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EXISTENCE OF QUASICONTINUOUS SELECTIONS 

FOR THE SPACE 2 R 
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Summary. The paper presents new quasicontinuous selection theorem for continuous 
multifunctions F: X —> R with closed values, X being an arbitrary topological space. It 
is known that for 2 with the Vietoris topology there is no continuous selection. The result 
presented here enables us to show that there exists a quasicontinuous and upper(lower)-
semicontinuous selection for this space. Moreover, one can construct a selection whose set 
of points of discontinuity is nowhere dense. 
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1. INTRODUCTION 

Up to now, papers dealing with the problem of existence of quasicontinuous se­

lections have considered multifunctions with compact values in metric spaces (see 

e.g. [2, 6, 7, 8]). Another classical condition in selection theory is the convexity of 

values ([9, 10]). 

In this paper we present a quasicontinuous selection theorem for continuous mul­

tifunctions F: X —> R with closed values, X being an arbitrary topological space. 

It is shown that the graph of F can be constructed as the union of graphs of quasi-

continuous and upper-semicontinuous selections of F. Moreover, the sets of points of 

discontinuity of these selections are nowhere dense. Our result enables us to complete 

the work of [1] concerning the hyperspace 2 R . 
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2. PRELIMINARIES 

By 2R we mean the class of all nonempty closed subsets of R equipped with the 

Vietoris topology (for definition of basic notions: Vietoris topology, hyperspace, 

multifunction, selection, l.s.c, u.s .c , Hausdorff continuous multifunction etc. see 

e.g. [4] and [11]). 

Let X and Y be two topological spaces. A multifunction F from X to Y is called 

continuous, if it is l.s.c. and u.s.c. (lower and upper semicontinuous). 

Let us denote F~(A\B) = {x; F(x) n A + 0 and F(x) C B}. Of course, for 

B,AcY open and F continuous, the set F~(A; B) is an open subset of X. 

Let B be a subset of a topological space X. In what follows i n t B and c\B denote 

the interior and the closure of the set B, respectively. There are several equivalent 

definitions of quasicontinuity, we will use the following one: A function / : X —> Y 

is said to be quasicontinuous at x e X if and only if for any open set V such that 

f(x) e V and any open set U such that x € U, there exists a nonempty open set 

W CU such that f(W) C V ([5.12, 13]). 

3. RESULTS 

In the next theorem the space X is an arbitrary topological space, which is quite 

rare in the selection theory. Nevertheless, the fact that Y = R permits us to give a 

constructive proof of the assertion. 

T h e o r e m 1. Let X be an arbitrary topological space. Let F: X —>• R be a 

continuous multifunction with closed values. Then F has a quasicontinuous and 

upper-semicontinuous selection h such that its set of points of discontinuity is a 

nowhere dense set. 

P r o o f . Let us define g(x) = min{|y|; y e F(x)} for every x from X. We denote 

A = {x e X; g(x) e F(x) and -g(x) e F(x)}. The set A is closed. We will prove it 

by proving that X — A is open. 

Let b e X - A. Let us consider the case g(b) ~ F(b), the other (-g(b) € F(b)) 

being analogous. In this case -g(b) is not an element of F(b) and since the set F(b) 

is closed, there exists S > 0 such that 

(i) F(b) CU= ( - co , -g(b) - S) U (g(b) - S, +oo) 

and 

(ii) g(b) -S>0. 
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Let us denote V = (g(b)-S, g(b)+S). Since F is continuous and (i) and (ii) hold, the 

set W = F~(V; U) is an open neighborhood of the point 6. Of course W C X - A. 

So the set X - A is open. 

Let us denote B = A — cl(int .4). For every element x of X one of the following 

assertions is true: 

(1) x e X - A and g(x) e F(x); 

(2) xe X -A and -g(x) £ F(x); 

(3) x e cl(intA); 

(4) x e B and for every open neighborhood 0(x) of the point x there exists a point 

t e O(x) such that g(t) € F(t) and -g(t) # F(t) hold; 

(5) x e B and there exists an open neighborhood 0(x) of the point x such that for 

every element t of 0(x), -g(t) 6 F(t) holds. 

