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Abstract. In this paper first order linear ordinary diff ial equations are idered. It
is shown that the Cauchy problem for these systems has a unique solution in G"(R), where
G(R) denotes the Colombeau algebra.
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1. INTRODUCTION

We consider the Cauchy problem

(1.0) ah) = 3 A (O;(0) + £1(0),
j=1
(1.1 zi(to) = vox, to €R, k=1....,n,

where Axj,2; and fi are elements of the Colombeau algebra G(R), zox are known
elements of the Colombeau algebra T of generalized complex numbers, z(to) is
understood as the value of the generalized function z; at the point {pandk =1,...,n
(see [1]-[2]). Elements Ax; and fx are given, elements zx are unknown (for k,j =
1,....n). Multiplication, derivative, sum and equality is meant in the Colombeau
algebra sense. We prove theorems on existence and uniqueness of solutions of the
Cauchy problem for the system (1.0). Our theorems generalize some results given in

[1], (13-
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2. NOTATION

Let D(R) be the space of all C* functions 8 — C with compact support. For
¢ =1,2,... we denote by A, the set of all functions ¢ € D(R) such that the relations

o oo
(2.1) /ﬂz)dt:l, /t’ip(t)dt:& 1<k<q

hold.

Next, £[R] is the set of all functions R: A} x R = C such that R(p,t) € C®(R)
for each fixed ¢ € A;. :

If R € &[R], then D, R(p,t) for any fixed ¢ denotes a differential operator in ¢
(ie. DuR(p,t) = S (R(p,t)) for k > 1 and DoR(p. 1) = R(,1)).

For given ¢ € D(R) and € > 0, we define ¢, by

(2.2) ee(t) = Lo ().

An element R of £[R] is moderate if for every compact set I of R and every
differential operator Dy, there is N € N such that the following condition holds: for
every @ € Ay there are ¢ > 0 and g9 > 0 such that

(2.3) sup | DiR(pe.1)] < ce™V for 0<e<ep.
tel

We denote by £x[R] the set of all moderate elements of £[R].

By I’ we denote the set of all increasing functions o from N into Rt such that
a(g) tends to oo if ¢ — oo.

We define an ideal M[R] in &u|R] as follows: R € N[R] if for every compact set
I of R and every differential operator Dy there are N € N and « € I such that the
following condition holds: for every ¢ > N and ¢ € A, there are ¢ > 0 and g > 0
such that

(2.4) sup |DeR(p..t)] S cc®@N  if 0<e<ep.
teEN

The algebra G(R) (the Colombeau algebra) is defined as the quotient algebra of
Em[R] with respect to M[R] (see [1]).

We denote by & the set of all functions from A; into C. Next, we denote by Exr
the set of all so-called moderate elements of & defined by

(2.5) Ext = {R € &: there is N € N such that for every ¢ € Ay there
are ¢ > 0 and 7o such that |R(p.)| < eV if 0 <e <)
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Further, we define an ideal AV of £ by

(2.6) N ={R € &: therc are N € N and « € I" such that for every
¢ 2 N and ¢ € A, there are ¢ > 0, 10 > 0 such that
[R(pe)l € ce* N if 0 <& < 1o}

We define an algebra C by setting C = %\3/— (see [1]). It is known that C is not a
field. If R € £m[R] is a representative of G € G(R) then for a fixed ¢ the map Y:
@ = R(ip,t) € Cis defined on A; and Y € €. The class of Y in C depends only
on G and ¢. This class is denoted by G(t) and is called the value of the generalized
function G at the point ¢ (see [1]).

We say that G € G(R) is a constant generalized function on R if it admits a
representative R(p,t) which is independent of ¢ € R. With any Z € C we associate
a constant generalized function which admits R(y¢,t) = Z(y) as its representative,
provided we denote by Z a representative of Z (see [1]).

