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Summary. A combinatorial characterization of finite projective planes using strongly 
canonical forms of incidence matrices is presented. The corresponding constructions are 
applied to known projective planes of order 9. As a result a new description of the Hughes 
plane of order nine is obtained. 
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Latin squares, Hall plane of order 9, Hughes plane of order 9 

AMS classification: 51E15 

§1. STRONGLY CANONICAL FORMS OF INCIDENCE MATRICES AND OF SYSTEMS OF 

MUTUALLY ORTHOGONAL LATIN SQUARES CORRESPONDING TO A FINITE 
PROJECTIVE PLANE OF ORDER n = pr 

Let A be a finite affine plane of order n. Using the symbols 0,1,.. ., n — 1 as 

coordinates let us represent points of A as couples (i,j) with 

i,j e n = {0,1,...,!.- 1} 

in such a way that 

{{(i,j) I J 6 n} | i e n}; {{(», j) \ i 6 n} | j € n} 

are the starting pencils of horizontal or vertical lines, respectively (see Fig. 1). The 

remaining n - 1 pencils of parallel lines called cross lines determine n — 1 mutually 
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orthogonal Latin squares of order n with entries from n. 

0 1 n - 1 —> X 

0 (0,0) (1,0) ( n - 1 , 0 ) . . . Г\ 

1 (0Д) (1,1) ( n - 1 , 1 ) . . . г2 

s (hoгizontal lines) 

n - 1 ( 0 , n - l ) ( l , n - -1) ... ( n - l , n - 1) ... Tn 

4 
У c\ c2 Cn 

columns (vertical lines) 

Fig. 1 

Let n = pr be a power of a prime, and let 0 , 1 , . . 

field GF(p). The vectors 

0 = (0,0,...,0) 

І = ( 1 , 0 , . . . , 0 ) 

2 = (2,0,...,0) 

p = (0,l,0,. . .,0) 

p + 1 = (1,1,0,...,0) 

2 p - l = ( p - l , l , 0 , . . . , 0 ) 

, p — 1 be éléments of the Galois 

pf =(0 ,0 ,1 ,0 , . . . , 0 ) 

p2 + l = ( l , 0 , l , 0 , . . . , 0 ) 

: (i + l)-th pláce 
I 

p* = (0 , . . . , 0 , l , 0 , . . . , 0 ) 

p - l = ( p - l , 0 , . . . , 0 ) p 2 - 1 = ( p - l , p - l , 0 , . . . , 0 ) . . . p r - l = ( p - l , p - l , . . . , p - l ) 

will be used as new "p-adic" symbols for coordinates instead of the initial symbols 

0 , 1 , . . . , n — 1. The Latin squares can be assumed to be in column standard form 

having the same first column ( 0 , 1 , . . . , n — l)7*. Further, suppose that our Latin 

squares are ordered using the members standing in the first row r\ and in the second 

column c2. More precisely, the j - t h square Lj has the entry j in the (l,0)-cell for 

j £ { l , 2 , . . . , n - l } : 

LІ = 

0 
Q 2 1 

«l,n-l 
0 2 ,„-l 

where we already write j instead of j . Here j can be regarded as the slope of lines 

of the j - t h pencil. Now, the usual coordinatization of A with help of the associated 
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ternary ring (n ,T) is as follows: T(u,x,y) = v if and only if the entry in the (x,y)-ce\\ 

of Lu is v. 

Let (n ,T) be a ternary ring, and let + , • be the corresponding T-induced binary 

operations defined on the set n by 

x + y = T(l,x,y) for all x, y _ n, 

u • x = T(u, x, 0) for all u, x e n. 

Then a ternary ring (n, T) is called linear if and only if T(u, x, y) = u • x + y for all 

x,y,u€ n. 

Moreover, if (n ,T) is linear and (n, +) is a not necessarily commutative group, 

then (n,T) is called a Cartesian group. We shall restrict ourselves to Cartesian 

groups of a power-prime order pT with commutative addition. Let us remark that 

Cartesian groups of finite order with non-commutative addition are unknown up to 

now. Furthermore, if the left or the right distributive law (for multiplication from left, 

respectively from right over addition) is satisfied, then the Cartesian group becomes 

a left or right quasifield, respectively. A quasifield with associative multiplication is 

called a nearfield. A left and right (simultaneously) quasifield is called a semifield. 

An associative semifield is of course a field. 

We return to a general affine plane A of power-prime order n = pr, and let 

L\,... ,2-n-i be its Latin squares in column standard ordering, i.e. with the same 

first column ( 0 , 1 , 2 , . . . , n - 1)T , with the slope j in the (1,0)-cell of Lj and with the 

first row ( 0 , 1 , . . . , n - 1) in L\. It is well-known (cf. Theorem 8.4.3, pp. 283-284 of 

[7], or Theorem 5.9, pp. 123-124 of [1]) that the ternary ring (n,_T) is linear if and 

only if the set of columns of Lj is the same as the set of columns of L\, i.e. if the 

n-tuple of columns of Lj differs only in another ordering from the n-tuple of columns 

of L\ for all j e { 2 , 3 , . . . , n - 1}. Notice that L\ is the Cayley table of the induced 

addition + . 

