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ON ESSENTIAL NORM OF THE NEUMANN OPERATOR

DAGMAR Ml-:m(ovA, Praha

(Received December 7, 1990)

Summary. One of the classical methods of solving the Dirichlet problem and the Neu-
mann problem in R™ is the method of integral equations. If we wish to use the Fredholm-
Radon theory to solve the problem, it is useful to estimate the essential norm of the Neu-
mann operator with respect to a norm on the space of continuous functions on the bound-
ary of the domain investigated, where this norm is equivalent to the maximum norm. It is
shown in the paper that under a deformation of the domain investigated by a diffeomor-
phism, which is conformal (i.e. preserves angles) on a precisely specified part of boundary,
for the given norm there exists a norm on the space of continuous functions on the boundary
of the deformated domain such that this norm is equivalent to the maximum norm and the
essential norms of the corresponding Neumann operators with respect to these norms are
the same.

Keywords: Neumann operator, compact operator, reduced boundary, interior normal in
Federer’s sense, Hausdorff measure

AMS classification: 31B20

The present paper follows the papers [D], [ME1], in which it was proved that the
Fredholm radius of the Neumann operator does not change under a deformation
of the domain investigated by a diffecomorphism which is conformal (i.e. preserves
angles) on a precisely specified part of the boundary (roughly speaking, at the angular
points of the boundary). We will prove that the result holds if we substitute the
maximum norm on the space of continuous functions on the boundary of the domain
investigated by an equivalent norm. By this substitution we may achieve the essential
norm of the Neumann operator that with respect to the new norm decreases (see
[AKK], [KW]), and we may use well-known results about the convergence of the
Neumann series (see [S], [MEZ2)). ‘ »

If HC R™ (m 2 2) is an open set with a compact boundary dH, we denote by
€(0H) the space of all bounded continuous functions on dH and by ¥'(0H) the
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space of all finite signed measures on dH. For a given function h harmonic on H we
define the weak normal derivative N¥h as a distribution

(‘P,N"’l)=/ grad ¢ - grad h do,
H

for ¢ € 92, the space of all infinitely differentiable functions in R™ with a compact
support spt ¢. Here % is the k-dimensional Hausdorff measure. We formulate the
Neumann problem for the Laplace equation with a boundary condition u € €'(8H)
as follows: determine a harmonic function h on H for which N¥h = u. We wish to
find the function k in the form of the single layer potential

Uv(z) = /. . h=(y)dv(y)
where v € €'(0H),

he(y) = (m=2)"tA 2z~ 2™  for m > 2,
A llog|lz —y|™! form=2,

A is the area of the unit sphere in R™.
For a Borel set B denote

o? () = sup { [ gradhe(s) - srad p(o) (0
B
¢ € 9,0t CU(zir)— =), lel < 1}.

Here U(z;r) = {y € R™; |z — y| < r}. More generally, we denote U(M;r) = {y €
R™; dist(y, M) < r} where M is a set, r is a positive constant and dist(y, M) is the
distance of the point y from the set M. Further, denote

VB = sup vB(2),
. z€dH

18 ={2€0B;3>0lim sup VB(y)=0}.
r=0yeU(sie)

The operator N#U is a bounded linear operator on €’ (8H) if and only if V¥ < oo.
Under the assumption VH < oo we look for a solution of the Dirichlet problem for
the Laplace equation on the set R™ — cl H with the boundary condition g (where
cl H is the closure of the set H) in the form u(z) = (f, N#h.), where f € €(0H).
A solution f of the problem satisfies

WHf(z) = (f, NHh.) = g(z).



The operator W5 : €(0B) — €(dB) may be introduced analogously even for the
Borel set B with a compact boundary under the assumption V2 < oo (see [K1]).

If | }is a norm on €(0H) equivalent to the maximum norm and U is a continuous
linear operator on €(0H) then we denote

w(U,1 1) =inf{lU - KI; K € X},

where ¥ is the space of linear compact operators on €(8H). f w(BWH —1,] ) is
less than 1 then the Riesz-Schauder theory permits to apply the Fredholm theorems
to the dual equations

(1+(BW*H - DIf = By,
[1+(BNHU - Dy = Bp.