Let us define a function /i: X —> R as follows: 

h(x) = 0\iOeF(x), 

h(x) = g(x) if (1) or (3) or (4) is true and 0 0 F(x), 

h(x) = -g(x) if (2) or (5) holds and 0 $ F(x). 

It is easy to see that h is a selection of F. We will prove that h is quasicontinuous 

at every x in X. 

First, let x ' X be such that h(x) = 0. Let V be an open neighborhood of h(x). 

Then there exists e > 0 such that U = (-e,e) C V. The set W = F~(U; R) is an 

open neighborhood of a: and for every element w of W {-g(w),g(w)} C U holds. So 

h(w) e V, Vw e W is true, and the function / is continuous at the point x. 

If 0 0 F(x), we distinguish five cases: 

(I) Let x e X and let (1) hold. Let O C R be an open set such that h(x) ' O. 

Then there exists 8 > 0 such that 

F(x) CG = ( -oo , -h(x) - <5) U (h(x) - 8, +oo) 

and 

h(x)-8>0 and H = (h(x) - 8, h(x) + 6) c O 

is true. 

Hence x is an element of the set C = F~(H; G) and since F is continuous, the 

set C is open. It is easy to verify from the definition of C that (1) holds for 

every t e C and this implies h(C) ~ H C O. So the function h is continuous at 

the point x. 

(II) Quite analogously, if (2) is satisfied for an x from X, then h is continuous at 

the point x. 
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(III) Let x e X and let (3) hold. Let O C R, G C X be two open sets such that 
x e G and h(x) e O. Then there exists S > 0 such that following holds: 

h(x) - S > 0, 

V = (ft(a;) - 5, h(x) + 5)cO, 

F(x) CU = (-oo, -h(x) + S) U (h(x) - S, +co). 

Let us denote W = GC\ F~(V;U). Since W is an open neighborhood of x and 
x e cl(int A), the set P = wnint A is nonempty open, P CG. For every p from 
P we have p £ F~(V; U), hence ft(p) £ V C O. This proves the quasicontinuity 
of ft at :r. Moreover, if a; € int A, then x e P and we see that ft is continuous at 
the point x. If a: is not from int A, it is still true that for every e > 0 and for 
every v e F~((h(x) - e, h(x) + e); R) the inequality 

h(v) ^ h(x) + e 

holds; so, ft is upper-semicontinuous at x. 
(IV) Let x e X and let (4) hold. Let O C R, G C X be two open sets such that 

x e G and h(x) e O. Then there exists 5 > 0 such that 

h(x)-S>0, V = (h(x)-S,h(x) + 6)cO 

and 
F(x) C U = (-co, -h(x) + S)U (h(x) - S, +oo) 

hold. Let us denote W = G n F~(V;U). W is an open neighborhood of the 
point x. From the validity of (4) we obtain that there exists t e W such that (1) 
is true for t and h(t) = g(t). Since t e W, h(t) e V holds. By (I) the function ft 
is continuous at the point t; so, there exists an open neighborhood H of t such 
that h(s) e V for every s e H. Let us denote P = HCtW. The set P is an open 
subset of G and h(p) e V for every p 6 P. This proves the quasicontinuity of ft 
at the point x. The proof of the upper-semicontinuity of ft at the point x is left 
to the reader. 

(V) Let x e X and let (5) hold. Let O C R be an open set such that h(x) e O. 
Then there exists <5 > 0 such that 

h(x) + S < 0, V = (h(x) - S, h(x) + 5) CO 

and 
F(x) C U = (-co, h(x) + S)U (-h(x) - S, +oo) 
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hold. Let us denote W = (F~(V;U) n 0(x)) - cl(intA) where 0(x) is the set 

mentioned in (5). Then W is an open neighborhood of the point x and for every 

w € W either (2) or (5) is true. Therefore h(w) = -g(w) e V C O holds for 

every w 6 W• This implies the continuity of the function h at x. 