In what follows we introduce the incidence matrix of order JV = n2 + n + 1 of 

the projective plane P = A extending the given affine plane A. The ordering of 

points and lines of P will be the same as in Fig. 2 and 3. Moreover, let 1,2, . . . ,n 2 

be the notation of all of the proper points of P , i.e. all of the points of A; let 

(0), ( 1 ) , . . . , (n — 1), (oo) be the notation of improper points where 0 , 1 , . . . , n — 1, oo 

are the corresponding slopes. Similarly let (oo) be the notation of the improper line, 

let c i , c 2 , . . . ,cn be the notation of vertical lines with the slope oo, let r\,r2,... ,rn 

be the notation of horizontal lines with the slope 0 and let l0 ,1 [ ,..., l„L\ be the U) ,U) ;(.) 
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notation of lines with the slope j , for all j 6 1,2,..., n - 1-

1 n + 1 n2 - 2n + 1 n2 - n + 1 

2 n + 2 n2 - 2n + 2 n2 - n + 2 

n 2n n2 —n n2 

. . . Гl 

... r2 

(0) 

(1) 

( n - 1 ) 

Ф (°°) 

Fig. 2 

The incidence matrix in Fig. 3 corresponds to the canonical form of Paige and 

Wexler (cf. [4] or [7], §8.5). The submatrices Pj:k, j,k 6 2 , . . . , n , are permutation 

matrices of order n, which means that every row and every column of the matrix con­

tains exactly one unit. Moreover, the incidence matrix cannot contain submatrices 

of the form (\\) and all main diagonal elements of Pj<k are necessarily zeros because 

two distinct points lie simultaneusly on just one line, and two distinct lines intersect 

at just one point. The submatrix which arises by neglecting the first n + 1 rows 

and the first n + 1 columns will be called the kernel of the incidence matrix which 

is evidently of order n 2 = p2r. We will say that the incidence matrix is of strongly 

canonical form, if every matrix Pj^ can be composed by permutation matrices p,-,,»., 

of order ps, where s <r. The corresponding (n — l)-tuple of Latin squares of order 

n will be said to be strongly canonical, too. 

The submatrix of order n 2 - n on the last n2 -n rows and last n 2 -n columns of 

the matrix from Fig. 3 will be denoted in the sequel as its reduced kernel. 

If P i = (P,L,I), P 2 = (P',L',I') are projective planes as triples consisting of 

point sets, line sets, and incidence relations, then a duality of P i onto P 2 is a couple 

of bijective mappings ip: P -» L', tp: L -+ P', such that xly whenever ip(y)I'<p(x) 

for all x 6 P and all y e L. Duality of the projective plane P onto itself is called 

an autoduality of P . If P = (P, L, I) is a projective plane, then P * = (L, P, I*) such 

that xly •£• yl*x for all x e P and all y e L is the dual plane of P . If M is an 

incidence matrix of P with regard to arbitrary orderings of points and lines, then 

MT is an incidence matrix of P*, where lines operate as new points and points as 

new lines by preserved orderings. If M is an incidence matrix of P , then there exists 

an isotopy of M onto an incidence matrix MT if and only if P is autodual. Here, 
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points 

lines ( o o ) ( 0 ) ( l ) . . . ( n - l ) 1 2 . . . n n + l n + 2 . . . 2n n 2 - n + l n 2 - n + 2 . . . n 2 

( 0 0 ) 

Cl 

C2 

C „ 

1 1 1 . . . 1 
1 
1 

1 

1 1 . . . 1 
1 1 . . . 1 

1 1 . . . 1 

n 
^2 

r„ 

1 
1 

1 

1 
1 

1 

1 
1 

1 

1 
1 

1 

i ( 1 ) 

!?> 
1 
1 

1 

1 
1 

1 
Ą, a Ą,» 

.(»-!) 1 
1 

1 

1 
1 

1 
P«,2 P„,„ 

Fig. 3 

the isotopy is meant in the sense of Footnote (1) on p. 168 of [7]. The preceding 

assertion holds especially for a strongly canonical incidence matrix M of P . 

§ 2 . A SURVEY OF THE KNOWN PROJECTIVE PLANES OF ORDER NINE 

In the sequel, projective planes mentioned above will be described using strongly 

canonical systems of mutually orthogonal Latin squares and strongly canonical inci­

dence matrices. 