Throughout the paper K denotes a compact set in R. We denote by Ra,;(»,1),
R, (0,8), Roy; (@), Baj(0) (), R (@, 1) and Rar(9,1) representatives of elements
Ak, frswoj, zi(to), x5 and f for k,j = 1,...,n. Let A(t) = (Ax(t)), f(t) =
() )T, 2®) = (e (1), ma ()T, 2'(t) = (@0(t),...,ah ()T, o

(10, - - -, Zno) T, where T denotes the transpose. We put

It

Ra(,t) = (Ray;(0,1), Rr(o,t) = (R (0. 1), - Ry, (0, 1),
Re(0,t) = (Ra, (0,1), -, By, (2,)T, Rur(0:8) = (Ray (0,0),..., Ray, (0,1))7,
Ray(#) = (Rey (@), - - Ry (0D, Re(t0)(#) = (R 10) (s - sR::,.(tu)(v))Ts

f Rato.9)ds = ( / Ry, (6.9) 1)

ty to

t t t T
[ Rstosras = ( [ Rateods [Rutosias)
to to to

n 172 n 1/2
HRA(W)HT(Z|Rm,<w,f>|2) ‘ HR/(%UN=(ZIR/,(%t)Iz) ,
=1

k=1
I1Rale, )l = sup [[Rale, )l 1R (0, )llic = sup | Rs (0, H)II-
tel teN

We say that a generalized function G is real valued if it admits a real valued
representative. Starting with those elements of & which are real valued we obtain
in this way an algebra R containing R as a subalgebra. Thus C = R + iR, where
i2 = —1 (see [1]).
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If Auj f; € G(R). 7 (,Il“;m"‘)‘e, R v = (vy,....va) € R, aj,b; €
NIR], muj,p; € Ny 45 eC o elfor }"), =1,...,n, then we write
A= (Ay) € Q”X“(R)a f= (fh-..,fn)[‘ € G (R),
b=(b1,...,0)" € NPR] a= (axj) € /V"’“"[R])
m= ("”kj) [ A (Pre---. 17“)’1" c A/,L.
g=(a,...,q.)" €CH 7= (riv....ta)T € C", )
Ra(p.t) € £vn[R], Relo,t) €&y[R] and (u,0) = -zlujl'j‘
j=

We say that z = (21, - - ,%,)7 € G™(R) is a solution of the system (1.0) if 2 satisfies
(1.0) in G™(R); i.e. if Rs(,t) is a representative of x, then there is 1) € A™[R] such
that

Ror(0,t) = Ra(@: ) Ral, t) + nle,t)

(for all p € A; and t € R).

Let U € G(R). U will be called locally of logarithmic growth with an exponent
7, r > 0 if it has a representative Ry (p,t) with the property: for every compact
subset X C R there is N € N such that for every ¢ € Ay there exist constants
g0 > 0,¢ > 0 such that

IRy (e, )lw < (Nlogf)r for 0<e<eq.

If » = 1, then we say that U is locally of logarithmic growth (sce [14}).

By G2(R) we denote the set of all elements y € G(R) such that y has locally
logarith:nic growth with the exponent %

The symbol 1:12 (R) denotes the set of all elements y € G(R) such that y(*) € g‘_i(ue).
For s = 0 we put H;(R) = QE(R)A

By ¢(~% we denote a ge'neralize(l function whose [-th derivative is equal g
(ile. (¢ = g. A function y belongs to H*(R) (s € N) if and only if y()
(in the distributional sense) belongs to L (R). For s = 0 we put H°(R) = L, .(R).

A function y is said to belong to the class C(R) if y is an absolutely continuous
function in every compact interval ' C R. We put

Ca®) =C(R) x...x C(R),  C(R) =Cq(R).

n-tinies

The symbol Lje )(R) denotes the set of all k-th derivatives (in the distributional
sense) of the functions of class L}, (R).

loc
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3. THE MAIN RESULTS

First we will introduce two hypotheses.

Hypothesis H;.
(3.0) A€ GV™R), feg"(R),

the matrix A € §"*"(R) admits a representative Ra(9,t) = (Ra,, (g, t)) having at
least one of the following four properties:

(3.1) Ra,;(p,t) €R forevery p € Ay and b j=1,....n,

(3.2) Ralp,t) = (Ralp, )T for every o € Aj.

(3.3) Ra(p,t) = —=(Ra(p.1)T forevery € A,

(3.4) Ra,,(p,t) is locally of logarithmic growth for k,j =1,...,n.

Hypothesis Hy.

