 1] +7(t1 +w,t).

Then
k(t)> 0 fort e (t,,t1 +w).

Proof. We may write the function k in the form

k(t) = —m(u'(tl +w) = 1) (u(ts +w)v(t) — u(t)v(t; +w))
+ (W (t1 + w)o(t) — u(t)'(t: + w))
and then
K(t) = —3'(?11_(»5 (o (1 +w) — 1) (u(ts + @)V’ () = w'(O)o(ts + )

+ (W'(t1 + w)v'(2) - u'(8)v' (t +w)).

Assume to the contrary that k(§) = 0 for some &, £ € (t1,t1 +w). If this £ is
unique then ¥(§) = 0 since k(t;) = k(t1 + w) = 1. It is easily verified that k(§) =0
(k'(¢) = 0) if and only if -

w(g) _ _u(t1+w) (4@ . u(ts +w) )
v(€) vt t+w)-1 v(€)  v(ti+w)-1/

It follows from the equality (%)' = J that % is an increasing function on (t;,¢; + w)
and, consequently, there exists a unique £ with above property. Then necessarily

u(§) _ v (_ u(t) +w) )
W) - VO T re) -1/

which contradicts u'v —uv’ = 1. O
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Lemma 3. Let d € R, h € C°(R). Then there exists a unique solution y of the
differential equation

(4) ¥’ —a(t)y = h(t)

satisfying the boundary value conditions

(5) y(t) = y(t1 +w) =d.

This solution y can be written in the form

(6) y(t) = —t];—;:)- [d(r(tl,tl +w) - r(t, t1))

T(tl,
t1 4w H
+r(t,th) / * (1 +w, )h(s) ds] + / r(t, s)h(s)ds, t€R.

ty

Proof. One can easily and immediately check that the function y defined by
(6) is a solution of (4) satisfying (5). The uniqueness follows from the fact that the
associated homogeneous boundary value problem: (q), y(t1) = y(t1 + w) = 0 has
only the trivial solution. a

Let ro, r1 be positive constants, ro > 0, r1 > 0. Now we shall assume that ¢, f
satisfy some of the following assumptions:

- {2\/% A+ rg rtneaixq(t) < r;, where A := (t.yxr,;l::f)eb 1f(t, v1, 2, )|,
D := (0,w) x (—ro, o) x (—ry,r1) X I;

(8) |f(t, 91, 2, )| S roq(t)  for (¢, 31,42, 4) € D;

9 f(t,y1,¥2,-) is an increasing function on I for every

®) {ﬁxed (t,y1,¥2) € (0,w) x (—ro,ro) X {(~ry,r1) =: Dy;

(10) f(t,y1,92,0) f(t,41,y2,0) <O for (¢, 41,92) € Dy.

Lemma 4. Suppose that assumptions (7)—(10) hold for positive constants ro, r1.
Let ¢ € C'(R) be an w-periodic function, |p®)(t)] < r; fort € R, i = 0, 1. Then
there exists a unique po, po € I such that the differential equation

(11) v = q(t)y = f(t, (), ¢'(t), )

with u = po has an w-periodic solution y satisfying (2). This solution y is unique
and

(12) lyO(@)) < ri fort R, i =0, 1.
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Proof. If weset h(t,p) := f(t,p(t), ¢'(t), ) for (t:#) € Rx I, then h is w-
periodic in ¢t and assumptions (7)-(10) yield |h(t,u)] < 4 for (t,p) R x I, h(t,-) is
an increasing function on I for every fixed ¢ € R and h(t,8) < 0, h(t,b) > 0 on R.
Using the definition of h we can write (11) in the form

(13) V' —q(t)y = h(t, p).