Let n = 3 2 = 9. The labelling set will be S = {0,1, . . . ,8}. Further, we put 

S0 = {0,1,2} and use the same addition and multiplication in S0 as in G F ( 3 ) . 
Let 

i = 1 

be the permutation matrices of order 3 which form a cyclic group under matrix 
multiplication. Obviously, iT = i, j T = k, kT = j . Considering the permutation 
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matrices of order 9 defined by 

k 

3, 

Jx=\j I K,= \k 

3 

J2 = I 3 \ K2 = 

we easily obtain the following equalities: 

j£ = K0, I? = I2, Jl = K2, K? = J2 

Now, let us investigate the Latin squares Lx and L2 defined by 

012 345 678 021 687 354 

120 453 786 102 768 435 

201 534 867 210 876 543 

345 678 012 354 021 687 

Li = 453 786 120 L2 = 435 102 768 

534 867 201 543 210 876 

678 012 345 687 354 021 

786 120 453 768 435 102 

867 201 534 876 543 210 

Fig. 4 

and use them as starting members of strongly canonical systems of Latin squares 

for all known projective planes of order 9. As L2 has zero diagonal, the diagonals 

of all remaining squares of strongly canonical systems of these projective planes are 

permutations of S with just one fixed label, namely 0, above on the left. Herein L\ 

is the addition table of the elementary 3-group of order 9. 

1. The Desarguesian plane of order 9 is built up over the field GF(9). There are 

three possibilities of strongly canonical systems of Latin squares for this plane. One 
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of them is the system 1L" = {Ly,L2,
xL%,..., XL%), where 

0[3]6 258 147 0(T|8 561 723 o[|]7 813 462 
147 036 258 156 372 804 138 624 570 
258 147 036 237 480 615 246 705 381 
360 582 471 372 804 156 381 246 705 

XL% = 471 360 582 lXJ = 480 615 237 XL% = 462 057 813 
582 471 360 561 723 048 570 138 624 
603 825 714 615 237 480 624 570 138 
714 603 825 723 048 561 705 381 246 
825 714 603 804 156 372 813 462 057 

XL%... 0[6]3 174 285 XL%... 0 0 5 426 831 lL%... 0|1]4 732 516 

Fig. 5 

The first row of L", j e {3,4,... ,8} coincides with the j-th row of the multipli­
cation table a of GF(9): 

12 345 678 12 345 678 12 345 678 
21 687 354 21 687 354 21 687 354 
36 258 147 36 714 582 36 471 825 
48 561 723 48 156 237 48 723 561 
57 813 462 57 462 813 57 138 246 
63 174 285 63 528 741 63 852 417 
75 426 831 75 831 426 75 264 183 
84 732 516 84 273 165 84 516 732 

Fig. 6 

The columns of all Latin squares under consideration coincide with columns of L\ 
even though they appear in a different order. So it is sufficient to register only the 
first rows of the squares. Notice that the diagonals of the squares XL%, XL\, or XL% 
coincide with the first row of the squares XL\, XL%, or XL%, respectively. Similarly, 
the diagonals of the squares XL%, XL", or XL% coincide with the first rows of the 
squares xLj, XL%, or XL%, respectively. 
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The reduced kernel of the corresponding incidence matrix written in block form is 
lMa (Fig. 7). 

•Jo K0 I\ J\ K\ h J2 K2 

KQ J0 h K2 J2 I\ K\ J\ 

I\ h K0 K\ K2 J0 J\ J2 
lM* = J\ K2 K\ h J0 J2 K0 I\ 

K\ J2 K2 J0 I\ J\ I2 Ko 

h I\ Jo J2 J\ KQ K2 K\ 

J2 K\ J\ K0 I2 K2 I\ J0 

K2 J\ J2 h K0 K\ Jo h 

Fig. 7 

As the incidence matrix of the Desarguesian plane is symmetric, the plane is 

necessarily autodual. Strongly canonical systems of Latin squares 

l~Lb = {L\,L2,Ll,...,L\} and XLC = {L\,L2,L
C

3,... ,LC
8} 

with similar properties, can be obtained from Tables b and c of Fig. 6 (see [9], 

pp. 687-8). 

2. The Hall plane of order 9 is closely related to quasifields R, S, T of [5], 

Appendix II, pp. 273-274; and [9], pp. 689-90. 

