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PACKINGS OF PAIRS WITH A MINIMUM KNOWN NUMBER 

OF QUADRUPLES 

JIŘÍ NOVÁK, Liberec 

(Received January 19, 1993) 

Summary. Let E be an n-set. The problem of packing of pairs on E with a minimum 
number of quadruples on E is settled for n < 15 and also for n = 36J + i, i = 3, 6, 9, 12, 
where t is any positive integer. In the other cases of n methods have been presented for 
constructing the packings having a minimum known number of quadruples. 

Keywords: packing of pairs with quadruples, system of quadruples, configuration, packing 
of K^s into Kn-

AMS classification: 05B40, 05B05 

1. I N T R O D U C T I O N 

A packing of pairs with quadruples is a system of quadruples on an n-set in which 
any two quadruples have at most one element in common and no further quadruple 
can be added to the system which is therefore maximal. We denote the system by 
P ( n , 4 , 2 ) . 

If the number of quadruples, called the size of the packing, is maximum (mini­
mum) possible, then such a system will be called a maximum (minimum) packing, 
respectively. Maximum packings pviAx(n,4, 2) are known thanks to the results of 
Brouwer in [1], but the construction of minimum packings PMiN(n,4,2) remains an 
open problem. Therefore this paper deals with constructions of packings that have 
minimum known sizes. The author believes that this start will initiate an investi­
gation of minimum packings. The paper also contains some such constructions for 
n = 36( + i, i = 3, 6, 9, 12, where t is any positive integer. Note that the analogous 
problem of packings of pairs with triples is completely solved in [3, 4]. 
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The constructions used are based on the following famous theorem of Turan on 

minimum representations of fe-tuples with pairs. 

T h e o r e m 1.1 [5]. Let n > k > 2 be integers. A pair D from an n-set E represents 

a k-tuple K C E, if D C K. The minimum representation of all k-tuples K C E is 
k-i 

formed by all pairs of mutually disjoint classesTi, i = 1,2,..., fc—1, where \J T{ = E 

and \Щ\ - \Tj\\ ś 1 for any two classes T, Tj. 

2. T H E O R E M S 

T h e o r e m 2.1. Let P ( n , 4 , 2 ) be a packing on an n-set E, let q(n) be its size. 

Let Ti, Ti, T% be the classes of the Turan partition of the set E for k = 4. Denote 
m = \Ti\, i = 1, 2, 3. Then the following estimate holds: 

«(«) H E (n
2') =-*»)• 

P r o o f . The pairs contained in the quadruples of P ( n , 4 , 2 ) represents all 
quadruples on the set E. This follows from the fact that any further quadruple has 
at least two elements in common with a quadruple of the packing. The number 

3 
of pairs in any representation of quadruples with pairs is at least equal to ^ ("£ )• 

i = l 

On the other hand, any quadruple contains six pairs and thus we obtain the above 

estimate. • 

T h e o r e m 2.2 [2]. Let n = 1 or 4 (mod 12), n > 3. Then there exists a 

P M A X ( « , 4 , 2) containing all pairs on the n-set E. Therefore its size is equal to 

I (2) • This packing will be called exact. 

T h e o r e m 2.3. Let i, t, n be positive integers, n = 36 + i. Then 

a) |PMiN(36t + 3,4,2)| = 36t2 + 3t, 
t>) |PMiN(36t + 6 , 4 , 2 ) | = 36t2 + 9t + l, 

c) |PMiN(36t + 9,4,2)| = 36t2 + 15t + 2, 

d) |PMiN(36t + 12,4,2)| = 36t2 + 21t + 3. 

P r o o f , a) Let us calculate the lower bound L(n). According to Theorem 2.1 

we have L(n) = 1 £ (<*) = I £ (12t+l) = 3 6 ( 2 + u T h e p a c k i n g h a v i n g 3 6 i 2 + 3 t 
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quadruples will be constructed as the union of three exact packings on the classes 

2 i , T2, T3 of Turan's partition of E, where |T,| = 12t + 1, i = 1, 2, 3. 

b) The lower bound is L(n) = \ £ (12t
2

+2) = 36i2 + 9< + § < 36i2 + 9i + 1 = V. 
i = l 

The packing having V quadruples will be constructed as the union of exact pack­

ings on the classes Et of a partition on E, where \Ei\ = \E2\ = 12t + l , | £ 3 | = 12i + 4. 