The matrix A admits a reprosentative Ra(p,t) = (Ra,;(¢.1)) with the following
property: for every K there is N € N such that for every ¢ € Ay there are constants
¢ > 0 and g > 0 satisfying at least one of the following six conditions:

e for0<e<e, kj=1,...,m
K

(35) H / 1R, (9, )] ds
0

c
) < — for0<e <eg, kj=1,...,n;
K

(3:6) exp (H / R, (e, 5)] ds
0

o~
(3.7) Ra;(pet) =0 forte K. k<j, n>1and
t
”/H,.Jj(tps,s)ds e if 0<e<eg. j=1.. . n
IN
0

(3.8) Ra,;(pe,t) =0 forte K, k<j, n>1and

t
exp (”/RAU(QD;,S)ds
o

(3.9) Ray;(we t) = —Ray(pe.t) forte K, j#k n>1 jh=0 . . n and

t
exp (“ / |Ra,; (e, 8)|ds
0

N

c . j
)gf 1f0<s<so,)=1,...,n;
K

c . .
,.)gaT if O<e<en j=1,....n;
g
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(3.10) Aoy Arr... Aucin An € B R), AP € GH(R), 2k g, K

A\
=

We shall consider the problems

(3.11") 2(t) =1A()a(t) + f(t), 2(t)) =0, toER, 2 €C"
and
(3.11) 2(t) = AD)z(t) + F(t), x(to) =20, twER, 20€T",

where iZ = —1.

Remark 3.1. If A and f have properties (3.0)-(3.2), then problem (3.11’) has
exactly one solution z € §*(R) (sce [13]). Besides, every solution & of system (3.11')
has a representation

(3.12) a(t) = Z(t)e+ Q(t),
where Z is a solution of the problem
(3.13) Z'(t) =1A@)Z(¢t), Z(to) =1,

I denotes the identity matrix, ¢ = (c1,...,cq)7, ¢j are generalized constant functions
on R for j =1,...,n and Q is a particular solution of system (3.11’). The solution
« is the class of solutions of the problems

(3.14)  a'(t) =iRalp,)2(t) + Ry(p,t), w(to) = Rey(9), v € A (see [13]).

Remark 3.2. If A€ Gn(R), fe ¢™(R) and at least one of conditions (3.3),
(3.5), (3.7) is satisfied, then problem (3.11) has exactly one solution in G"(R). Be-
sides, every solution z of system (3.11) has a representation (3.12), where Z is a
solution of the problem

(3.15) Z'(t) = AR Z(t), Z(to) = 1.
The solution z of problem (3.11) is the class of solutions of the problems
(3.16) 2'(t) = Ra(e, )a(t) + Re(o, 1), w(to) = Rey(9), @ € A1,

(see [13]).
Remark 3.3. If § denotes the generalized function (the delta Dirac’s generalized

function), which admits as the representative the function Rs(g,t) = ¢(—t), then
Rs(ip,t) has property (3.5). It is not difficult to show that the problem

has no solution in G(R) (see [13]).
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Remark 3.4. If the matrix 4 has property (3.4) or (3.5), then it has prop-
erty (3.6). Note that properties (3.4) and (3.5) are independent. Indeed, take two
generalized functions ¢ and d defined by

§=[p(-l d=[ngs),

where ¢ € A; and L(p) = sup{|t|: ¢(t) # 0}. It is not difficult to verify that &
satisfies (3.5) but d does not. Moreover, d has property (3.4), but § has not this
property.

If the matrix A has property (3.7), then it has property (3.8).

Theorem 3.1. We assume conditions (3.0) and (3.6). Then problem (3.11) has
exactly one solution z € G*(R). Besides, every solution z € G™(R) of equation (3.11)
has properties (3.12) and it is the class of solutions of the problems (3.16).

Proof. The proof of the theorem is similar to the proof of Theorem 4.2 in [13)].
To this purpose we examine relation (3.16). Let z(y,t) be a solution of problem
(3.16). Then

(317) a(p,t) = Rz(p, DRy (.1),
where

(3.18) DRy (¢.t) = (Rz(0: )™ Ry(p, 1),
(3.19) Ry (.t0) = Rz, (9)

and Rz(yp, 1) is a solution of problem (3.15). On the other hand,
(3.20) Di((Rz(, 1)) = =((Rz (2, ) T ) Ra(#,1).

Using the Gronwall inequality and relations (3.6). (3.15) and (3.20) we obtain

20 IRl < Virew (| [1Rsteeolas] ) < G

where 0 < & < €0, v € Ay and Ry(@e, 1) = Rz(pe-1) or Ru(pe,t) = (Rz{pe, 1))~
By (3.20)—(3.21) there is N, € N such that for v € Ay, and 0 < ¢ <o we have

(3.22) Do Ru (e )l € Cre™ N7
Hence
(3.23) Ru(p.t) € £ (R]:
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Relations (3.17), (3.18), (3.23) yicld
(3.24) (g, t) € Ep[R].