To complete the proof, it suffices now to show that the set of points of discontinuity 

of h is nowhere dense. But it is easy to see that this set is a subset of the set 

B U (cl(int A) - int A) = (A - cl(int A)) U (cl(int A) - int A). 

Since A is closed, this set is the union of two nowhere dense sets. D 

Now we present two examples relevant to Theorem 1. 

E x a m p l e 1 ([2]). We show that the assumption "F is u.s.c." in Theorem 1 

cannot be omitted. 

Let X = {a,b,c}, let (X,T) be a topological space with the topology T = {0} U 

{{a},{c,a},{b,a},X}. Define F: X —> R as follows: 

F(a) = {1,2}, F(b) = {l}, F(c) = {2}. 

F is a l.s.c. multifunction with compact values and F has no quasicontinuous selec­

tion. 

E x a m p 1 e 2. Let X = N = {1 ,2 , . . .} be a topological space with the topology 

T = {A; A C N, N - A is a finite set} U {M,0}. Let us define a multifunction F: 

X —> R as follows: 

F(k) = N-{1,2,...,k}. 

The multifunction F is u .s .c , it has closed values, but it is not l.s.c. It is easy see 

that it has no quasicontinuous selection, because all quasicontinuous functions from 

(X, T) to R are constant ones. 

Reading the proof of Theorem 1 we see that for every x in X, 0 £ F(x) implied 

h(x) = 0. This fact will be used in the proof of the following assertion: 

Theorem 2 . Let X be an arbitrary topological space. Let G: X —> R be a 

continuous multifunction with closed values. Let (x, y) be an eiement of the graph 

of G. Then there exists a quasicontinuous and upper-semicontinuous seiection g: 

X —^ Y such that g(x) =y,g is continuous at x and the set of points of discontinuity 

of g is nowhere dense. 

P r o o f . Let us define a multifunction F: X —• R as follows: F(t) = G(t) - y 

for t 6 X. Then F: X —> R is a continuous multifunction with closed values and 
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according to Theorem 1 there exists a quasicontinuous and upper-semicontinuous 

selection h of F. Since 0 is an element of F(x), h(x) = 0 holds and h is continuous 

at x. Let us define a function g: X —> R in the following way: g(t) = h(i) + y for 

t € X. The function g is quasicontinuous, upper-semicontinuous and it is a selection 

of G. 

Moreover, g(x) = h(x) + y = y holds. • 

It is well known that there is no continuous selection for the hyperspace of 

nonempty closed subsets of R with the Vietoris topology ([1]). However, Theorem 2 

gives us the following result: 

Corollary 1 . Let I be the "identity multifunction" from 2R to R, such that 

1(A) = A holds for every A € 2 R . Then for every point (x,y) of the graph of I 

there exists a quasicontinuous and upper-semicontinuous selection f of I such that 

f(x) =y and the set of points of discontinuity of g is nowhere dense. 

R e m a r k 1. Theorem 1 and Corollary 1 also imply (under the same conditions) 

the existence of a quasicontinuous selection which is lower-semicontinuous. It suffices 

to consider a multifunction G = —F. Then there exists an upper-semicontinuous 

(and quasicontinuous) selection g of G. Then h = —g is the lower-semicontinuous 

selection of F we wanted. 

R e m a r k 2. It is easy to check that Theorem 1 and Theorem 2 are true also 

if the assumption UF is a continuous multifunction" is replaced by the assumption 

"F is Hausdorff continuous". In this case Corollary 1 can be reformulated: 2R can 

be replaced by the hyperspace of nonempty closed subsets of R with the topology 

derived from Hausdorff metric. 

Another example relevant to our results, an example of a continuous and Haus­

dorff continuous multifunction F: [-1,0] — • R with closed values which has no 

continuous selection can be found in [3]. 
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