Let y(t, u) be a solution of (13), y(t1, ) = y(t1 + w, u) = 0. Then (by Lemma 3)

11+U

y(t,p) = ;?t:_f_tt’;tlr)ﬁ j r(t1 + w, 8)h(s, u)ds + ‘/‘l r(t,s)h(s, ) ds
and
8 et
('&g(td‘) = ) Y= T:i—(tl,—':')w_) r(ﬁ + w, 8)h(s, p) ds
+ [ it o, ) ds
thus

h+w

it +ot) = 1) [ e+, (e ) de

Yt +w,p)-y(t,p)= }Tt_;tIIT

t
t1tw . N ti4w
+ / ri(t1 +w,8)h(s, p)ds = / k(s)h(s, p) ds,

11 t1

where k is defined by (3). It follows from Lemma 2 that k(t) > 0 on (¢1,¢; + w) and
therefore g(u) := ¥/ (t1 +w, p) — ¥ (t1,p)is increasing on I, g(a) <0, g(b) > 0. Then
there evidently exists a unique po, o € I: g(uo) = 0. This proves that equation
(11) with u = po has solution y satisfying y(‘)(tl) - y(")(tl +w)=0(i=0, 1), that
is, y is an w-periodic solution of (11) with p = pg.

It remains to prove (12). Since y(¢1) = y(t1+w) = 0 there exists a £, § € (41, t14w):
l¥(®)] < |y(€)| for t € (t1,t1 +w). Then y'(§) = 0 and y has at ¢ = £ an absolute
extreme on (t1,¢ + w). Let [y(§)] > ro. I y(§) > ro (y(€) < —ro) we get y'(€) > 0
(¥'(¢) < 0) by assumption (8). This, however, contradicts the fact that y has
absolute maximum (minimum) at the point ¢ = £. Hence |y(¢)| < ro and |y(t) < ro
on R. ' :
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Integrating the equality
29" (8)y'(t) = 2q(t)y(t)y' () + 2h(t, mo)y/(t), t€ER,

from 5 to T, where 5, T € (t1,t) +w), ¥(n) = 0, ¥ (t) # 0 on the open interval J
with the end points n and T, we obtain

T T
V@ =2 [ dOuw©d+2 [ e e
n "
T y(t) )
=2 [ quov@dt+2 [ A0, mat
" ¥(n)
where y~! denotes the inverse function to y on J. Then

y12

¥(T)
| +2A / dt
y(n)
< 2ro r;leaixq(t)lv(T) y(n)| + 2A|U(T) - y(n)|
2
< 4rg max q(t) + 4Ar,,

consequently

IV (T)| € 2y/roVA+ romaxq(t
and
()] < r fort €R.

The uniqueness of the w-periodic solution y of equation (13) with g = p¢ follows
from the fact that the associated homogeneous equation y’ — q(t)y = 0 to equation
(13) has only the trivial w-periodic solution satisfying (2). a

3. RESULTS

Theorem 1. Assume that assumptions (7)—(10) hold for positive constants ro, ry.
Then there exists po, po € I such that equation (1) with p po has an w-penodlc
solution y satisfying (2) and (12).

Proof. Let X be the Banach space of w-periodic C'-functions on R with the
norm [lgl] = max (|y(t)l + [y (¢)]) for y € X and let K := {y:y € X:y(t1) =

0,|ly®)(t)] < rifort € R,i = 0,1}. K is a closed bounded convex subset of X,
K C X. Let ¢ € K. By Lemma 4 there exists a unique po, o € I such that

341



equation (11) with s = o has a unique w-periodic solution y satisfying (2) and (12),
and thus y € K. We may write this solution y in the form
rt,t) O f
- _\»h) ’
y(t) - r(tl,t] +w) r(tl +w) 3)f(3, ¢(8)) ¢ (s)’ﬂo) ds
t

+ / "(t,8)f (s, p(s), #'(s), o) ds, tER,

3
by Lemma 3. Setting T'() = y we obtain an operator T: K — K. We will prove
that T is a completely continuous operator.
Let {yn}, yn € K be a convergent sequence, "llngo Yo =vand z, = T(yn), 2z =
T(y). Then there exists {sn}, pn € I and po € I such that

14w
£t ,
(14) - Zn(t)=;zt—:—f;ir)—u)‘ r(ty +w,8)f(5,yn(5), ¥, (5), ptn) ds
+ [ ) mm(e) i (e) ) ds, tER,
and
o(t) = ot Vi

T rttite) ’(‘1+“’s)f(s,y(8),y'(8) po) ds

+/t r(t,s)f(s, ¥(5),¥'(s), o) ds, t€R.