We will present here the multiplication tables of these right quasifields (the first 

one is a nearfield) 

12 345 678 12 345 678 12 345 678 

21 687 354 21 687 354 21 687 354 

36 274 185 36 418 527 36 751 842 

48 526 731 48 751 263 48 163 527 

57 832 416 57 163 842 57 418 263 

63 158 247 63 824 715 63 572 481 

75 461 823 75 236 481 75 824 136 

84 713 562 84 572 136 84 236 715 

System R System S System T 

Fig. 8 



As is well-known, the projective planes over these quasifields are isomorphic. This 

plane is the Hall plane of order 9. The multiplication table of R expresses quaternion 

group (where a4 = 1, a2 = 2, ab = -ba for all a, b different from 1, 2). All three 

quasifields lead to strongly canonical systems of Latin squares. We restrict ourselves 

to the first quasifield. The corresponding strongly canonical system of Latin squares 

is 2La = {LUL2,
2L%,2L\,... ,2L%}, where 

0fJ]6 258 147 0 0 8 723 561 0 0 7 462 813 

147 036 258 156 804 372 138 570 624 

258 147 036 237 615 480 246 381 705 

360 582 471 372 156 804 381 705 246 
2Lf = 471 360 582 2L\ = 480 237 615 2L% = 462 813 057 

582 471 360 561 048 723 570 624 138 

603 825 714 615 480 237 624 138 570 

714 603 825 723 561 048 705 246 381 

825 714 603 804 372 156 813 057 462 

2L% ... 0fJ]3 174 285 2L% ... 0 0 5 831 426 2L% ... o[|]4 516 732 

Fig. 9 

The first row of 2L*, j € {3,4, . . . , 8 } , coincides with the j - t h column of the 

multiplication table of R, i.e. with the j - t h row of the system RT. Notice that the 

diagonals of 2L%, 2L\ and 2L\ coincide with the fourth column of the system T, the 

fifth column of T, and the third column of T, respectively. The triple ( 2 i | , 2L%, 
2LI) has the same property. 

As in the preceding considerations, the squares 2L\,... 2L% have columns which 

form the same column set as L\, only the orders in which the columns of L\ occur 

in the subsequent squares are different. This follows again from the linearity of the 

ternary ring which is the left nearfield RT in the sense of Hughes. Starting with the 

left quasifield TT, or ST, we would analogously get a strongly canonical system of 

Latin squares 2 L 6 , or 2LC , respectively. From the diagonals of Latin squares of the 

system one deduces the rows of the multiplication table of the quasifield ST, or RT, 

respectively. 
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The reduced kernel of the corresponding strongly canonical incidence matrix of 

the Hall plane of order 9 in block notation is 2Ma, where 

Jo KQ I\ J\ K\ I2 J2 K2 Ko Jo I2 K2 J2 I\ K\ J\ 

K0 Jo h K2 J2 h K\ J\ J0 K0 h J\ K\ h J2 K2 

I\ I2 K0 K\ K2 J0 J\ J2 h I\ Jo K\ K2 K0 J\ J2 

2Ma = J\ K2 J2 Ko h K\ h Jo 2MaT = K2 J\ J2 J0 h K\ h KQ 

K\ J2 J\ h Ko K2 JQ I\ J2 K\ J\ I2 Jo K2 Ko h 

J2 Ji Jo J2 J\ Ko K2 K\ I\ I2 K0 J2 J\ J0 K2 K\ 

J2 K\ K2 I\ J0 J\ Kg I2 K\ J2 K2 h K0 J\ J0 I2 

K2 J\ K\ J0 I2 J2 I\ K0 J\ K2 K\ K0 I2 J2 h Jo 

Fig. 10 

In 2MaT the successive changing of elements of rows occurs in accordance with 

the quaternion group R. The matrix 2MaT is not isotopic to 2Ma. 

3. By reordering of rows and by subsequent reordering of columns of the block 

matrix 2MaT we obtain a new block matrix 3Ma, which we will call the reduced 

kernel of the dual Hall plane of order 9. The block matrix 3Ma is 

Jo K0 h h K\ h h к2 
Kg Jo h к2 

h h K\ h 
Һ h к0 

h J\ Jo к2 
K\ 

Һ к2 
K\ Ko h h h Jo 

K\ h Г<2 h K0 h Jo h 
h h Jo K\ K2 

Kg h h 
Jг K\ h h Jo к2 

K0 h 
ІІ2 h h Љ h K\ h к0 

Fig. 11 

The corresponding strongly canonical system of Latin squares of the dual Hall plane 

is 

3La = {L\,L2,
3La,3La

4,...,
3La}, 
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where 

0[3]6 274 185 O 0 8 526 731 (fj]7 832 416 

147 085 263 156 307 842 138 640 527 
3 L | = 258 163 074 3LJ = 237 418 650 3L% = 246 751 308 

360 517 428 372 850 164 381 265 740 

471 328 506 480 631 275 462 073 851 

582 406 317 561 742 083 570 184 632 

603 841 752 615 283 407 624 508 173 

714 652 830 723 064 518 705 316 284 

025 730 641 804 175 326 813 427 065 

3L% ... 0[6]3 158 247 3L? . . . o[7]5 462 823 3 L | . . . o|¥)4 713 562 

Fig. 12 

The columns of the squares 3L£, j e {3 ,4 , . . .8} must be taken from L\ and their 

labelling is given by their "leading" elements in the first row. The first row of 
3 L" coincides with the j - t h row of the system R. The triples (^ L3,

3 L%3 Lf) and 

(3Lg,3L£,3Lg) have the same property as the triples in the Desarguesian case. 