It is clear that no further quadruple can be added to the union of three exact packings 

and that its size equals L'. 

c) The lower bound is L(n) = | £ (12t+3) = 36i2 + 15t + § < 36«2 + 15i + 2 = V. 
i = l 

The packing having V quadruples will be constructed as the union of exact pack­

ings on the classes Et of a partition on E, where \Ei\ = 12t + l, |E 2 | = \E3\ = 12i + 4. 

d) The lower bound is L(n) = | E (12
2

+4) = 36t2 + 21t + 3. 
i = i 

The packing having L(n) quadruples will be constructed as the union of exact 
packings on the classes T of Turan's partition of E, where \Ti\ = 12t + 4, i = 1, 2, 3. 

D 

T h e o r e m 2.4. Let 3 < n < 13. Denote |PM iN(n,4,2) | = m(n). Then m(4) = 

m(5) = m(6) = 1, m(7) = m(8) = m(9) = 2, m(10) = m ( l l ) = m(12) = 3. 

P r o o f . Let E = { 1 , 2 , . . . , n} . Denote a quadruple {o, b, c, d} C E briefly by 

abed, a packing P(n, 4,2) having q(n) quadruples by P,(„)(n,4,2). Let us introduce 

packings Pm(„)(n,4,2) on E that are evidently minimum possible: 

Pi(4,4,2) = Pi(5,4,2) = Pi (6,4,2) = {1234} , 

P2(7,4,2) = { 1 2 3 4 , 4 5 6 7 } , 

P2(8,4,2) = P2(9,4,2) = { 1 2 3 4 , 5 6 7 8 } , 

P3(10,4,2) = { 1 2 3 4 , 5 6 7 8 , 1 5 9 1 0 } , 

P 3 ( H , 4 , 2 ) = { 1 2 3 4 , 5 6 7 8 , 1 9 1 0 1 1 } , 

P3(12,4,2) = { 1 2 3 4 , 5 6 7 8 , 9 1 0 1 1 1 2 } . 

D 

Definit ion 2.1 . A system of quadruples on the n-set E having mutually at most 

one element in common will be called a configuration of quadruples. Assign to each 

quadruple one line with 4 points that correspond to the elements of the quadruple. 

Two lines can meet in at most one point and the number of all points must be <. n. 

So we obtain a graphical representation of the configuration. Two configurations are 

said to be isomorphic if they have the same graphical representation. 
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T h e o r e m 2.5. Let n = 13, 14. Then | P M I N ( 1 3 , 4 , 2 ) | = 6, | P M I N ( 1 4 , 4 , 2 ) | = 6. 

P r o o f . First we introduce two configurations A and B for n = 13 and n = 14, 

respectively, each containing six quadruples, and we will prove that they are really 

packings, 

,4 = { 1 2 3 4 , 1 5 6 7 , 2 5 8 1 0 , 3 7 9 1 0 , 4 6 8 9 , 1 0 1 1 1 2 1 3 } , 

B = {12 3 4 , 1 5 6 7,2 5 810,3 7910 ,4689 ,11121314} . 

We shall prove that no further quadruple can be added to the configurations A, B. 

Decompose the sets E -= { 1 , 2 , 3 , . . . , 13} and E1 = { 1 , 2 , . . . , 14} into four classes: 

4 

E = [JEi, Ei = {1,2 ,3 ,4}, E2 = {5,6,7}, E3 = {8,9,10}, E4 = {11,12,13}; 
;= i 
4 

E' = ( J E I , E; = {1,2 ,3 ,4}, E2 = {5,6,7}, E'3 = {8,9,10}, E'4= {11,12,13,14}. 
i = l 

Suppose there is a quadruple aia2a3ai which can be added to the configuration 

A. Then, necessarily, a. e E; for i = 1 , . . . ,4 . Let ax = 1. Because the element 

1 is joined with all elements of the class E2 in the 15 6 7, no quadruple with 1 can 

be added to A. Let ai = 2. The element 2 could be joined with 6 or 7 from the 

class E2. In the case of joining 2 with 6 it is necessary to add one element of the 

class E3 = {8 ,9 ,10} . But the triples 2 6 8, 269 , 2 610 are not possible. The same 

consideration holds for the pair 2 7, thus no quadruple with the element 2 can be 

added to A. 

