Mathematic Bohemia

Bohdan Zelinka
Domination in graphs with few edges

Mathematica Bohemica, Vol. 120 (1995), No. 4, 405-410

Persistent URL: http://dml.cz/dmlcz/126090

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DOMINATION IN GRAPHS WITH FEW EDGES

Bohdan Zelinka, Liberec
(Received March 17, 1994)

Summary. The domination number $\gamma(G)$ of a graph G and two its variants are considered, namely the signed domination number $\gamma_{s}(G)$ and the minus domination number $\gamma^{-}(G)$. These numerical invariants are compared for graphs in which the degrees of vertices do not exceed 3.

Keywords: domination number, signed domination number, minus domination number. AMS classification: 05C35

1. Introduction

In this paper we will consider finite undirected graphs without loops and multiple edges. We will study three numerical invariants of graphs which concern the domination.

If x is a vertex of a graph G, then $N[x]$ denotes the closed neighbourhood of x, i.e. the set consisting of x and of all vertices which are adjacent to x in G. If f is a function which maps the vertex set $V(G)$ of G into a set of numbers and $S \subseteq V(G)$, then $f(S)=\sum_{x \in S} f(x)$.

The concept of the domination number of a graph is well-known. A subset D of $V(G)$ is called dominating in G, if for each vertex $x \in V(G)-D$ there exists a vertex $y \in D$ adjacent to x. The minimum number of vertices of a dominating set in G is called the domination number of G and denoted by $\gamma(G)$.

There is still another definition of $\gamma(G)$. A function $f: V(G) \rightarrow\{0,1\}$ is called a domination function, if $f(N[x]) \geqslant 1$ for each $x \in V(G)$. The minimum of $f(V(G))$ taken over all domination functions f of G is called the domination number $\gamma(G)$ of G.

Both definitions are equivalent. If a dominating set D is given, we may take the function f such that $f(x)=1$ for $x \in D$ and $f(x)=0$ for $x \in V(G)-D$; then f
is a dominating function and $f(V(G))=|D|$. On the other hand, if a dominating function f is given, we may put $D=\{x \in V(G) \mid f(x)=1\}$; then D is a dominating set and $|D|=f(V(G))$

In [1] the signed domination number and in [2] the minus domination number were introduced. A function $f: V(G) \rightarrow\{-1,1\}$ (or $f: V(G) \rightarrow\{-1,0,1\}$) is called a signed (or minus, respectively) dominating function of G, if $f(N[x]) \geqslant 1$ for each $x \in V(G)$. The minimum of $f(V(G))$ taken over all signed (or minus) dominating functions f of G is called the signed (or minus, respectively) domination number of G. The signed domination number of G is denoted by $\gamma_{s}(G)$, the minus domination number of G by $\gamma^{-}(G)$.

The dominating function and the signed dominating function are particular cases of the minus dominating function. Hence $\gamma^{-}(G) \leqslant \gamma(G), \gamma^{-}(G) \leqslant \gamma_{s}(G)$ for every graph G.

By G^{2} we denote the graph whose vertex set is $V(G)$ and in which two vertices are adjacent if and only if their distance in G is 1 or 2 . The independence number $\alpha(G)$ is the maximum cardinality of an independent set in G, i.e. of a set of vertices which are pairwise non-adjacent. The symbol $\delta(G)$ (or $\Delta(G)$) denotes the minimum (or maximum, respectively) degree of a vertex in G. In what follows we will study graphs G with $\Delta(G) \leqslant 3$.
2. Minus domination number

We prove two theorems comparing $\gamma^{-}(G)$ with $\gamma(G)$.
Theorem 1. Let G be a graph, let $\Delta(G)=2$. Then