Differentiating (14) we get

. titw . . .
N o Tt t)
19  A0= s / rlts +,9)f(5, 1n(5), 5 (#), pn) dis

+/1 r1(t,8)f(5,yn(5), Yn(s), un)ds, tE€R.

1
Suppose that {un} is not convergent. Then there exist convergent subsequences
{pe.}s {prn }s ”lingo B, = A, li"o‘o fr. = A2, A1 < A2. Inserting k, and r, instead
— n—
of n in (15) and taking limits on both sides of these equalities, we obtain

14w

N /
(16) nlixgo 7 (t) = ri(t, t1)

o +a) r(ts +w, 8)f(5,5(s), ¥ (5), M) ds

+[ r;(t,,s)f(s,y(s),y’(sv),,\l)ds,v t eR,
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and

titw
(a0 tim ot 0= s [ o) 00, Y (0),Ao) do

+ [ A6 (o, 3(6), ¥ 6), 2 s, t€R,

1
uniformly on R, respectively. Relations (16) and (17) yield
4w ;
/ r(ty +w, 8)f(s,¥(s), ¥ (5), A1) ds

1

' / 0+ w,9)(5,5(), 4 (8), M) d,

rit+w,t)) -1

. ' 4 =
,.'L"Jo(zk.(tﬁw) 7. (1)) r(ti, t1 +w)

, _ ti+w
rl(t + w, tl)

nll»rgo (z:-_(tl +W) - z;‘(tl)) = r(tl,tl +w) - / r(tl +w,8)f(8,y(8),y’(8), ’\2) ds

+ /‘ ‘ ri(ty +w, 8)f(s,¥(s), ¥/ (8), A2) ds.

1
Since the function z, is w-periodic for all n € N, we have z,(t; + w) — 2,(t;) = 0
and thus
t,+w

0= AEELII L o6y b, o) 0,9V (0) M) = £(5,1(8) ¥ (6),30) ds

1

t

+ [ ri(tl +w, 8) (f(sx y(s), !/(s)v’\l) - f(sy y(s)r y’(S), A2)) ds

4w

= / k(s) (f(sa y(s)a yl(s)a Al) - f(s, y(s)v yl(s))'\2)) ds,
where k is the function defined by (3). This, however, contradicts the facts that
k(t) > 0 (by Lemma 2) and f(t,y(t),y’(t),/\l) - f(t,y(t),y’(t),/\z) < 0 (by as-
sumption (9)) for t € (t1,¢; +w). Consequently, {1n} is a convergent sequence and
Jim p, = p*. If we take limits for n — oo in (14) and (15) we get
t1 4w

r(t,tl)

r(tn, b + w) r(t +w,5)f(s,4(s),y'(s), ") ds

(z*(t) :=) nllnolo zn(t) =

1

+ ‘/: r(ts S)f(sv y(S), yl(s):ﬂ‘) ds

1
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and

ti4w

A4 [ o 4w, 0)f(s,8(6), ¥/ (), 4°) d

» , __rtt)
nliongo z"(t) - r(tl,tl +w)
t

+ /, ‘ Fi(t, )f (s, 4(e), ¥ () %) ds (=2"'())

uniformly on R. Then 2* is a (then necessarily unique) w-periodic solution of the
equation

2" — q(t)z = £(t,4(2), ¥ (¢), u*)

satisfying (2) and z* € K. Consequently, Lemma 4 implies z = 2* and po = p*.
Since nlingo z!,(t) = 2/(t) uniformly on R we obtain ”l-i‘ngo 2y = z and therefore T is a
continuous operator on K. _