Definition. Let D C R™, z € D. A mapping ¥: D — R™ is said to be conformal
at the point z if there is § > 0 such that U(z;6) C D, ¢ € €!(U(z;6)) and the angle
of the curves {(z +6;); 0 <t < 6} (j = 1,2) at the point () is the same as the
angle of the curves {z +t6;; 0 < t < 8} (j = 1,2) at the point z for all pairs of unit
vectors 0, 0;. 4

The aim of this paper is to deduce the following result:

Theorem 1. Let D C R™ be an open set, : D — R™ a homeomorphism, H a
bounded Borel set, VH < oo, cl H C D, let ¥ be a diffcomorphism of the class C1+*
on a neighborhood of 9H where a > 0, let ¢ be conformalon 0H — ry. If || |isa
norm on €(0H) equivalent to the maximum norm we define on (8y(H)) the norm

Iely = lp o ¥l Then

w(BI+WH, 1 D) =w(BI+WYD | 1y)

for every real number (. (Here I is the identical operator.)

Convention. In the sequel we will consider an open set D C R™, a homeomor-
phism ¥: D — R™ and a bounded Borel set H such that cl H C D and the mapping
9 is a diffeomorphism of class C'*+¢ in a neighborhood of dH, where 0 < a < 1.

Lemma 1. V¥(#) < 00 & VH < o0.

Proof. See [ME1], Theorem 2. ' =
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Definition. Let B C R™ be a Borel set, y € R™. A unit vector 8 is termed the
interior normal of B al y in Federer’s sense, if the symmetric difference of B and
the half-space {z € R™; (z — y) - # > 0} has m-dimensional density zero at y. If
there is such a vector #, then it is unique and we will denote it by n®(y); if there
is no interior normal of B at y in this sense, we denote by n®(y) the zero vector in
R™. The set {y € R™; [n®(y)| > 0} is called the reduced boundary of B and will be
denoted by 4, B.

Lemma 2. 8, ¢(H) = ¢(8,H), and n¥(H)(y(z)) is a normal vector to the surface
¥({z € D; (z — z) - nH(z) = 0}) at y(z) for each z € 6, H.

Proof. See [ME1], Lemma 7. a

Note 1. Let B C R™ be an open set, ¢: B — R™ a diffeomorphism of class C!,
K a constant such that ||Dp~!(z)|| < K for each z € p(B), where Dp~!(z) is the
differential of the mapping ¢~! at the point z. Then |Dyp(z)u| > |u|/K for every
z2€ B, u€eR™.

Proof. See [ME1], Note 1. a

Lemma 3. Let z € 0H, let ¢ be conformal at the point z. Then for every € > 0
there is r > 0 such that forevery z€ 8, H, |z—z|<r

' [n¥D(y(2)) - Dy(2)n¥ (z) = | DY()I| < &

Proof. Suppose that ¢ < 1. By the assumption there are positive constants
ro, L such that ¢ is a diffeomorphism of class C! on {z; dist(z,0H) < ro} and
for each z, dist(z,0H) < ro we have ||Dy(z)|| < L, || DY~ (¥(2))|| € L. There is
r € (0, ro) such that for every z, |z — z| < r we have || Dy(z) — Dy(2)|| < €/(2L*m).
Now let z € 8,H, |z — z| < r. Since Dy(z) maps the tangent plane of H at the
point z to the tangent plane of ¢(H) at the point ¥(z) according to Lemma 2,
there are tangential vectors v!, ..., v™=! of H at the point z such that n¥(#)(y(z)),
Dy(2)v! /|| DY(2)1|l, ..., D(z)v™=1/||Dy(z)v™"!|| form an orthonormal system.
Thus

. ' m-—1 Dl/)( )v; 2
IDsn™ P = X (rpgcyem - DA™ (2)) + (¥ (W) - Dy ()" (2))"

i=1
Since ¢ is conformal at the point z and thus
Dy(z)n"(z)  Dy(z)v’
ID¥(z)nH ()| || Dy(z)vf]|

= n”(z) o= 0,




we have

1D (I = (¥ (g, . D,z,(z)n"'(z))2
>||D'/’(2)n”(z)||2 E ”IIngg:W - (DY(2) - D¢(z))n”(z)
i=1 '

+[wianagy). (vovcn ™ 5'2_"((5)5:"”

+|Puan ). DU

Dy(z)vl

> 1Dt 2 = 3 (5 4 € _)?