Denoting by z the class of 2(p.t) in G*(R), we get that z is a solution of problem
(3.11). Let y € G*(R) be another solution of problem (3.11). Then

(3.25) D1 Ry(.t) = Ra(e, )Ry (0, t) + Ry(2,8) + Ry (0, 1),
where

(3.26) Ry (p.1) € N™[R]

and .
(327 Ry (i, t0) — 2(p, ) € N

In view of (3.16), (3.25)—(3.27) and the Gronwall inequality we conclude that (for
g2 N, pe A, 0<e<ep)

llz(we, £) = Ry(ve, )l < (la{e-to) = Ry (e o)l

(3.28)

) < coe @,
K.

t
R0l (| [1rateenas
to
This yields
(3.29) 1D (2(e. ) = Ry(pe, )i < cre@@H
for ¢ € A, ¢r 2 N'r and 0 < ¢ < &} and consequently
(3.30) (1) = By (o) € NV[R].
This proves the theorem. a
Theorem 3.2. We assume conditions (3.0) and (3.9). Then problem (3.11) has

exactly one solution x € G™(R). Besides, every solution x € G"(R) of equation (3.11)
has properties (3.12) and it is the class of solutions of the problems (3.16).

First we shall prove two lemmas.

Lemma 3.1. We assume conditions (3.0) and (3.9). Then the problem
(3.31) 2'(8) = A(t)x(t), w(to) =0, 10 €T, to €R
has exactly one solution x € G*(R).
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Proof of Lemma 3.1. For a fixed ¢ € 4, the problem
(3.32) 2'(t) = Ra(p,t)x(t), a(to) = Ray ()

has exactly one solution x(g,t) on R. By (3.9) we get

t

t
[ (@oe o)™ a'ter. ) as = / ((@(6e, )T, Ra(e, $)(per s)) ds
333 ° fo
/(ZRA,, 9e- 8)23 (e, 9>d9~.—(zw wf‘f)fzr ws,fo)

1o i=1

Using the Gronwall inequality we have

@34 lalon DI < oxp (“ [T Ree ) as )uxm,tomz<f‘i
to K

for 0 < £ < gg and ¢ € Ay, where

TRy (pe, s Z;RA,/ @e.5)|-

(3.35) 1D (e i < Cre™™'"

for 0 <e <ej and ¢ € An:.
So x(i, t) € EY[R]. We denote by x the class of 2(¢, 1) in G"(R). Therefore z is a
solution of problem (3.31). If y € G™(R) is another solution of problem (3.31), then

(3-36) DiRy(¢.1) = Ralp. ) Ry(o.t) + (e, 1),
where

(3.37) N, t) € NM[R]

and

(3.38) R, (¢ to) — 2(p, tg) € N
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In view of (3.9), (3.32) and (3.36) we deduce that

t

(3.39) /(((-@(ws,s))TvI'(%)) = ((Ry (e, 8) 7, By (g ) ds
i
(Z(m?(%, t) — B2 (e, t))) - %(Z(n:j(tﬁs,to) - RZ, (s, to)))
i=1 j=1

= / (zR,,,,m.s)(.rfwe,s)~R,%j(ws,sn) ds
j=1

to

SIS

t
~ [R5 s
ta
Evidently
t

@40) (R Rolor)) ds = e, ) € TR

to
Taking into account (3.39)~(3.40) and the Gronwall inequality we infer that

Ihe (e, 8) = Ryle, IPMie < (l(e- to) = Ryle, to)?
(3.41)

) < cheoa=N;

i
+ 2ipe i) -exp (H J 2T Rten s
K
to

for 0 < e <ep, ¢ € Ay and g > Nj.
This yields
. alg)—N'
(3.42) ID (e 1) = Ry )l < Cre™@7

(for o € Ay, ¢ 2 Nl and 0 <= < el).
Thus, by (3.42) we obtain

2(g.t) = Ryl t) € N[R].