4. We come to the Hughes plane of order 9. We shall start from the Desarguesian 

plane of order 3 understood as the plane over GF(3) = (S0, +, •) with S0 = {0 ,1 ,2 ,} . 

This plane can be described also as a perfect difference set, for example {0,1,3,9} 

(mod 13) (cf. [3], pp. 52-54). We denote it by 7r0 and its points by A0,A\, •.. ,Ai2-

Further, we take the right nearfield R of order 9 with elements 0 , 1 , . . . , 8 and use 

homogeneous coordinates (x,y,z) over R (with factor of homogeneity from the right) 

for points of the projective plane 7r containing 7r0. 

We shall proclaim the set {A0,Ai,A3,Ag,B0,C0,D0,E0,F0,G0} with coordinates 

according to Fig. 13 to be the improper line of the plane ir. 

A0 = (oo) Ax = (0)A3 = (2)Ag = (l)Bo = (3) C0 = (4) D0 = (5)E0 = (6)F0 = (7) G0 = (8) 

(0,1,0) (1,0,0) (1,1,0) (2,1,0) (3,1,0) (4,1,0) (5,1,0) (6,1,0) (7,1,0) (8,1,0) 

Fig. 13 

We shall use the Singer matrix (cf. [3], pp. 293-295) 

/ 0 1 1 

M = 0 0 1 

\ 1 0 0 
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over GF(3) as the matrix of a collineation (denoted in the following also by M ) of 

7r0. The period of this collineation is 13 and the orbit of A0 under the collineation 

subgroup (M) generated by M is formed by the points Ai = MA0 = M ( 0 , 1 , 0 ) T , 

A2 = M 2 ( 0 , 1 , 0 ) T , . . . , A i 2 = M 1 2 ( 0 , 1 , 0 ) T with respect to 7r0. However we can 

extend the action of (M) to the remaining points B0, C0,..., G0 of the ideal line so 

that we get 6 • 13 = 78 points Bj = MjB0,. ..,Gj = M>G0, j <E {0,1,2,.. . , 12}. We 

obtain the following remarkable dislocation of 81 proper points 

0 

A2 A4 A10 EІ G, Fг Bx Dг C i 

A8 A5 Ae Bь Cъ 
D5 Eъ Fъ G5 

A12 A7 Au Fn 
Eu 

Gu Cц Bn 
Du 

C i 2 C 4 
D10 в2 E3 

E7 Eб D8 в9 

D12 DІ в10 G7 c2 G3 
Bs c9 Gв 

в12 B4 Cю Eз ғ7 D2 D9 Eб c8 

E12 F4 Cю Bь G8 E9 
E2 B3 

в7 

G12 G4 E10 Es ғ9 Dв D7 ғ2 D3 

E12 E4 Eю G9 c6 E8 Cз c7 G2 

y c3 c4 c 5 c 6 c7 c 8 

Fig. 14 

The left above array of this scheme expresses the affine subplane of order 3. The 

ideal points of this subplane are A0, Ai, A3, A9. We will speak about primary points 

Ao,Ai,... ,A12, whereas the points Bj,Cj,... ,Gj, j e {0,1,2,.. .,12} of the rest 

will be called secondary points. Any two distinct primary points are joined by a 

unique line also called primary. Primary lines can be understood either as lines of 

7T0 or as extended lines with points Ai, Ai+1, Ai+3, Ai+9, Bt, C;, Di, Ei, Fit Gi for 

i e {0,1,2, . . . , 12} taken modulo 13. Further, we form point sets called secondary 

lines: firstly the vertical ones: 

c 3 = A0B2BiBeE1E8F3FuG7G9 c 6 = AoE2E5E6B1BsC3CuD7D9 

(4.1) C4 = AoC2C5C6GiG8B3SllE7E9 c 7 = ^ 0E2E5E6£>ir ; 8 535i iC 7C 9 

c5 = A0D2Df>D6F1FsG3GuE7E9 c8 = ^ 0 G 2 G 5 G 6 C 1 C 8 r J 3 Z>i 1 B 7 B 9 

358 



(4.2) 

secondly the horizontal ones: r3,r4,... ,rs with the ideal point Ai, where one obtains 

r3 from ce and re from c3 by adding 1 to the indices of all points and similarly for 

the couples r4 , cs; r8 , c4 and r5 , c7; r7, c5, and thirdly the cross ones: from (4.2) for 

t € { 2 , 3 , . . . , 1 2 } . 