$$
\gamma^{-}(G)=\gamma(G) .
$$

Proof. Let f be a minus dominating function of G such that $f(V(G))=\gamma^{-}(G)$. If $f(x) \neq-1$ for all $x \in V(G)$, then f is a dominating function of G. Therefore $\gamma^{-}(G)=f(V(G)) \geqslant \gamma(G)$. Since $\gamma^{-}(G) \leqslant \gamma(G)$ as well, we have $\gamma^{-}(G)=\gamma(G)$. Thus we suppose that there exists a vertex $u_{3} \in V(G)$ with $f\left(u_{3}\right)=-1$. Then u_{3} is adjacent to two vertices u_{2}, u_{4} such that $f\left(u_{2}\right)=f\left(u_{4}\right)=1$; otherwise $f\left(N\left[u_{3}\right]\right) \leqslant 0$ would hold. The vertex u_{2} (or u_{4}) must be adjacent to a vertex u_{1} (or u_{5}) such that $f\left(u_{1}\right)=1$ (or $f\left(u_{5}\right)=1$, respectively). We will change the values of f in u_{3} and u_{4} to 0 . If u_{5} is not adjacent to a vertex with the value -1 or if $u_{5}=u_{1}$ or $u_{5}=u_{2}$, then the function obtained from f in this way is also a minus dominating function of G. Thus suppose that u_{5} is adjacent to a vertex u_{6} with the value -1 (even after the change). Then u_{6} is adjacent to u_{7} and u_{7} is adjacent to u_{8}; both u_{7} and u_{8} have the
value 1. We consider u_{8} instead of u_{5} and proceed in the same way. After a finite number of steps we obtain a vertex $u_{3 k+2}$ for a positive integer k such that either $u_{3 k+2}=u_{1}$ or $u_{3 k+2}=u_{2}$ or $u_{3 k+2}$ has degree 1 or $u_{3 k+2}$ is adjacent to a vertex $u_{3 k+3}$ with the value 0 or 1 . Then we may change the values of f for all u_{1} with $i \equiv 0(\bmod 3)$ from -1 to 0 and for all u_{1} with $i \equiv 1(\bmod 3), i \geqslant 4$ from 1 to 0 . We obtain a new minus dominating function f_{1} of G such that $f_{1}(V(G))=f(V(G))$ and f_{1} assigns the value -1 to less vertices than f does. If f_{1} assigns -1 to at least one vertex, we repeat this procedure and proceed in this way until we obtain a function g such that $g(x) \neq-1$ for all $x \in V(G)$ and $g(V(G))=f(V(G))=\gamma^{-}(G)$. The function g is a dominating function of G and $\gamma(G) \leqslant \gamma^{-}(G)$, hence $\gamma^{-}(G)=\gamma(G)$.

Theorem 2. For each positive integer k there exists a connected graph G_{k} with $8 k$ vertices such that $\Delta\left(G_{k}\right)=3, \gamma^{-}(G)=2 k, \gamma(G)=\left\lceil\frac{5}{2} k\right\rceil$.

Proof. First we construct a graph H. We put $V(H)=\left\{u_{0}, u_{1}, u_{2}, u_{3}, v_{1}, v_{2}\right.$, $\left.v_{3}, w_{1}, w_{2}\right\}$. The edges of H are $u_{0} u_{1}, u_{1} u_{2}, u_{2} u_{3}, u_{3} v_{1}, v_{1} v_{2}, v_{2} v_{3}, u_{1} w_{1}, v_{1} w_{1}$, $u_{2} w_{2}, v_{2} w_{2}$. If we identify the vertices u_{0}, v_{3}, we obtain a graph G_{1}. Now for $k \geqslant 2$ let H_{1}, \ldots, H_{k} be disjoint copies of H. For $i=1, \ldots, k-1$ we identify v_{3} in H_{i} with u_{0} in H_{i+1} and, moreover, v_{3} in H_{k} with u_{0} in H_{1}. The graph thus obtained will be G_{k}. Now we construct a function $f_{0}: V(H) \rightarrow\{-1,0,1\}$ in the following way. We put $f_{0}\left(u_{0}\right)=f_{0}\left(u_{3}\right)=f_{0}\left(v_{3}\right) \doteq 0, F_{0}\left(u_{1}\right)=f_{0}\left(u_{2}\right)=f_{0}\left(v_{1}\right)=f_{0}\left(v_{2}\right)=1, f_{0}\left(w_{1}\right)=$ $f_{0}\left(w_{2}\right)=-1$. Further we define $f: V\left(G_{k}\right) \rightarrow\{-1,0,1\}$. In G_{1} we may simply say that $f \equiv f_{0}$. For $k \geqslant 2$ each vertex $x \in V\left(G_{k}\right)$ is contained in H_{i} for some i and corresponds uniquely to a vertex $x_{0} \in V(H)$; we may put $f(x)=f_{0}\left(x_{0}\right)$. We have $f(V(G))=2 k$ and thus $\gamma^{-}\left(G_{k}\right) \leqslant 2 k$. Now for $i=1, \ldots, k$ denote by H_{i}^{\prime} the graph obtained from H_{i} by deleting the vertex corresponding to u_{0}. The graphs $H_{1}^{\prime}, \ldots, H_{k}^{\prime}$ are pairwise vertex-disjoint. Suppose that $\gamma^{-}\left(G_{k}\right) \leqslant 2 k-1$ and let g be the minus dominating function such that $g\left(V\left(G_{k}\right)\right)=\gamma^{-}\left(G_{k}\right)$. Then $\gamma^{-}\left(G_{k}\right)=\sum_{i=1}^{k} g\left(V\left(H_{i}^{\prime}\right)\right)$ and there exists i such that $g\left(V\left(H_{i}^{\prime}\right)\right) \leqslant 1$. If no vertex in H_{i}^{\prime} is labelled by -1 in g, then at most one is labelled by 1 and all others by 0 and evidently $g(N[x]) \leqslant 0$ for some $x \in V\left(H_{i}^{\prime}\right)$, which is a contradiction. If exactly one vertex in H_{i}^{\prime} is labelled by -1 , then two vertices adjacent to it are labelled by 1 in order that its closed neighbourhood might have the sum of values of g at least 1 . As $g\left(V\left(H_{i}^{\prime}\right)\right) \leqslant 1$, all other vertices must be labelled by 0 and again $g(N[x]) \leqslant 0$ for some $x \in V\left(H_{i}^{\prime}\right)$, which is a contradiction. If there are at least two vertices labelled by -1 in $V\left(H_{i}^{\prime}\right)$, then their closed neighbourhoods must be pairwise disjoint (as $\Delta(G)=3$ no vertex may be adjacent to two vertices labelled by -1) and each of those neighbourhoods
must contain at least two vertices labelled by 1 . This implies that $g\left(V\left(H_{i}^{\prime}\right)\right) \geqslant 2$, which is again a contradiction. We have proved that $\gamma^{-}\left(G_{k}\right)=2 k$.