Lét y € K and z = T(y). Then z"(t) = q(t)z(t) + f(¢, 2(t), 2'(t), po) for t € R,
where pig € I is an appropriate number, and therefore |z”'(t)| < 7o max g)+A=:B
onRand T(K) C L :={y;y € C]((R)N K, |y'(t)] < Bfort € R} C K. Since L
is a compact subset of X, T((K) is a relative compact subset of X. By Schauder’s
fixed point theorem there exists y, y € K such that T(y) = y, that is, there exists
o, po € I such that y is an w-periodic solution of (1) with u = o satisfying (2) and
(12). This completes the proof. - O

Corollary 1. Assume that assumption (9) and (10) are satisfied for positive con-
stants ro, r. Let A be defined as in (7) and let 2ro, /r‘neaixq(t) < ry. Then there is 0,

8 > 0 such that for each ¢, 0 < ¢ < 9 there exists pe, pe € I such that the equation
Y' —q(t)y = f(t,y,y',p) with p = p, has an w-periodic solution y satisfying (2)
and (12). o

Proof. Let 8= min{% rtréllx'x q(t), 21—(3'-5;— ro r‘réaixq(t))} Then ¢f satisfies for
0 < € < O the same assumptions as f in Theorem 1 and thus Corollary 1 follows
immediately from Theorem 1. . : : : a

Lemma 5. Let ro, r be positive constants and let S be the set of w-periodic
functions y, y € C*(R), y(t1) =0, [y®)(t)| < r; fort €R, i =0, 1. Assume that

(18) |£(t, 91,92, 1) = f(t, 21, 22, W)| € Ba(®)|3r = 21| + ha (D) w2 — w2
for (ty ", w’ “)v (t,ZI, z?:"“) € R x (—r(hro) X (_rl)rl) X Io
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where hy, ha € C°(R) are w-periodic functions, and let at least one of the following
four conditions
t1 4w

(19) / [(exp['hg(r)df).[: (a(r) + () dr] ds < 1
titw
(20) [ [(at)+ M) - t) + ha(e)] ds <1,
titw

(21) / [(exp / ™ ha(r)dr) /’W (a(r) + ha(r)) dr] ds < 1

ty

14w
(22) [ {69+ m@)w +o -0 +hao)] ds <1,

holds. Then equation (1) has at most one solution y in the set S for every p, p € I.

Proof. The method of the proof is very similar to that of the proof of Lemma
6 ([2]). Assume that y1,y2 € S, y1 # y» are solutions of (1) with some p = po, po € I
and define w := y; — y2. Since w(t1) = w(t; + w) = 0 there exists a £ € (t1,¢1 +w)
such that |w(t)| < |w(€)] for t € (t1,1; + w), and w'(€) = 0.

Let assumption (19) be satisfied. Using Gronwall’s lemma we obtain from the
inequality

E [(a(s) + ha(s)) lo(s)] + ha(s)|w'(s)[] ds|, t € (ts,t1+w),

(23)  |w'(H] <
the estimate ,

/(0] < (exp / hals)ds) [ (g + (o) (o) ds, ¢ (€t +0),
and thus

(O] = folts +) ~0(©) = /+ ery |
/ s [(eXP / ha(r)dr) / q("')+h1(1'))|w(r)|d-r] ds

4w

< |lw(él / [(exp /“ ha(r)dr) /; (9(7) + hi(7)) dr] ds.