In the same way, no quadruple with 3 and 4 can be added to A. Thus the config­

uration A is really a packing having 6 quadruples. 

The same consideration holds for the configuration B. Thus it is really a packing 

having 6 quadruples. 

b) L(13) = J (G)+ (}) + ©) = ¥ <4. 
i(14) = | ( ( 2 ) + (2) + (2)) = f <5. 

Therefore we first have to prove that no packing P4(13,4,2) exists and then that no 

packings P5(13,4,2) and P5(14,4,2) exist. We have to investigate all nonisomorphic 

configurations formed by four quadruples for n < 13. 

Using the graphical representations of quadruples and their elements, we easily 

obtain the result that four quadruples form 11 nonisomorphic configurations: 

1) { 1 2 3 4 , 5 6 7 8 , 9 1 0 1 1 1 2 , 1 5 9 1 3 } , 

2) { 1 2 3 4 , 4 5 6 7 , 7 8 9 1 0 , 1 0 1 1 1 2 1 3 } , 

3) { 1 2 3 4 , 4 5 6 7 , 7 8 9 1 0 , 7 1 1 1 2 1 3 } , 
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4) { 1 2 3 4 , 5 6 7 8 , 8 9 1 0 1 1 , 5 1 1 1 2 1 3 } , 

5) { 1 2 3 4 , 5 6 7 8 , 8 9 1 0 1 1 , 1 5 9 1 2 } , 

6) { 1 2 3 4 , 4 5 6 7 , 7 8 9 1 0 , 1 1 0 1 1 1 2 } , 

7) { 1 2 3 4 , 4 5 6 7 , 1 7 8 9 , 1 1 0 1 1 1 2 } , 

8) { 1 2 3 4 , 4 5 6 7 , 1 7 8 9 , 2 5 8 1 0 } , 

9) { 1 2 3 4 , 4 5 6 7 , 1 7 8 9 , 2 7 1 0 1 1 } , 

10) { 1 2 3 4 , 4 5 6 7 , 1 7 8 9 , 5 8 1 0 1 1 } , 

11) { 1 2 3 4 , 1 5 6 7 , 1 8 9 1 0 , 1 1 1 1 2 1 3 } . 

However, no configuration is simultaneously a packing P(13,4,2) because we can 

always add a further quadruple to any configuration, as shown below. Added quadru­

ples are: 

ad 1) 161013 , ad 2) 2 6 9 1 1 , ad 3) 2 6 9 1 1 , 

ad 4) 16912 , ad 5) 261012 , ad 6) 25812 , 

ad 7) 2 5 8 1 0 , ad 8) 3 6 8 1 1 , ad 9) 3 5 8 1 0 , 

ad 10) 3 5 9 1 2 , ad 11) 3 5 8 1 1 . 

c) Analogously we can find all nonisomorphic configurations formed by five quadru­

ples. Let us consider only configurations containing at most 14 points. We obtain 

50 nonisomorphic configurations and then we can state the following result: it is 

possible to add a further quadruple to each configuration. 

Therefore no P5(13,4,2) and no P5(14,4,2) exist. The 50 above mentioned con­

figurations have been omitted in order to reduce the extent of the paper. Thus 

Theorem 2.5 holds. D 

3. C O N S T R U C T I O N OF THE PACKINGS P (n ,4 ,2 ) WITH MINIMUM KNOWN SIZES 

Consider the sequence {m(n)}, n = 4, 5, . . . , of minimum sizes of packings 

P ( n , 4 , 2 ) . The values of minimum sizes determinated until now indicate that the 

following conjecture is highly probable: 

C o n j e c t u r e 3 .1 . The sequence {m(n)} is never decreasing, i.e. m(n) ^ m(n +1) 

for any n > 3. 

Denote by {m*(n)} a sequence of not necessarily minimum sizes of packings. If 

the value m(n) was already determinated for some n, then put m*(n) = m(n). The 

purpose of this paper is to determine such values of members m*(n) that the relation 

m*(n) ^ m*(n + 1) holds for any n > 3. Then the members m*(n) will be called 

minimum known sizes of packings P (n ,4 ,2 ) . This term is justified by the fact that 

our investigation is, as far as I now, the first attempt at finding such packings. It is 

probable that the values found can be made smaller in future. 
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First we shall describe methods for construction of packings P(n, 4,2) with mini­

mum known sizes. 