Ai B2+i B$+i Be+i E1+i Es+i F3+i F11+i G7+i Gg+i 

At C2+i C$+i Ce+i G1+i Gs+i -£3+1 E11+i F7+i Fg+i 

Ai D2+i D5+i De+i F1+i Fs+i G3+i G11+i E>T+i Eg+i 

Ai E2+i Es+i Ee+i B1+i Bs+i C3+i C11+i D7+i Dg+i 

Ai F2+i F^+i Fe+i D1+i Ds+i B3+i B11+i C7+i Cg+i 

Ai G2+i Gs+i Ge+i Ci+i Cs+i D3+1 D11+i B7+i Bg+i 

There exist just 13-6 = 78 secondary lines and together with 13 primary lines they 

form a complete line set of a projective plane ir called the Hughes plane (and known 

already in 1907 to Veblen and Wedderburn, cf. [8], pp. 383-4). We shall present here 

a strongly canonical system of Latin squares of IT. The first two are Li and L2 again 

(Fig. 4) whereas the remaining ones must be written in detail: 

cfjF|6 258 147 o[T|8 723 561 0JTJ7 462 813 

147 036 258 156 804 372 138 570 624 

258 147 036 237 615 480 246 381 705 

360 714 825 372 480 156 381 246 570 
4L£ = 471 825 603 4LJ = 480 561 237 4L% = 462 057 381 

582 603 714 561 372 048 570 138 462 

603 471 582 615 237 804 624 705 138 

714 582 360 723 048 615 705 813 246 

825 360 471 804 156 723 813 624 057 

0[6]3 174 285 o[7J5 831 426 o[8]4 516 732 

174 285 063 183 642 507 165 327 840 

285 063 174 264 750 318 273 408 651 

306 852 741 318 507 264 327 165 408 
4 I g = 417 630 852 4L? = 426 318 075 4L« = 408 273 516 

528 741 630 507 426 183 516 084 327 

630 528 417 642 183 750 651 840 273 

741 306 528 750 264 831 732 651 084 

852 417 306 831 075 642 840 732 165 

Fig. 15 
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The columns of the multiplication table of R enter as the first rows of Latin squares 
4 L a , 4 L a , . • •,4Lg. In the additive group (5, +,0) , where S = {0,1,2,3,. . . ,8} and 

the addition + is defined by Li, there are subgroups ({0,1,2},+), ({0,3,6},+), 

({0,4,8},+), ({0,5,7},+). It is obvious that the Latin squares with nonzero slopes 

of the same subgroup have up to the order the same columns. The cosets of (5, +) 

modulo ( S 0 , +) are S 0 = {0,1,2}, Si = {3,4,5}, S 2 = {6,7,8} and the Latin squares 

belonging to the slopes of Si and/or of S 2 have the following properties: 

a) The diagonal of the first square coincides with the first row of the second 

square, the diagonal of the second square coincides with the first row of the 

third square and finally, the diagonal of the third square coincides with the 

first row of the first square again. 

b) Every column of an arbitrary square of the system 
4 L a = { L i , L 2 , 4 L a , . . . , 4 L a } can be divided into three parts such that 

in each of them there are even permutations of the same coset. Thus it is 

possible to investigate only Latin 3 x 9-rectangles formed by the first, fourth 

and seventh row of each of the squares. This means that the corresponding 

ternary ring of 7r is "piecewise linear" (it is well-known that the ternary ring 

of the Hughes plane 7r cannot be linear, cf. [1], pp. 199-200). So,the eight 

Latin squares of the system 4 L a can be divided into four couples such that 

every couple differs only in the ordering of columns (the set of columns is the 

same for both squares of the couple) and this ordering is prescribed by the 

first row of any square. 

A modification of a strongly canonical system of Latin squares of the 

Hughes plane 7r is presented in [2], p. 293. The squares are normalized with 

respect to rows, but they are not ordered with respect to their slopes. 

The reduced kernel of the corresponding strongly canonical incidence ma­

trix of 7r is 

4 Л ? a = 

Љ K0 h h Kx h h к2 

к0 
Љ h к2 

h h Kx h 
h h O i h Cl dx Є l Sx 
h к2 

a2 b2 c 2 d2 e 2 л 
к. h a3 ъ3 

cз d3 eз л h h dy h Є l ax C l Ьx 

h Kx 
d3 Л eз a3 cз b3 

I<2 h d2 Л e 2 a2 C2 b2 

Fig. 16 
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where J0,K0,I\,... ,K2 are matrices introduced in Section 1, whereas further 18 
permutation matrices of order 9 are as follows 

) /* \ ( i \ ( A (i \ I k \ I k\ 

"T/rT./%;rVrTvJ 

«2 = 3 , h= i , c2= i , d2= k 

00H4 40 4/rn ;r*T *, 
As j T = k and kT = j , it is easily seen that 

d\ = aT e\ = a T / ! = a T 

d 2 = 6 T e 2 = bT f2 = bT 

d3 = c T e 3 = cT f3 = c T 

From these relations we reconstruct the matrix 4 M a T : 