Evidently $\gamma\left(G_{1}\right)=3=\left\lceil\frac{5}{2} \cdot 1\right\rceil$. Suppose that $\gamma\left(G_{k}\right)<\left\lceil\frac{5}{2} k\right\rceil$ for some $k \geqslant 2$. If k is even, then $\gamma\left(G_{k}\right) \leqslant \frac{5}{2} k-1$. Let D be a dominating set in G_{k} with $\gamma\left(G_{k}\right)$ vertices. Consider the (pairwise disjoint) subgraphs $H_{1}^{\prime} \cup H_{2}, H_{3}^{\prime} \cup H_{4}, \ldots, H_{k-1}^{\prime} \cup H_{k}$ of G_{k}. Then at least one of these graphs contains less than 5 vertices of D; without loss of generality let it be $H_{1}^{\prime} \cup H_{2}$ and let $D_{0}=D \cap V\left(H_{1}^{\prime} \cup H_{2}\right)$. Only the vertex corresponding to u_{1} in H_{1} and the vertex corresponding to v_{3} in H_{2} may be dominated by a vertex of $D-D_{0}$. Thus D_{0} is a subset of $V\left(H_{1}^{\prime} \cup H_{2}\right)$ such that $\left|D_{0}\right| \leqslant 4$ and each vertex of $V\left(H_{1}^{\prime} \cup H_{2}\right)$ different from u_{1} in H_{1}^{\prime} and v_{3} in H_{2} is dominated by a vertex of D_{0}. By exhausting all cases we can show that such a set D_{0} does not exist, which is a contradiction. Hence $\gamma\left(G_{k}\right) \geqslant \frac{5}{2} k$ for k even. Now we can construct a dominating set D with $|D|=\frac{5}{2} k$ in such a way that in each H_{i} for i odd we take the vertices corresponding to u_{1}, u_{3}, v_{2} and in each H_{i} for i even we take the vertices corresponding to u_{2}, v_{1}. We have proved that $\gamma(G)=\left\lceil\frac{5}{2} k\right\rceil$ for k even. For k odd the proof is analogous.

Conjecture. Let G be a regular graph of degree 3. Then

$$
\gamma^{-}(G)=\gamma(G)
$$

3. Signed domination number

Here we will compare $\gamma_{s}(G)$ with $\alpha\left(G^{2}\right)$ and $\gamma(G)$.
Theorem 3. Let G be a graph with n vertices, let $\Delta(G) \leqslant 3$. Let V_{0} be the set of all vertices of G of degrees 0 and 1 and of all vertices which are adjacent to vertices of degree 1 in G. Let a be the maximum number of vertices of a subset of $V(G)-V_{0}$ which is independent in G^{2}. Then