M e t h o d 3 .1 . Suppose that the basic set E of order n > 13 can be decom­

posed into two disjoint classes E\, E2 such that \E\\ = n\ = 1 or 4 (mod 12), 

|E 2 | = n2 = 0 or 1 or 3 or 4 (mod 12). On the class E\ we construct the exact 

packing P M A X ( " I , 4 , 2 ) . If n2 = 1 or 4 (mod 12) then we construct the exact packing 

P M A X ( " 2 , 4 , 2 ) on the class E2 and the desired packing P(n,4,2) = P M A X ( « I , 4 , 2 ) U 

P M A X ( " 2 , 4 , 2 ) . I fn2 = 0 or 3 (mod 12), then we add one element xi e E\ to the class 

E2 and construct on the set E2 = {xi} U E2 the exact packing P M A X ( " 2 + 1,4,2). 

Then the desired packing is P (n ,4 ,2 ) = P M A X ( / H , 4 , 2 ) U P M A X ( " 2 + 1,4,2). 

M e t h o d 3.2. Suppose that the basic set E can be decomposed into three mutu­

ally disjoint classes E; such that |J5; | = n; = 0 or 1 or 3 or 4 (mod 12), i = 1, 2, 3. If 

the cardinality is n; = 1 or 4 (mod 12) for some i, then there exists an exact packing 

P(n { , 4 ,2 ) on the class Et. If the cardinality m = 0 or 3 (mod 12) for some i, then 

we add to the class E{ an element x 6 Ej, i ^ j and construct an exact packing 

P(rii + 1,4,2) on the set E[ = {x} U E;. In this manner we can extend all classes 

Ei, i = 1, 2, 3. The desired packing P(n ,4 ,2 ) is the union of three exact packings 

on three sets having cardinalities either n; or n,- + 1. 

If some class Ei contains only one element then the packing P(n, 4,2) will be 

formed only by packings on the other two classes. 

M e t h o d 3 .3 . Suppose that the basic set E can be decomposed into three classes 

Ex, E2, E3 such that \Ei\ = n . 2 1 or 4 (mod 12), \E2\ = n2 = 1 or 4 (mod 12), 

IE3I = n 3 = - 1 or 2 (mod 12). On the classes Ei and E2 we construct exact packings 

P M A X ( « I , 4 , 2) and P M A X ( " 2 , 4 , 2 ) , respectively. To the class E3 we add one element 

£1 € Ei and one element x2 6 E2 so that n3 + 2 = 1 or 4 (mod 12). We obtain the 

set E'3 = E3U{xi}l){x2}, on which an exact packing P M A X ( « 3 + 2 , 4 , 2 ) exists. The 

desired packing is P(n,4,2) = P M A x(n i , 4 ,2 ) U P M A X ( « 2 , 4 , 2 ) U P M A X ( " 3 + 2,4,2) . 

M e t h o d 3.4. Suppose that the basic set E can be decomposed into three classes 

Ei such that |£;x| = ni = 1 o r 4 (mod 12), | £ 2 | = n2 = 1 o r4 (mod 12), | £ 3 | = n 3 = 5 

or 6 or 7 or 9. Let n; > 3, i = 1, 2, 3. 

a) Let E3 = {a;,i = 1 , . . . , 5 } . Form two exact packings on classes Ei and 

E2. On the class E3 form one quadruple aia2a304 and four pairs 0105, a 2 as , 

0305, 0405. Let Xi be mutually different elements of Ei, let V, be mutually dif­

ferent elements of E2, i = 1, . . . ,4 . Form a system S of four quadruples, S = 

{ x ^ i o i a s , 2^20205,0^30305,2^40405}. Then the desired packing is 

P (n ,4 ,2 ) = P M A x ( | £ i | , 4 , 2 ) u P M A x ( | P 2 | , 4 , 2 ) U a 1 a 2 a 3 a 4 U S . 
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b) Let E3 = {ahi = 1 , . . . ,6} or E3 = {a{,i = 1 , . . . , 7 } . If \E»\ = 6, then form 

E3 = E3 U {xi} , where xi € Ei. Thus \E'3\ = 7 and we can form a Steiner triple sys­

tem on E3 having 7 triples. Add to each triple one element j / ; 6 Ei UE2 , i = 1 , . . . , 7. 