This proves Lemma 3.1. a

From Lemma 3.1 we get

Lemma 3.2. We assume conditions (3.0), (3.9)- Then problem (3.15) has exactly
one solution Z € G"*"(R).
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Proof of Theorem 3.2. Proof of Theorem 3.2 is similar to the proof of Theorem
3.1. We start from relations (3.17)—(3.19), where x(p,t) is a solution of problem
(3.16). Taking into account (3.34)—(3.35) we show rclation (3.23). So, by virtue of

(3.42) and (3.17) we obtain (3.24). The uniqueness of a solution of problem (3.11)
follows from Lemma 3.1. a

Theorem 3.3. We assume conditions (3.0), (3.8). Then problem (3.11) has ex-
actly one solution € G*(R). Besides, every solution * € G"(R) of equation (3.11)
has properties (3.12) and it is the class of solutions of the problems (3.16).

Proof. Proof of Theorem 3.3 is similar to the proof of Theorem 4.2 in [13].
First we examine the problem

(3.43)1x 21 (t) = Ra,, (9, ) 211 (2)
(3.48) 2 () = Ra, (2 )zi(t) + .+ Ra,, (9, 0)2uk(8),
(3.44) oy =4 b HIER e
. Zki = wiere ) = I
MY 0 itk !

From (3.43)11—(3.43) i, (3.44) we infer that

t
(3.45) [lzux (e, )il i <exp( /RAI.(vs-S)ds )
b K
and
(3.46) 1D, z1x (e, Dl i € cra™™

(for ¢ € An,. 0 < e < ey and k = 1,...,n), where (zix{.1), ...,z (0, t))T is a
solution of problem (3.43)1x~(3.44). If n > 1, then (3.43),, (3.45) and (3.8) imply

(3.47) 1D, (Zmi{e- )l i € coe™Nen

for 0 <e <em, p € An,,.
Let z(y,t) be a solution of problem (3.16). Then x(,2.¢) has the properties (3.17)—
(3.20), (3.23), (3.25)—(3.27), (3.29), which completes the proof of the theorem. O

Corollary 3.1. We assume that

(3.48) aj, f € G(R) for j=1,..
(3.49) all elements a; (for j = 1,...,n) have property (3.6).

T
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Then the problem

n—1
(3.50) ¥+ S as(Ny ) + f(B) = 0.
ard
(3.51) yD(to) =voi» Ui €C, to€R, i=0,1,....n—1

has exactly one solution y € G(R).

Now we shall consider linear differential equations of order n of the form

(3.52) Bu(y) + AP (1) = 0,

where
n—2k n—1 X

(353) Bu@ =y"®+ > AP+ T AP T ey9),
=0 i=n—2k+1

k21, 2k < n and A; have property (3.10) (for j =0,1,...,n —1).

Remark 3.5. It is worth noting that if y € H3(R), then y does not belong to
G2(R) in general. In fact, let y(t) = 1 + m, where L(p) is defined by Remark
3.4. Then y € H}(R) and y € G3(R). If G1,G2 € G3(R), then for every I there is
N € N such that for every ¢ € Jf n there exist g9 > O and ¢ > 0 such that

t
(359) 1Ry (petRas(per Ol < Nlog(<) and j = [ [ reito9 ds} cdG®
0

for 0 < € < ¢gp.

Remark 3.6. To the linear differential equation (3.52) we shall apply a modi-
fication of the transformation introduced by R. Pfaff in [17].

We denote

(%)t et

J

miggp=n-2k+1—i—j ny=n—k—i+j,
pijg=i+l-n—-j, v=n-k m=n-2k

(3.55)
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and for[=1,...,k—-1

=Y
n =y,
zom1 =y,
m
oy A=A s
i=0
mod o mad ma
. Zosl = ZENM(AW(H]))U?]) + Z z Njoi Ayt tmia)
i=0 =0 l=m+1 =0
n=1 ifl-n
+ Z Z Nj oo (g AL Pi) 4 o) 4 40,
1=n-l j=0
Then
Zp =71
2 =2
Z:y—z = Zp—1s
'dir—l = Az An,
=0
m
2 = A AT 2 + 3 (kAiey + A:ATE )z
i=1
—k
+ (kAm — Apgr) 2y — AEL,,lﬂ)(Zu — Ap) + Zug1,
mo,
(3.57) Fpie1 = > ( Nr—j,k—iAff:f)>AiZi
i=0 \j=1

m-l 1

- Z NigAioizi — (Z Nz—j,;;_jAmH> Zmt
i=l

j=1
! f
- (21“_]-_,\._]-}151:;‘)) (20 = An) + Zvt1,
=1

m n—1

=) ( Z(—D"'?’Aj)m:,
i=0 N j=m

v—1 n—1

~(Tewams) - (T 074 - a0,

i=k j=m
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where [ =2...., k —1 (see [17]. [12]).