$$
\gamma_{s}(G)=n-2 a
$$

Proof. Let f be a signed dominating function of G such that $f(V(G))=$ $\gamma_{s}(G)$. Let $V^{+}=\{x \in V(G) \mid f(x)=1\}, V^{-}=\{x \in V(G) \mid f(x)=-1\}$. Each vertex of V^{-}must be adjacent to at least two vertices of V^{+}; therefore it can have degree neither 0 nor 1. A vertex x which is adjacent to a vertex y of degree 1 cannot be in V^{-}; otherwise $f(N[y])=f(x)+f(y)=f(y)-1 \leqslant 0$. Therefore $V^{-} \subseteq V(G)-V_{0}$. Suppose that two vertices x, y of V^{-}are adjacent in G^{2}. Then
either they are adjacent in G, or there exists a vertex z adjacent in G with both x and y. As $\Delta(G) \leqslant 3$, we have $f(N[x]) \leqslant f(x)+f(y)+2=0$ in the former case, $f(N[z]) \leqslant f(x)+f(y)+2=0$ in the latter, which is a contradiction with the fact that f is a signed dominating function. Therefore V^{-}is an independent set in G^{2}. We have $f(V(G))=\left|V^{+}\right|-\left|V^{-}\right|=n-2\left|V^{-}\right|$. On the other hand, let A be an independent set in G^{2} such that $A \subseteq V(G)-V_{0}$. Let $g: V(G) \rightarrow\{-1,1\}$ be such that $g(x)=-1$ for all $x \in A$ and $g(x)=1$ for all $x \in V(G)-A$. If $x \in A$, then $x \notin V_{0}$ and x is adjacent to at least two vertices; let y, z be such two vertices. As A is independent in G^{2}, the vertices y, z are not in A and $g(y)=g(z)=1$. Therefore $g(N[x]) \geqslant g(x)+g(y)+g(z)=-1+1+1=1$. If $x \notin A$ and x is adjacent to a vertex $y \in A$, then the degree of x is at least 2 and x is adjacent to a vertex $z \in A$ and to no vertex of A different from y. Then $g(N[x]) \geqslant g(x)+g(y)+g(z)=1+(-1)+1=1$. The function g is a signed dominating function of G. We have proved that a subset M of $V(G)$ is the set of vertices in which some signed dominating function has the value -1 if and only if M is a subset of $V(G)-V_{0}$ which is independent in G^{2}. This implies the assertion.

Corollary 1. Let G be a graph with n vertices, let $\delta(G) \geqslant 2, \Delta(G) \leqslant 3$. Then

$$
\gamma_{s}(G)=n-2 \alpha\left(G^{2}\right)
$$

Theorem 4. Let G be a graph, let c be the number of its connected components. Then