K0 Jo I2 K2 J2 h K\ J\ 

J0 K0 h J\ K\ I2 J2 K2 

h A d\ /i ei a\ a b\ 

4 M a T = к2 
h d2 h Є2 a2 c2 b2 

Jl K\ d3 h eз «з cз bз 

h h a\ b\ Cl d\ e\ h 
K\ h aз bз Cз dз eз h 
h к2 

a2 ь2 
C2 d2 Є2 h 

Fig. 17 

which is isotopic to 4 M a (as is seen by interchanging the rows 1 <-> 2, 3 <-> 6, 4 <-> 8, 

5 <-> 7). So, we have an easy verification of the well-known fact that the Hughes 

plane •K is autodual (cf. [3], pp. 80-81). 
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§3. FURTHER CONSTRUCTION OF THE HUGHES PLANE 

Let us investigate the strong canonical form of the incidence matrix with the 

reduced kernel of a similar structure as in the matrix 4Ma, i.e. having the first two 

rows and columns with the same elements as in the matrix 4Ma whereas the inner 

kernels are different. Combinatorially it is possible to deduce two possibilities for 

new matrices 

4Mb = 

Jo к0 
h J\ K\ h h I<2 

к0 
h h I<2 h h K\ J\ 

h h U\ V\ W\ Xl 2/1 Z\ 

h ï<2 « 2 V2 w2 X2 2/2 Z2 

K\ h " 3 vз w3 Xз 2/3 zз 

h h X\ Z\ У\ m W\ V\ 

h K\ x3 zз 2/з " 3 w3 vз 

I<2 J\ X2 z2 2/2 « 2 w2 V2 

J0 I<0 I\ J\ K\ I2 J2 I<2 

Ka Ja h Ki Ji K\ J\ 

h h i\ h k\ h m\ П\ 

4M<--
J\ 

" Ki 
I<2 

h 
h 
h 

h 
h 

k2 

fcз 

h 
h 

m2 

m 3 

Щ 

" 3 

h h h П\ m\ i\ k\ h 
h K\ h " 3 m 3 h feз h 

I<2 h h " 2 m2 h k2 h 

Fig. 18 

where J0,K0,I\,... ,K2 are the permutation matrices known from the preceding 
§2. The inner kernel of each of the new incidence matrices contains 36 permutation 
matrices such that only 18 of them are distinct. These matrices are as follows: 
(4.4) 

J 3 \ I K \ ( 3 

k |, x\= | k I, yi= I k \, z\ = 

k\ (k 

• ' / / " 

k 

k | , V3= | i 

^ 1 = | 3 |, " 1 = 

u2 = 3 \, " 2 = k 

V k I \ k 

U3= 3 | , " 3 = I 

w2= | 3 

k 

22 = 

1'3 = 
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(4.5) 
fcN / fcN / * 

= \ k , j\= j , fc1= i , i i = i , m\= к , n 1 = fc 

v̂  y v * J \ ÍJ \k 
i i \ / *\ / J \ /* 

n= k , J2= fc , fc2= i , ; 2 = i , m 2 = i 

* I \ kj 

/jn\jn;M)H;M'.' 
For the matrices of type (4.4) or (4.5) we deduce 

x\ =uT y\= uT z\ =uT h= i f m\ =iT n\ = iT 

x2 =vT y2= vT z2 = v\ h= j T m2 = jj n2 = i T 

x3 =wT y3= wl z3 = wT l3 = kT m3 = kT n3 = kT 

Using the last relations we obtain transposed matrices 

K0 J0 I2 K2 J2 h K\ J\ 

J0 K0 h J\ K\ h J2 K2 

h h X\ Z\ Уi щ W\ V\ 

4 M Ь Г = к2 

h 
h 

K\ 

x2 

x3 

Z2 

zз 

ž/2 

Vя 

u2 

Uз 

w2 

w3 

v2 

vз 

h h U\ V\ W\ Xl У\ Z\ 

K\ h u3 vз w3 xз Уз zз 

h к2 
u2 V2 W2 x2 m z2 

к0 J0 
h к2 h h K\ h 

љ к0 
h h K\ h h K2 

h h h П\ m\ h Һ k\ 

4 M c T = к2 

h 

J\ 
K\ 

h 

h 

«2 

" 3 

m 2 

m3 

h 

h 

Һ 

Һ 

k2 

fcз 

h h h Іl k\ h m\ П\ 

K\ J2 h Із kз h m3 n3 

h к2 
h h k2 h m2 " 2 

Fig. 19 

Comparing the columns of both matrices with the original ones we see that 
iMbT,iMh and 4McT,iMc are isotopic pairs so that we obtain a similar result 

as for the Hughes plane: each of the above incidence matrices belongs to a projective 
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plane which is autodual. We shall show that this is only another form of the Hughes 

plane. From the incidence matrices under investigation we reconstruct the strongly 