> IV @I - 3 (57 + 77m) 2
i=1

2
> WD )~ S 3 D9 " (P (1 - 553).

mL?
because ||D¢(z)v‘|| 2 1/L, ||D¢(z')n"(z)|| > 1/L according to Note 1. Therefore

1D (2)n® ()l 2 0¥ (y(2)) . Dy(2)nH (2)] 2 |ID¥()nH ()1 = o 5 L2
> IDY(an" (1 - 25) > 1WA (o) -
Thus

1D%(2)n" ()] = -0 (w(2)) - Dy()n® (2)]]

< DY @) = I () - Dy()n® ()| + [1D%(z) = DY < 5 + 35
It suffices to prove that n¥(H)(y(z)) - Dy(z)n#(z) > 0. The vector n¥(H)(y(z))
points toward the set Y({z + v; v . nH(z) > 0}). Similarly, the vector n#(z) points:
into the set ¥~ ({$(2) + v; v n¥E)(y(2)) > 0}). Therefore, there is 7 > 0 such
that for 7 € (0, 70) we have z + 7nf(2) € v~ ({#(z) + v; v- n¥H)(y(2)) > 0}) and
thus ¢(z+ 0 (2)) € {(2) +v; v-n¥ED(y(z)) > 0}, which yields (p(z+nH (2)) -
¥(z)) - n¥H)(y(z)) > 0. Therefore

DYz () - ¥ (g(2)) = tim EHTIED =¥ wanyiz)) > 0.
T—04

r

O

Lemma 4. Let z € 0H, let ¥ be conformal at the point x. Then there are R > 0
and a constant K such that forr € (0,R),y€0H,z€ 6, H, |y—z|<r, |z-z|<T,
y # z we have

fz—y™ 1
l¥(2) = (@)™ [|ID¥(=)lI™

< Kr®.
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Proof. By the assumption there are positive constants L, R such that ¢ is a
diffeomorphism of class C'** on U(8H, R), for y, z € U(OH, R) we have || Dy(z)|| <
L, ID¥(z) — DY)l < Liz - yi*; for 4,z € Y(U(8H, R)) we have [|Dy=2(2)]| < L,
[¥=1(2) = ¥~ (¥) < Llz - yl. -

Nowlet y€0H,z2€0,H,y# z,ly—z|<r<R,|z—-z| <r. Then

o - IDH(EI™ — | fE Doz + ty - 2)) A=ty ™ |
We) =S~ D% | =30 | g )]

Since |z — y|/|¥(z) — ¥(y)| < L by the assumption and [|[D¢(z)|| > 1/L according to
Note 1, we have

lz—yl? 1 |<
[¥(z) - @)™ ID¥()I™

= g iDwia - | [ Dote 4ty - L2 dt”

m=—1

« T W0HN| [ D+ - St

,:0
y—2 dt”.
ly - 2|

pmiowe - | [ D + - )= o]

<mi2 0w - | [ Doz + ey - 2)

Since ¢ is conformal at z we have [|D¥(2)ll = |1D%(z) ;=51 and thus

|z —y|™ l
I¥(2) = ¥(v)|™ IID¢(=)II"'

< mL3™-! lDtl)(::)—f—" / Dy(z +t(y ~ z))l

dt,

=m Lam— /o (Dy(=) - Dy(z +t(y — 2))) ¥ I.T——zT dt, < mL3mpe,

o
Lemma 5. Ify € 8,H, u € R™ then

n¥H(y(y)) -D'b(z))u = @ @D GW) - Dy(y)n® (3)).
Proof. See [MEI1), Lemma 8. : | o
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Lemma 6. There exist R > 0°and a constant K such that for every y € 8H,
z€0.H,0<|y— 2| <R we have
1

grad h'ﬁ(v)('p(z)) * nW(H)(¢(z)) - AW’(’) _ ¢(y)|m [(z - y) : nH(z)]x

x[n¥E(y(2)) - DY(2)n" (2)]| < Kly - 2|+~

Proof. By assumption there are positive constants L, R such that ¢ is a
diffeomorphism of class C'** on U(8H, R), for y,z € U(8H, R) we have || Dy(z) -
Dy)|| € Llz = yl*; for y, z € Y(U(OH, R)) we have |¢='(z) — ¥~'(y)| < Lly - 2|.
Now let y € 8H, 2 € 6, H, 0 < |y — 2| < R. Then

grad by (V(2) n“”’('/’(z)) = ARG ")

z -2 2 - n ( )