$$
\gamma_{s}(G)-\gamma(G) \leqslant 2 c
$$

Proof. Each connected component of G is a path or a circuit. Consider a path P_{m} with m vertices; let its vertices be u_{1}, \ldots, u_{m} and let its edges be $u_{i} u_{i+1}$ for $i=$ $1, \ldots, m-1$. Evidently $\gamma\left(P_{m}\right) \geqslant\left\lceil\frac{1}{3} m\right\rceil$. If $m \equiv 0(\bmod 3)$ or $m \equiv 2(\bmod 3)$, then the set D of all u_{i} for $i \equiv 2(\bmod 3)$ is a dominating set in P_{m} with $\left\lceil\frac{1}{3} m\right\rceil$ vertices. If $m \equiv 1(\bmod 3)$, then $D \cup\left\{u_{m}\right\}$ is such a set. We have $\gamma\left(P_{m}\right)=\left\lceil\frac{1}{3} m\right\rceil$. Now if f is a signed dominating function of P_{m}, we have $f\left(u_{1}\right)=f\left(u_{2}\right)=f\left(u_{m-1}\right)=f\left(u_{m}\right)=1$ and if $f\left(u_{i}\right)=f\left(u_{j}\right)=-1, i \neq j$, then $|i-j| \geqslant 3$ (see the proof of Theorem 3). We can choose the function f such that $f\left(u_{i}\right)=-1$ if and only if $i \equiv 0(\bmod 3)$ and $i \leqslant m-2$; otherwise $f\left(u_{i}\right)=1$. The function f is a signed dominating function of P_{m}. Denote $V^{+}=\left\{x \in V\left(P_{m}\right) \mid f(x)=1\right\}, V^{-}=\left\{x \in V\left(P_{m}\right) \mid f(x)=-1\right\}$. Evidently V^{-}has the maximum number of vertices among the subsets of $V\left(P_{m}\right)$ which are independent in P_{m}^{2} and contain no vertex of degree 1 and no vertex adjacent to a vertex of degree 1 ; we have $f\left(V\left(P_{m}\right)\right)=m-2\left|V^{-}\right|=\gamma_{s}\left(P_{m}\right)$. If $m \equiv 2(\bmod 3)$,
then $\left|V^{-}\right|=\frac{1}{3}(m-2)$ and $\gamma_{s}\left(P_{m}\right)=\frac{1}{3}(m+1)+1, \gamma_{s}\left(P_{m}\right)-\gamma\left(P_{m}\right)=1$. If $m \equiv 0$ $(\bmod 3)$, then $\left|V^{-}\right|=\frac{1}{3} m-1$ and $\gamma_{s}\left(P_{m}\right)=\frac{1}{3} m+2, \gamma_{s}\left(P_{m}\right)-\gamma\left(P_{m}\right)=2$. If $m \equiv 1(\bmod 3), m \geqslant 4$, then $\left|V^{-}\right|=\frac{1}{3}(m-1)-1$ and $\gamma_{s}\left(P_{m}\right)=\frac{1}{3}(m+2)+2$, $\gamma_{s}\left(P_{m}\right)-\gamma\left(P_{m}\right)=2$. Trivially, for $m=1$ we have $\gamma_{s}\left(P_{1}\right)=1, \gamma_{s}\left(P_{1}\right)-\gamma\left(P_{1}\right)=0$. Now consider the circuit C_{m} with m vertices. We have $\gamma\left(C_{m}\right)=\left\lceil\frac{1}{3} m\right\rceil$. We choose the function f such that $f\left(u_{i}\right)=-1$ if and only if $i \equiv 0(\bmod 3)$; this is evidently again a signed dominating function such that $f\left(V\left(C_{m}\right)\right)=\gamma_{s}\left(C_{m}\right)$. If we again denote $V^{-}=\left\{x \in V\left(C_{m}\right) \mid f(x)=-1\right\}$, then $\left|V^{-}\right|=\left\lfloor\frac{1}{3} m\right\rfloor$. Therefore for $m \equiv 0$ $(\bmod 3)$ we have $\gamma_{s}\left(C_{m}\right)=\frac{1}{3} m, \gamma_{s}\left(C_{m}\right)-\gamma\left(C_{m}\right)=0$. For $m \equiv 1(\bmod 3)$ we have $\gamma_{s}\left(C_{m}\right)=\frac{1}{3}(m+2), \gamma_{s}\left(C_{m}\right)-\gamma\left(C_{m}\right)=0$. For $m \equiv 2(\bmod 3)$ we have $\gamma_{s}\left(C_{m}\right)=\frac{1}{3}(m+1)+1, \gamma_{s}\left(C_{m}\right)=\gamma\left(C_{m}\right)=1$. The domination number of a graph is the sum of domination numbers of its connected components and the same holds also for the signed domination number. This implies the assertion.

Corollary 2. Let G be a regular graph of degree 2, let c be the number of its connected components. Then

$$
\gamma_{s}(G)-\gamma(G) \leqslant c
$$

Theorem 5. Let G be a regular graph of degree 3, let its number n of vertices be divisible by 4 , let $\alpha\left(G^{2}\right)=\frac{1}{4} n$. Then $\gamma(G)=\frac{1}{4} n, \gamma_{s}(G)=\frac{1}{2} n$, i.e.

$$
\gamma_{s}(G)=2 \gamma(G)
$$

Proof. Let A be an independent set in G^{2} such that $|A|=\frac{1}{4} n$. If $x \in A, y \in A$, $x \neq y$, then the distance between x and y in G is at least 3 and thus $N[x] \cap N[y]=\emptyset$. As G is 3-regular, $|N[x]|=4$ for each $x \in V(G)$. We have $\left|\bigcup_{x \in A} N[x]\right|=\frac{1}{4} n \cdot 4=n$ and thus $\bigcup_{x \in A} N[x]=V(G)$. The sets $N[x]$ for $x \in A$ form a partition of $V(G)$. This implies that A is a dominating set in G and $\gamma(G) \leqslant|A|=\frac{1}{4} n$. The domination number of a 3 -regular graph cannot be less than $\frac{1}{4} n$, therefore $\gamma(G)=\frac{1}{4} n$. By Theorem 3 we have $\gamma_{s}(G)=n-2 \alpha\left(G^{2}\right)=\frac{1}{4} n$.

References

[1] J.E.Dunbar, S.T.Hedetniemi, M. A.Henning, P.J.Slater: Signed domination in graphs. Proc. Seventh Int. Conf. Graph Theory, Combinatorics, Algorithms and Applications. To appear.
[2] J. E. Dunbar, S. T. Hedetniemi, M. A.Henning, A.A.McRae: Minus domination in graphs. Discr. Math.. To appear.

Author's address: Bohdan Zelinka, katedra diskrétní matematiky a statistiky Technické university, Voroněžská 13, 46117 Liberec.