Obviously y € G(R) is a solution of equation (3.52) if and only if z = (2o, ..., 2pn—1
€ G"(R) is a solution of system (3.57). System (3.57) will be written in the simplified
form:

)T

(3.58) () = A()z(t) + b(t).

By virtue of (3.53) we infer that system (3.58) is a system of linear differential
equations with coefficients locally of logarithmic growth. We can consider system
(3.58) with the conditions

(3.59) zito) =z, =0 €C, to€R, i=0,1,...,n~1.

Applying Theorem 3.1 we can show that problem (3.58)-(3.59) has exactly one so-
lution z € G"(R). Hence, by (3.56)—(3.59), we get that problem (3.51), (3.52) has
exactly one solution y € G(R).

Remark 3.7. We assume that Ao, 4y,..., Ank, An € L} (R), A;-"_k_j) €
HI7YWR), j=n—k+1,...041, k>1, 2k<n, 5 € Rforr=0,1,...,n -1,

derivative is understood in the distributional sense, product of distributions f €
LX)(R), G e HP_(R) is defined by

loc

=% i(P ()y(p—1)
G=G i FGW)p-1),
f f ;70( 1) (1)( )

where F*) = f. Then problem (3.58)—(3.59) has exactly one solution z € Cp,(R) (in
the distributional sense) and y € H*Z*(R) (see [12], [17]).

4. FINAL REMARKS

Remark 4.1. Let all elements of a matrix A and vector f be C®(R) on R.
Moreover, let 7o € C. Then the classical and the generalized solutions (i.e. solutions
in the Colombeau algebra) of problem (1.0)-(1.1) give rise to the same element of
G™(R). If f € LL.(R), we define

“.1) Rylp,t) = /f(t+u)tp(u)(lu,, we AL

oo
Obviously R(p.t) € Em[R] and Ry(p,t) has broperties (3.4)~(3.5)-
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It is known that every distribution is moderate (see [1]). If fi and fo are not
elements of the space C*°(R), then the product f1 o f; in the Colombeau algebra
and the classical product fi - f2 do not give rise to the same element of G(R) in
general. Hence we observe that the classical solutions (in the Caratheodory sense)
and the generalized solutions (in the Colombeau sense) are different in general. The
solutions are equal in the weaker sense.

An element U of G(R) is said to admit a number W € D'(R) as the associated
distribution if it has a representative Ry (¢, t) with the following property: for every
3 € D(R) there is N € N such the for every ¢ € Ay we have

lim / Ry (e, () dt = W ()

(see [1]). If x = (21, ...,2,)7 is a solution of problem (1.0)—(1.1) in the Caratheodory
sense (zox € R, Ayj, fr € LL (R)fork,j=1,...,n) andZ = (71,...,7m)7 € G*(R)

is a solution of the problem

2(t) = 3 Ari() 0.xi(0) + fult), wilto) = wok, k=1,...,m,

j=1
then 7 admits an associated distribution which equls @; for i = 1,...,n (see [13]).

Remark 4.2. L. Schwartz proved in [20] that there exists no algebra A such
that: the algebra of continuous functions on R is a subalgebra of 4, the function 1
is the unit element of A, elements of A are C* with respect to a derivation which
coincides with the usual one in C'(R), the usual formula for the derivation of a
product holds, the algebra A contains the Dirac delta distribution.

Remark 4.3. It is worth noting that if A is a matrix such that A = (Aj;) €
G M(R), Aj; = dB;j, Bj; are continuous functions, j = 1,...,n, the derivative is
meant in the Colombeau sense, Ax; = 0 for k£ < j and n > 1, then the matrix A has
property (3.8) (d is defined in Remark 3.4).

Remark 4.4. The definition of generalized functions on an open interval
(a,b) C R is almost the same as the definition in the whole R (see [1]). It is
not difficult to observe that the above proved theorems are also true in the case
when generalized functions Ayj, fr and z; are considered on an interval (a,b) for
k,j = 1,...,n. For this purpose it is necessary to formulate properties (3.0-(3.10)
on the interval (a,b).

Remark 4.5. Generalized solutions of ordinary differential equations can be
considered in other ways, too (for example: [1]-[12], [15]-[18], [21]).
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