= A - 1[)(y)|m / Dy(z +t(y - 2))(z — ) - n¥ D ((2)) dt
b4 — n"’(H) z

= A - ¢(y)|m{D¢( )(z - y) - n¥ ) (y(2))

+f D4y}~ DW= ) ((2)) dt}
0

A|1/)(z) 1/)(y)|m {[(z y) -8 (2)] - [n¥E)(y(2)) - Dy(z)n (2)]
+/° [Dy(z + t(y - 2)) — DY(2)|(y - 2) Y (4(2) dt}.

according to Lemma 5. Therefore

grad h'ﬁ(v)('/’(z)) ' n¢(H)(¢(z)) - A|¢(z) 1 !l)(y)l'" [(Z - y) : nH(z)]X
‘ m+1 :
x[n¥HE)(y(2)) - DY(2)nH (2)]] < Ahll:g) 'Ip o < L - |y — z|t+e-m.
a
Lemma 7. 1y) = ¥(TH).
Proof. See [ME1], Lemma 14. a

Lemma 8. If VH < oo then there is a positive constant K such that for every
z € R™, r € (0,1) we have '

|z — y|*+1 =™ da, 1 (y) < Kr°.
8, HOU(z;r)
Proof. See [K 1], Corollary 2.17, [ME1], Lemma 9. o
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Lemma 9. Let VH < oo, let Y be conformal on 8H — . Then for z € 8H,
€ > 0 there is R > 0 such that for each y € dH N U(z; R), ¢ € €(8H), ll¢ll < 1,
r € (0, R) we have

| / poy~n¥H) . grad hyy) — / onl . grad hyl| <e.
Y(9HNU(=;r)) 8HNU(z;r) :

Proof. First, let z € 7y. According to Lemma 7 we have ¥(z) € Tyx).
Therefore there is a positive number g such that for every y € dH NU(z;¢@), z €
OY(H)NU (¥(z); @) we have v (y) < 3¢, W™ (z) < L. Since ¢ is a homeomorphism
there is R € (0, 1 ¢) such that $(U(z; R)) C U(¥(z); 3¢). Thus for y € dHNU(z; R),
r € (0, R), ¢ € €(8H), |l¢|l < 1 we have

. I / wotp~1n¥H) . grad hy(,) - / onH . grad hy
Y(8HAU(=z;r)) ) OHNU(z;r)
< of () +vik(v) <€
according to [K1}, Lemma 2.15 and Lemma 2.8.

Now let z € H — 7. We may suppose that € < (VH +1)/(||Dy(z)l|™~* +1). By
assumption there are constants ro € (0,1), L > 1 such that ¢ is a diffeomorphism on
U(8H; ro), for u,v € U(8H ;o) we have || Dy(u)|| < L, || Dy(u)—Dy(v)|| € Lju—v|*,
for u,v € Y(U(OH;ro)) we have ||Dy~'(u)|| < L, ¥~} (u) — ¢~ (v)| € L|lu — v|. By
Lemma 6 and Lemma 4 there are positive constants K, r; such that r; € (0,70) and
foryedH,z€ 8,H,|z—y| <R, |- 2| <R, R€(0,r;) we have

grad hy()(9(2)) - () - gt radhy() - ¥ (2)x

x [n¥H)(9(2)) - Dy(z)n (2)]
< Kly = 2/"**"™ + KR®|grad hy(z) - n"(2)| - | D¥(2)]|
< KL(Jy - 2|***™ + R*| grad hy(2) - nf(2))).

Thus

| grad hy(y)(¥(2)) - "% (Y(2)) — || Dy()||' ™ grad hy(z) - n¥ (2)|
< KL(ly - zI"**~™ + R*| grad hy(z) - n¥(z)])
+ [|Dy(2)lI' ™™ grad hy(z) - n¥ (z)| x

|1 = T LY () m D wa)|
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Put

(1)

B:'

|Dy(z)[|™ e
2(VHE +1)

(2) C = min (rl, [m] l/a’{"Dd;'(i)” [l _ (1 = B);l__l]}lla,

{126@N gy 4 pymir - u}").