The elements added must be mutually different and different from xt. Only the el­

ements j/i £ E2 can be added to the triples containing xi. We obtain a quadruple 

system S = {0102033/1,0106X13/2,0104053/3,0204063/4,0205X12/5,0304X12/6,0305062/7}-

The desired packing then is 

(1) P (n ,4 ,2 ) = P M A X ( | £ I 1 , 4 , 2 ) U P M A X ( | £ 2 | , 4 , 2 ) U 5. 

If |JE3 | = 7, then \E'3\ = E3, the quadruple system is S = {0102033/1,0106072/2, 

0104053/3,0204062/4,0205073/5,0304073/6,0306062/7} and the desired packing is (1). 

c) Suppose \Ei U E2\ ^ 12. If E3 = {a,, 1' = 1 , . . . , 9}, then form the Steiner triple 

system T on E3 having 12 triples and add one element x; e Ei UE2 to each triple of T. 

The elements added must be mutually different. We obtain a quadruple system 5 = 

{010203X1, 040506X2, a7aga9x3 , 010407X4, 010508X5, oia6a9X6, a2a4asx7, a2a5a9xs, 

a2a6a7x9,a3a4agXio,a3asa7xii,a3aeasXi2}. The desired packing is again (1). 

T h e o r e m 3 . 1 . Let 13 < n < 36. Then the minimum known sizes m*(n) of 

packings P(n, 4,2) are given by the following values: 

n: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

m*(n) : 9 12 14 14 15 15 15 19 21 21 26 26 26 27 

n : 29 30 31 32 33 34 35 

m*(n) : 27 27 31 33 33 38 38. 

P r o o f . a) n = 15 = 4 + 4 + 7. Er = {1,2,3,4}, E2 = {5 ,6 ,7 ,8} , 

E3 = {9,10,11,12,13,14,15}. We can apply method 3.4 b). The desired pack­

ing is P9(15,4,2) = { 1 2 3 4 , 5 6 7 8 , 1 9 1 0 1 1 , 2 9 1 4 1 5 , 3 9 1 2 1 3 , 4 1 0 1 2 1 4 , 5 1 0 1 3 1 5 , 

6111215 ,7111314} , m*(15) = 9. 

b) n = 16 = 13 + 3. Ei = { 1 , . . . , 13}, E2 = {14,15,16}. Applying the method 

3.1 we obtain Pi4(16,4,2) = P l 3 (13,4,2) U 13141516. Pi3(13,4,2) denotes the 

maximum packing on Ei having 13 quadruples (according to Theorem 2.2). 

However, the size 14 can be improved if we investigate the configuration of 12 

quadruples on 16 points. Let us i ruoduce this configuration: C = { 1 2 3 4 , 1 5 9 1 3 , 

171214 ,261014 , 281115 , 371516, 381213 , 4 6 9 1 5 , 4101316, 5 6 7 8 , 5111416, 

9101112} . We will show that no quadruple with element 1 can be added. This 

element is in C separated from all elements of S = {6,8,10,11,15,16}. Form 20 

quadruples each containing element n and one of 20 triples on the set S and determine 
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whether they can be added to C. The answer is negative. In this way we prove that 

no quadruple with any element of { 2 , 3 , . . . , 16} can be added to C. Therefore C is 

a packing and we have m*(16) = 12. 

n = 17 = 13 + 4. Ei = { 1 , . . . •, 13}, Ek = {14,15,16,17}. Applying the method 

3.1 we obtain P i 4 (17,4 ,2) = Pi3(13,4,2) U 141516 17. Thus m*(17) = 14. 

n = 18 = 1 3 + 4 + 1 . Ei = { 1 , . . . , 13}, E2 = { 1 4 , . . . , 17}, E3 = {18}. Applying the 

method 3.2 (the last proposition) we obtain P i 4 (18,4,2) = P 1 3 (13,4 ,2)U14151617. 

Thus m*(18) = 14. 

c) n = 19 = 13 + 4 + 2. Ei = { 1 , . . . , 13}, E2 = {14,15,16,17}, E3 = {18,19}. Ap­

plying the method 3.3 we obtain P i 5 (19,4,2) = P i 3 (13,4,2)U 14151617U13141819. 