canonical complete systems of mutually orthogonal Latin squares of order 9. The 

couple of the first and the second row of the reduced kernel AMb or 4 M C lead to the 

known Latin squares L\ and L2 (see Fig. 4). Further, we have: 

o[¥|6 471 582 0[T]8 156 723 0 0 7 813 246 

147 582 360 156 237 804 138 624 057 

258 360 471 237 048 615 246 705 138 

360 147 258 372 804 561 381 462 705 
iL\ = 471 258 036 4Lb

4 = 480 615 372 iLb
b = 462 570 813 

582 036 147 561 723 480 570 381 624 

603 825 714 615 480 237 624 138 570 

714 603 825 723 561 048 705 246 381 

825 714 603, 804 372 156, 813 057 462, 

0[ě]3 528 417 ofTJö 264 831 o[][]4 732 165 
174 306 528 183 075 642 165 840 273 
285 417 306 264 183 750 273 651 084 
306 285 174 318 750 426 327 516 840 

4 Lg = 417 063 285 *Lb
7 = 426 831 507 4 L | = 408 327 651 

528 174 063 507 642 318 516 408 732 
630 741 852 642 507 183 651 273 408 
741 852 630 750 318 264 732 084 516 
852 630 741, 831 426 075, 840 165 327, 

0[Š]6 714 825 0[TJ8 561 237 tfŠfr 138 462 
147 825 603 156 372 048 138 246 570 
258 603 714 237 480 156 246 057 381 
360 582 471 372 156 804 381 705 246 

4 L C = 471 360 582 4 L C = 480 237 615 4 L C = 462 813 057 
582 471 360 561 048 723 570 624 138 
603 147 258 615 723 480 624 570 813 
714 258 036 723 804 561 705 381 624 
825 036 147, 804 615 372, 813 462 705, 
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4ЬŽ = 

Ofбjз 852 741 

174 630 852 

285 741 63Ö 

306 417 528 

417 528 306 

528 306 417 

630 285 174 

741 063 285 

852 174 063, 

4
LŞ = 

0 0 5 426 183 

183 507 264 

264 318 075 

318 264 750 

426 075 831 

507 183 642 

642 831 507 

750 642 318 

831 750 426, 

Fig. 20 

*LÏ = 

0fJ]4 273 516 

165 084 327 

273 165 408 

327 840 165 

408 651 273 

516 732 084 

651 408 732 

732 516 840 

840 327 651 

We see that these systems of Latin squares have the following properties of the 

Hughes plane: the associated ternary ring is not linear but couples of Latin squares 

with opposite slope have up to order the same columns. The columns of every 

Latin square are always formed by three triples of even permutations of cosets of the 

elementary 3-group of order nine with respect to the cyclic subgroup (So, + , 0). The 

ternary ring is "piecewise linear". From the first rows of Latin squares of strongly 

canonical systems it is possible to rewrite multiplication tables of induced operations: 

Л
2 

12 345 678 

21 687 354 

36 471 582 

48 156 723 

57 813 246 

63 528 417 

75 264 831 

84 732 165 

л
з 

12 345 678 

21 687 354 

36 714 825 

48 561 237 

57 138 462 
63 852 741 

75 426 183 

84 273 516 

System (S/T)1 System (T/S)T 

Fig. 21 

Both operations A

2 and A

3 are loop operations and it is easily seen that the first 

loop passes to the second under the isomorphism g = (12)(36)(48)(57) so that the 

corresponding projective planes must be isomorphic. Further, it can be shown that 

the isomorphism S = (036) (147) (253) maps the complete system of mutually orthog­

onal Latin squares 4 L a = {Z/i ,I/ 2 , 4 L a , . . . , 4 £ a } o n t o the strongly canonical system 
4LC = {L1,L2,

4L$,...,4LC
S} and<5(4Lc) = 4Lb, so that these three Latin square rep­

resentations correspond to the same plane. Remember that the starting addition + is 
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always the same and is determined by L\ of Fig. 4. If we denote the multiplication of 

the quaternion group (System RT) by A i , then we get three equivalent descriptions 

of the Hughes plane. Then the ternary operations aT, bT, CT on S defined by 

uAiX + y for y 6 {0,1,2} = S0 

(4.6) v = aT(u,x,y)= uA2x + y for y e {3,4,5} = S\ 

UA3X + y for y e {6,7,8} = S2 

UA2X + y for y e So 

(4.7) v = bT(u,x,y) = uA3x + y for y e S\ 

uAiX + y for y e S2 

U A 3 I + y for y e S0 

(4.8) u = cT(u,x, i / ) = U A ^ + I/ for y e Si 

«A2j; + y for y e S2 

determine planar ternary rings of the same plane, namely of the Hughes plane. Due 

to three expressions in the formulae for ternary operations aT, bT, CT they are said 

to be piecewise linear. 
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