By Lemma 3 there is r2 € (0, C) such that for R € (0, r;) we have

| grad hyy)(¥(2)) - n¥ ) (9(2)) ~ |DY(2)||' =™ grad hy () - ¥ (z)|

- o €
KL=l 4 |Re 4 i | rad () v (1)

3e
— o|l+a-m nH
S KLy = 2"+ g grad by (2) - nf ()],

If o € €(0H), |lpll < 1, r € (0, R) then the Lipschitz condition for ¥~! yields

/ ot~ n¥H) . grad hyyy — /san” - grad hy

Y(8-HAU (z;r)) 8. HnU(z;r)

<

/sﬂo'/' HIDg(2)I*~™ grad hy (¥~ 1(z)) n#($71(2)) dHon-1(2)
Y(8-HNU(z;r))
- /gon . grad hy 4.9 -1|
8, HnU(z;r)
+ KL /Iy ¥~ l(z)|1+°‘""d.t° -1(2)
V(8. HAU(z;r))

+ 3e )
8Lm-1(VH 4+ 1)

/ | grad hy (¥71(2)) - nF (¥~ (2))| dHon-1(2)
Y(8.HNU(z;r))

<| [ eodIDUEI - gradhy (971 (2) (97 (2) i (2
V(8- HNU(z;r)) .

- /gon - grad hy d ¥, _, l +KL™ /Ivy =~ z|'temaoe,_i(2)

O,HnU(z r) ) 8. HNU(z;r)
3
+3 VH 71 /' grad by (2) - n¥(2)| d Hrn_1(2)
8.HNU(z;r)

401



< l / wo¥ " IDY(2)||~™ grad hy (¥1(2)) - nH (Y1 (2)) dn-1(2)
¥(8.HNU(z;r))

- /(pn" -grad hy, d#5,_,
8, HNU(z;r)

+ KL™ /ly —z|Mtem g, 1 (2) + -g-s.
8 HNU(zir)

By Lemma 8 there is r3 € (0, r3) such that for R € (0,73), r € (0, R) we have

3) | / poy~ n¥) . grad hyy) — / on . grad h,

v(8,.HNU(z;r)) 3. HnU(z;r)
< | / pod ™ IDY(z)||'~™ grad hy ($71(2)) - n¥ (¥ (2)) dHn-1(2)
¥(8:-HNU(z;r))
- /¢n" - grad hy d.)t"m_1|+%.
8, HnU(z;r)

We know that for u,v € U(z;r)
[¥(u) = ¥(v)| = | DY(u + 8(v — w))(u — v)|
= |Dy(z)(u — v) + [D¥(u + 6(v — u)) — D¥(z))(u — v)]
holds, where 8 € (0,1). Since ¥ is conformal at the point z, we have
|DY(z)(u — v)| = | DY(2)|| |u - v].
By the assumption

|[D¥(u + 6(v — u)) — D(2)}(u —"v)| < Lr*|u—v].

Hence

(DY)l = Lr*)|u = v] < [$(v) = ¥(v)| < (ID()l| + Lr*)u - v].
Thus for every Borel nonnegative function f we have
Jraovan-eymis [ oy
8. HnU(z;r)

Y(8-HNU(=;r))

<@ov@l+ Lyt [,
8, HNU(=;r)
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Since r < C we have (see (1), (2))

dH(\U{x\r) Y(d HnU(x\r))

d ffOC/(a?;r)
Hence
JA\rhi>(*)\r'djein.i - j fordje .:\ <

d /fl/(*;r) ) 6ism))

[Im-1
* 2(vF+ i) y"-
dHCW(x\r)
Weget thisrelation for every integrable function / by decomposing it into the positive
and negative parts. Thus we get from (3)

i <po xl)'n"" e gradhny, - [<pn" « grad h)\
if>(d:HnU(xr)) dHC\WU(xr)
DHM* limA f / [PA-g"M,,, ", £
AV ) 0 HDV-WII" "
- dedInl/(r;r)

izv(Xir-, V! Z
* v +1) IDV)™-t 2

D

Lemma 10. Let V"' < co, let V> be conforma/ on dH — TH- Then for every e > 0,

*0 6 ## tAeareisi > 0 such that for each x,y € d#, |y - aig] < *» |* — *0| < i,
y>€ V(dH), \\<p\\ < 1 we have

\( T <pol-'n*W-e»dhn*)dJGn-i- [ ~"gradM”~m-i)
1V JaH) JaH '
-(f (po™-tntW-gtsAhNdJiSn-i- | An%gradhy,dJ”®,_;)|<c.
KJan (H) JaH i

Proof. By Lemma9 thereisr > 0such that for y€ dH, \y - z<j| < r we have
| /'70”-"n*<')-grad” )dJR _i
<I>(U(*zr)naH)

/vn* gradh,d”,_i < -.
U(*;r)ndH
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Ifz,y€8H, |z - zol < %"r ly— =) < %r then
I ( / poy~in¥(H) . gradhy(s) dit, ) — / on® . grad h, dét?,._l)
By (H) OH

- / po v 0¥ grad by, d, s —/ on® . grad h, daf,,._,)’<
8y(H) oH .