Thus m*(19) = 15. 

n = 20 = 13+4+3 . Ei = { 1 , . . . , 13}, E2 = {14,15,16,17}, E3 = {18,19,20}. Ap­

plying the method 3.2 we obtain P1 S(20,4,2) = Pi 3(13,4,2)U14151617U171819 20. 

Thus m* (20) = 15. 

n = 21 = 13 + 4 + 4. Ei = { 1 , . . •, 13}, E2 = {14,15,16,17}, Ea = {18,19,20,21}. 

Applying the method 3.2 we obtain P1 5(21,4,2) = P1 3(13,4,2) U 14151617 U 

18192021. Thusm*(21) = 15. 

d) n = 22 = 13 + 4 + 5. Ei = { 1 , . . . , 13}, E2 = {14,15,16,17}, E3 = {18,19, 

20,21,22}. Applying the method 3.4 a) we obtain Pi9(22,4,2) = P1 3(13,4,2) U 

141516 17U {18192021,1141822,251922,41721 22}. Thus m*(22) = 19. 

e) n = 23 = 13 + 4 + 6. Ei = { 1 , . . . , 1 3 } , E2 = {14,15,16,17}, E3 = 

{18,19,20,21,22,23}. Form E3 = E3 U {17}, then |E 3 | = 7 and we can apply 

the method 3.4 b). The desired packing is P2 1(23,4,2) = P1 3(13,4,2) U1415 1617U 

{11819 20,218 2122,319 2123,4 20 22 23,5171920,61720 21,7171821}. 

Thus m* (23) = 21. 

n = 24 = 13 + 4 + 7. Ex = { 1 , . . . , 1 3 } , E2 = {14,15,16,17}, E, = {18,19,20,21, 

22,23,24}. Applying the method 3.4 b) we obtain P2 1(24,4,2) = Pi3(13,4,2) U 

14151617 U {1181920, 218 2324, 318 2122, 419 2123, 519 22 24, 6 202124, 

7202223}. 

Thus m* (24) = 21. 

f) n = 25 = 13 + 12. Ex = { 1 , . . . , 1 3 } , E2 = { 1 4 , . . . , 2 5 } , E2 = E2 U {13}. 

Applying the method 3.1 we obtain P2 6(25,4,2) = P 1 3 ( |E i | , 4 ,2 ) U P 1 3 ( |E 2 | , 4 ,2 ) . 

Thus m*(25) = 26. 

n = 26 = 1 3 + 13. Ei = { 1 , . . . , 1 3 } , E2 = { 1 4 , . . . , 2 6 } , E2 = E2. Applying the 

method 3.1 we obtain P2 6(26,4,2) = P 1 3 ( |E i | ,4 ,2) U P 1 3 ( |E 2 | , 4 ,2 ) . Thus m*(26) = 

26. 

n = 27 = 13 + 13 + 1. Ei = { 1 , . . . , 13}, E2 = {14, . . •, 26}, E3 = {27}. Apply­

ing the method 3.2 (the last proposition) we obtain P2 6(27,4,2) = P13(IEi 1,4,2) U 

P i 3 ( |E 2 | , 4 , 2 ) . Thus m*(27) = 26. 
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g) n = 28 = 1 3 + 1 3 + 2 . Et = {1 13}, E2 = {14 , . . . ,26} , E3 = {27,28}, E3 = 

{13,26,27,28}. Applying the method 3.3 we obtain P2 7(28,4,2) = PisG-Bil ,4 ,2) U 

A 3 ( | E 2 | , 4 , 2 ) U 13 26 2728. Thus m*(28) = 27. 

n = 29 = 13 + 13 + 3. Et = { 1 , . . . , 13} , E, = {14, . . . , 26} , E3 = {27,28,29}. Ap­

plying the method 3.2 we obtain E'3 = {26,27,28,29}. P27(29,4,2) = P i 3 ( | £ i l , 4 , 2 ) U 

As( |E21,4,2) U 26 2728 29. Thus m*(29) = 2 7 . 

n = 30 = 13 + 13 + 4. Ei = { 1 , . . . , 13}, E2 = {14 , . . . ,26} , E3 = {27,28,29,30}. 