345



Then (since w(§) # 0)

t1 4w

1< / [( exp /'. hay(7)dr) ./" (q(r) + ha(7)) dr] ds,
t 1 1
which contradicts assumption (19). :

Let assumption (20) be satisfied. From (23) and the inequality |w(t)| < j' |w'(s)| ds
for t € (t1,t1 + w) we obtain N

t s
WwOI< [ [0 +m@) [ Weldr+ b o] ds, te (,t+o).
1 E 1%
If we put X(¢) := ‘1233‘("“"(‘)' for t € (t),t; + w), then if X(t; +w) > 0 we get

titw
Jw'(t)] < X(t1 +w) / [(q(s) + hi(8))(s —t1) + hz(s)] ds, te(t),t +w).

ty
Consequently

4w
X(th +w) < X(t1 +w) / [(q(s) +hy(s)) (s —t1) + hz(s)] ds

and
t1+w

1< / [(ats) + hae)) (s = 1) + ho(s)] s,

which contradicts (20). Therefore X(t; +w) = 0, that is, w is a constant function on
the interval (¢,¢; + w) and since w(?;) = 0 we obtain w(t) = 0 for ¢t € (t1,¢; + w)
which is a contradiction again.

If assumption (21) or (22) is satisfied, the proof is very similar to the above and
therefore is omitted. ]

Lemma 6. Assume that assumption (9) is satisfied with positive constants ro,

ri, the functions %(t,yx‘,yn.#), ;af;(t,yn,y:,p) are continuous on D (= (0,w) x
(—ro,r0) X (—=r1,r1) x I) and

(24) a() + -(%{;(t,m,m,u) > 0 for (t 1, ya, ) € D.
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Let the set S be defined as in Lemma 5.
Then there exists at most one po, po € I such that equation (1) with u = po has
a solution y, y € S. In this case the solution y is unique.

Proof. Let y; and y be solutions of (1) with u = p; and p = uj, respectively,

p1, p2 € 1, p1 < p2; 1, ¥2 € S, 11 # Y2. Using assumptions (9), (24) and Taylor’s
formula we get

(25) f(ts n (t)x l/l(t)) /‘l) - f(t; y?(t)! yIZ(t)t l‘?)
<9)(1(t) - 1) + A (WD) (1), teR,
where g, h are w-periodic continuous functions, ¢(t) + g(t) > 0 on R and if u; <

p2 (p1 = p2) then (25) holds with the strict inequality (equality). For w := y1 — y,
we then obtain the inequality

(26) w”(t) < (g(t) + 9(1)) w(t) + A(O)w'(t), tER,

w(t;) = w(ty +w) = 0.

Let py < pz. If w'(t;) < 0 then, using (26) and Tschaplygin’s lemma ([1]), we get
w(t) < 0 on (¢1,¢; + w) which contradicts w(t; + w) = 0. If w'(t;) > 0 then there
exists 1, 7 € (t1,t; + w) such that w(t) > 0 for ¢t € (¢1,9), w(n) = 0 and w'(n) < 0.
Therefore w(t) < 0 on (n,t; + w) which again contradicts w(t; + w).

Let p1 = pa. Since g(t) + g(t) < 0 on R, the equation y” = (q(t) + g(t))y + h(t)y’
is disconjugate on R which contradicts w(t;) = w(t; + w) = 0. O

Theorem 2. Assume that assumptions (7)—(10) are satisfied for positive con-

stants ro, r,. Let ga;,e-, ;%f; € C°%(D) and let assumption (24) be satisfied.

Then there exists a unique o, po € I, such that equation (1) with u = po has an
w-periodic solution y satisfying (2) and (12). This solution y is unique.

The proof follows fromn Theorem 1 and Lemma 6.

Example 1. Consider the equation
(27) " — 3(exp(2+sint))y = sintcosy'e’” + p,
where p € I := (—e,e). Let t; € R be a number. Assumptions (7)-(10) are satisfied
with ro = 1, r; = 2/6v/2 + 3¢2 and
3exp(2 +sint) + 53—;—(sin t cos yoe¥s + u) 20

for (t,y1,y2,4) € R x (=1,1) x (—2/eV2 + 3e?, 2/ev/2 + 3e?) x I;. By Theorem
2 there exists a unique g, po € I such that equation (27) with g = o has an

w-periodic solution y satisfying y(t1) = 0, |y(t)| < 1 and |y/(t)| < 2veV2 + 3¢Z for
t € R. This solution y is unique.
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