+ | grad hy(z) — grad hyy)| dHon_,

N ™

<
»(8, H-U(%0,r))

+ |grad he — grad hy | d o7, _ ;.

8,H-U(zo0,7)
Since grad h,(v), grad h,/,(u)!/’(v)) are finite continuous functions on the compact
{(u,v)-€ clU(zo;3r) x (0rH = U(zo;7))} and Hpn—1(6, H) < 00, Hm_1(8r¥(H)) <
oo according to [K1], Corollary 2.17 and Lemma 2, there is § € (0, 3r) such that for
z,y € 8H, |z — zo| < 6, |y — zol < 8, z € (8, H — U(zo; 7)) we have

dhg(z) - °
lgra (Z) grad hy(z)' < 4(% -—l(arH) + 1))

| grad hy(=)(¥(2)) — 8rad hy () (¥(2))| < 4(Jt’m-1(3rs¢(ﬂ)) +1)

Therefore
’(/ ¢o¢"1n¢(H) - grad hy(;) dIg; 1 —/ en . grad h, d.’t’,’,._l)
OY(H) OH

—/ gootp"n'p(”) - grad hy(y) d X, -3 —/ (,on” - grad hy d.%"m-ll <e.
oy(H) oH
a

Notation. Let z € R™, let B be a Borel set. Then we denote by

. X (BNU(z;7))
dp(z) = lim X (U(z;7))

the m-dimensional density of the set B at the point z, if this density exists.

Notation. For B.C R™ we call the set of y € R™ for which
| Xo(U(y;)NB) >0 and H,(U(y;r)—B) >0
for each r > 0 the essential boundary of B and denote it by 8, B.
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Lemma 11. Let VH < oo, let ¢ be conformal on 8H — ryy. Then dyw)(¥(z)) =
dy(z) for each z € 6H.

Proof. First,letz € 8.H. Put ¢ = 1. According to Lemma 1 and [K1], Theo-
rem 2.19 and Theorem 2.15 we have WHp € €(0H), W¥H)(po y~') € €(¥(dH)).
By [K1], Lemma 2.15 and Lemma 2.8 we have for y € 0H

WHo(y) = du(y) + /8 o guad by 4,
WY (o 0 y~1)(%(y)) = dyn(¥(v)) + /a o’ ¢~ InV(H) . grad hy(y) dHm_1.
Choose £ > 0. The continuity of WHp and W¥(H) and W¥(H)(p o $~1) yields that
there is r > 0 such that for y € dH, |y — z| < r we have

IWHp(y) - WHp(z)| < ¢,
IWHID (p 0 1) () - WHHD(p o 1) ((2))] <.

Hence

|der(z) — dy(ay(¥(2))
< ldu(y) — dyy(¥(¥))l
+ WY (o0 1) (¥(y)) - WYE)(p o =) (¥(2))|
+|WH(y) - WHe(z)|

+ I(/ o™ In¥) . grad hy(zy d -1 —/ on! . grad h, d I, _1)
dY(H) 8H

- (/ po v 'n¥ ) . grad hy(y) dn_1 -/ onfl . grad h, th’,,._1)|
dy(H) oH

< |du(y) — dycn)(¥(¥))] + 2¢ l

+ l(/ po ¢-1n¢(H) - grad h'ﬁ(z) 4o, “/ 'PnH -grad h, de’m-l)
BY(H) 8H

- (/ po v~ n¥ ") . grad hy(y) d#on_, -/ onf . grad b, dx,,._,)l.
dY(H) oH -

By Lemma 10 there is r; € (0, r) such that for y € H, |y — z| < ry we have

|da (2) = dy(ay(¥(2)] < |dm(y) — dyan(¥(y)] + 3.