Applying the method 3.2 we obtain P2 7(30,4,2) = P J 3 ( | J B I | , 4 , 2 ) U P13GE2I,4 ,2) u 

2728 29 30. Thus m*(30) = 27. 

h) n = 31 = 13 + 13 + 5. Ei = { 1 , . . . , 1 3 } , E2 = { 1 4 , . . . , 2 6 } , E3 = 

{27,28,29,30,31}. Using the method 3.4 a) we obtain P3i (31,4,2) = P i 3 ( |E i | , 4 ,2 )U 

Pi3(\E2\,4,2) U 272829 30U {1142731,2 152831,3 162931,4173031}-

Thus m*(31) = 31. 

i) n = 32 = 13 + 13 + 6. Et = { 1 , . . . , 1 3 } , E2 = { 1 4 , . . . , 2 6 } , E3 = 

{27,28,29,30,31,32}. E'3 = E3 U {26}. Applying the method 3.4 b) we ob­

tain P3 3(32, 4, 2) = P i s G ^ I , 4, 2) U Pi3( |£:2 | , 4, 2) u {1262728, 2263132, 

4272931 ,4272931 ,5273032 ,6282932 ,7283031} . Thus m*(32) = 33. 

n = 33 = 13 + 13 + 7. Et = { 1 , . . . , 13}, £ 2 = {14 , . . . ,26}, E3 = {27,28,29,30,31, 

32,33}. Applying the method 3.4 b) we obtain P3 3(33,4,2) = P i 3 ( | £ i | , 4 , 2 ) U 

P i 3 ( | £ 2 | , 4 , 2 ) U {1272829, 2273233, 3273031 , 4283032, 5283133, 6293033, 

7293132} . Thusm*(33) = 33. 

j) n = 34 = 16 + 13 + 5. Et = { 1 , . . . , 1 6 } , E2 = {17 , . . . , 29} , E3 = {30,31, 

32,33,34}. Applying the method 3.4 a) we obtain P3 8(34,4,2) = P2o(|-Ei|,4,2) U 

Pi3( |-E2 | ,4,2) U {30313233,1173034,2183134,3193234,4203334}. 

Thus m* (34) = 3 8 . 

n = 35 = 13 + 13 + 9. Et = { 1 , . . . , 13}, E2 = { 1 4 , . . . , 2 6 } , £3 = {27,28,29,30,31, 

32,33,34,35}. Applying the method 3.4 c) we obtain P3 8(35,4,2) = Pis( |J3i | ,4,2) U 

P1 3( |-E2 | ,4,2) U {1272829, 2303132, 3333435, 4273033, 5273134,6 273235, 

7283034 ,8283135 ,9283233 ,10293035,11293133,12293234} . Thus m*(35) = 

38. • 

T h e o r e m 3.2. Let j >- 0, t > 0, n > 0 be noimegative integers such that n = 

36t + j , j £ {0,1,2 ,4 ,5 ,7 ,8 ,10,11} U {13 ,14 , . . . , 35} . Then the minimum known 

sizes m* (n) in the packings P(n, 4,2) are given by the following values: 

n : 36í 36t + l 36t + 2 Збí + 4 36ť + 5 
m*(n) : 36í2 + Зť 36ť2 + Зí 36í2 + Зt 36í2 + 9í + 1 36ť2 + 9ť + 1 
n : Збí + 7 Збí + 8 36i + 10 36í + 11 36í + 13 
m*(n) : 36ť2 + 15t + 2 36í2 + 15í + 2 36í2 + 21t + 3 36í2 + 2ІÍ + 3 36ť2 + 27ť + 13 

36í + 14 36t + 15 36t + 16 36ť + 17 36í + 18 
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36t2 + 27t + 13 36t2 + 27t + 13 36t2 + 33t + 14 36t2 + 33t + 14 36t2 + 36t + 14 
36t + 19 36t + 20 36* + 21 36t + 22 36t + 23 
36t2 + 39t + 15 36t2 + 39t + 15 36t2 + 39t + 15 36t2 + 45* + 22 36t2 + 45* + 22 
36t + 24 36t + 25 36t + 26 36* + 27 36t + 28 
36t2 + 45* + 22 36t2 + 51* + 26 36t2 + 51* + 26 36t2 + 51* + 26 36t2 + 57* + 27 
36t + 29 36t + 30 36* + 31 36t + 32 36* + 33 
36t2 + 57* + 27 36t2 + 57* + 27 36t2 + 63* + 40 36t2 + 63t + 40 36t2 + 63* + 40 
36* + 34 36* + 35 
36t2 + 69t + 41 36t2 + 69* + 41. 

P r o o f . For each order n of a packing we state the decomposition of the basic 

set E into three disjoint classes 2J,-, giving their cardinalities n; = \Et\, i = 1, 2, 3. 

Then we state the method of construction of three exact packings the union of which 

is the desired packing of order n and of size m*(n). The calculation of the size m* (n) 

will be done only as an example. The results for the orders n are as follows. 

n = 36* = 12* + 12* + 12*, n, = 12*, i = 1,2,3, method 3.2. 

Size m*(n) = 3 ( 1 2 * + l ) \ = 36*2 + 3*. 

n = 36* + 1 = (12* + 1) + 12* + 12*, 

n ! = 12* + 1, n 2 = 12*, n 3 = 12*, method 3.2. 

n = 36* + 2 = (12* + 1) + (12* + 1) + 12*, method 3.2. 

n = 36* + 4 = (12* + 1) + (12* + 1) + (12* + 2), method 3.3. 

, , . /12* + 1\ 1 /12< + 4 \ 1 . „ , 
m ( " ) = 2 ( 2 j ' 6 + ( 2 J -6=36* 2 + 9* + l. 

n = 36* + 5 = (12* + 4) + (12* + 1) + 12*, method 3.2. 

n = 36* + 7 = (12* + 4) + (12* + 3) + 12*, method 3.2. 

n = 36* + 8 = (12* + 4) + (12* + 4) + 12*, method 3.2. 

n = 36* + 10 = (12* + 4) + (12* + 3) + (12* + 3), method 3.2. 

n = 36* + 11 = (12* + 4) + (12* + 4) + (12* + 3), method 3.2. 

n = 36* + 13 = (12* + 13) + 12* + 12*, method 3.2. 

n = 36* + 14 = (12* + 13) + (12* + 1) + 12«, method 3.2. 

n = 36* + 15 = (12* + 13) + (12* + 1) + (12* + 1), method 3.2. 

n = 36* + 16 = (12* + 13) + (12* + 3) + 12*, method 3.2. 

n = 36* + 17 = (12* + 13) + (12* + 4) + 12*, method 3.2. 

n = 36* + 18 = (12* + 13) + (12* + 4) + (12* + 1), method 3.2. 

n = 36* + 19 = (12* + 13) + (12* + 3) + (12* + 3), method 3.2. 

n = 36* + 20 = (12* + 13) + (12* + 4) + (12* + 3), method 3.2. 
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n = 36* + 21 = (12* + 13) + (12* + 4) + (12* + 4), method 3.2. 

n = 36* + 22 = (12* + 4) + (12* + 4) + (12* + 14), method 3.3. 

SiZera*(n) = 2 ( 1 7 4 ) . I + ( 1 2 <
2

+ 1 6 ) . i = 3 6 * 2 + 45* + 22. 

n = 36* + 23 = (12* + 4) + (12* + 4) + (12* + 15), method 3.2. 

n = 36* + 24 = (12* + 4) + (12* + 4) + (12* + 16), method 3.2. 

n = 36* + 25 = (12* + 13) + (12* + 12) + 12*, method 3.2. 

n = 36* + 26 = (12* + 13) + (12* + 13) + 12*, method 3.2. 

n = 36* + 27 = (12* + 13) + (12* + 13) + (12* + 1), method 3.2. 

n = 36* + 28 = (12* + 13) + (12* + 13) + (12* + 2), method 3.3. 

ra*(n) = 36t2 + 57* + 27. 

n = 36* + 29 = (12* + 13) + (12* + 13) + (12* + 3), method 3.2. 

n = 36* + 30 = (12* + 13) + (12* + 13) + (12* + 4), method 3.2. 

n = 36* + 31 = (12* + 16) + (12* + 15) + 12*, method 3.2. 

n = 36* + 32 = (12* + 16) + (12* + 16) + 12*, method 3.2. 

n = 36* + 34 = (12* + 16) + (12* + 16) + (12* + 2), method 3.3. 

n = 36* + 35 = (12* + 16) + (12* + 16) + (12* + 3), method 3.2. 

m*(n) = 36*2 + 69* + 41. 

• 

R e m a r k . Note that ra* (36* + 39) = m(36* + 39) = (12f+13) • f = 36«2 + 75* + 39. 
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