8, H is dense in 3. H by the Isoperimetric Lemma (see [K1], p. 50). Thus we can
choose y € 8, H such that |y — z| < r;. Since ¥(y) € 8-¥(H) by Lemma 2 we have

ldr () = dycany(¥(2))] < 3e-
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Thus dy(#)(¥(z)) = di(z) because ¢ was arbitrary.

Now let z ¢ 8. H. By the assumption there are positive constants R, L such that
for y, z € U(z; R) we have |y(y) — ¥(2)| < L|ly—z| and for y, z € U(¢(z); R) we have
[9=1(y) = ¥~(2)| < Lly = 2|. If there is r € (0, R) such that 5, (H N U(z;r)) =0
then Hm(Y(H) NU(y(z);r/L)) < X (¥(H NU(z;1))) < L™ Hon(HNU(z57)) =0
and thus

dy(a)(¥(2)) = du(z) =
Similarly, if there is r € (0, R) such that J,(U(z;r) — H) = 0 then

dy(y(¥(z)) = du(z) = 1.

Lexﬁma 12. Let V¥ < oo, let ¥ be conformal on 0H - TH. Tben
Vg [W"’(H)(goo 1/)"1)] oY — WH<p

is a compact mapping on €(0H).

Proof. By the Arzela-Ascoli theorem it suffices to prove that {Ve; ¢ €
€(8H), |l¢ll < 1} is a set of uniformly continuous and uniformly bounded functions.
If |l¢ll € 1 then by [K1], Theorem 2.5 we have

Vel S VI £ VE 42 < 0.
Thus it remains to prove that {Ve; ¢ € €(0¢(H)),|l¢ll < 1} is a set of uniformly
continuous functions. Let ¢ > 0. By Lemma 10 there is a positive number 6(z) for

each z € dH such that for every y, 2 € 0H, l[y—z| < §(z), |2 —z| < §(z) < p €
€(0H), |l¢ll < 1 we have :

(4) |(/ . ¢°¢"n"’(”)-gmdh¢(,,)dxm_l—/ <Pﬂ"-gradhyd.at’m_1)
Joy(H) : 8H A

—(/ pop~n¥H) . grad hy(;) d A, —/ onf . grad h, doe, _1)| <E. -
Y (H) 8H

Since OH is a compact set there exist z!,...,z" € 9H such that U{U (z b(z*)/ 2),
i=1,...,n) > 0H.
- If we put




(4) holds for each y,z € 8H, |ly—z| < 6, ¢ € €(0H), |l¢|l < 1. By (4) Lemma 11 and
[K1), Lemma 2.15 and Lemma 2.8 we have for y,z € 0H, |y - z| < 6, ¢ € €(6H),
llell € 1 the estimate

Ve(y) - V() = | [w(y)dw(m(vb(y)) + /8 s v~ 1n¥ . grad hy(y) d I, _,
- o(y)du(y) - /cm qon” - grad hy d.?!”m_I]

- [N + [ oo w ¥ grad hacs Aoy

- p(2)dy(z) - / qpn”v -grad h, d.}t"mq] |
OH
<e.

a

Lemma 13. Let B C R™, ¢: B — R™ be an injective mapping which is conformal
at a point z € B. Then y~! is conformal at the point ¥(z).

Proof. See [MEl], Lemma 16. a

Theorem. Let V¥ < oo, let ¢ be conformal on 6H — ty. If | || is a norm on
€(0H) equivalent to the maximum norm we define on €(8¥(H)) the norm Jplly =

fe o vl. Then
w(BI + WH | ) = w(B] + W¥E), | 1y)

for each real number B. (Here I is the identical operator.)

Proof. Since VH < o0, we have V¥(#) < 0o by Lemma 1. By Lemma 7 and
Lemma 13 it suffices to prove '

w(BI + WY | Iy) < w(BI+ WH D).

Let € > 0. Then there exists a compact linear operator K on €(0H) such that
1B+ WH - Kl <w(@BI+ W2, 1 ) +e.

Since the mapping K; on €(0y(H)) defined by

Kip=[K(poy)oy™
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is compact because it maps a system of uniformly bounded continuous functions to a
set of uniformly bounded and uniformly continuous functions, we have by Lemma 12

w(BI + WY L Iy) =w(BI + W — K1, 1 Iy)
<1+ Wl - Kily
=8I+ WH - Kl <w(BI+WH I D +e,

where WH : o s [WH(po )]0y, O
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