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Suppose that J = [0, a], B is a Banach space, f : I x B-+B, g : I x C(I, B) -> B 

are continuous functions satisfying the Volterra condition (it means that g(t, x) = 

g(t,y) if x(s) = y(s) for s £ [0,t]), where C(I,B) denotes the Banach space of all 

functions from / into B. It is well known that the Cauchy problems 

x'(t) = f(t,x(t)) 

x(0) = x0 

and 

x'(t) = g(t,x) (2) W » i , > 
x(0) = xQ 

have many fundamental properties in common. For instance, the Peano Theorem 

and the Picard Theorem are valid for both of them (see [3]). However, there are 

some differences. For example, graphs of each two solutions of (1) are tangent at 
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any common point, but this need not be true for every two solutions of problem (2) 

(see [3]). In this note we construct an example which illustrates another difference. 

In the case of a Hilbert space B with a scalar product (-, •> and a norm | • |* , some 

generalizations of Kamke type conditions for (1) of the form 

Re(v - u, f(t, v) - f(t, u)) <_ w(t, \v - u | , ) 

were considered in literature. For some classes of functions w these conditions guar­

antee the existence and uniqueness of a solution of (1) (see, for instance, [1], [2], [4] 

and [5]). The strongest condition of the above type is 

Re(v - u, f(t, v) - f(t, u)) < 0. 

If B is the one-dimensional Euclidean space R, the above condition means that 

/ is nonincreasing with respect to the second variable. The example we construct 

shows that even in the case B = R the condition "g(t, •) is a nonincreasing function 

for any t e I" is not sufficient for the uniqueness of solutions of (2). 

First we prove 

L e m m a . Suppose that y1,y2,z1,z2 6 C = C(I, R), zi(0) = z2(0) and for any 

t e (0, o] we have 

h(t) = sup (yi(s) - y2(s)) > 0, l2(t) = sup (y2(s) - Vl(s)) > 0. 
se[o,t] se[o,t] 

Then there exists a continuous function g: I x C -* R such that 

1. Zi(t) =g(t,yt) fori = 1,2, t£l; 

2. g satisfies the Volterra condition; 

3. g(t, •) is a nonincreasing function; 

4. g is bounded. 

P r o o f . Let us define an operator r: C -> C by the formula 

{ m(t), if x(t) <m(t), 

x(t), if m(t) <.x(t) <.M(t), 

M(t), if x(t)>M(t), 

where m(t) = mhvfj/i(t),y2(t)}, M(t) = max{j/i(t),2/2(t)}. 
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Our function g : I x C -+ R is defined by 

U(P), 

ø(ť,x) = 

if ť = 0, 

^ ( ť ) - 1 sup (yj(s) - (rx)(s)) (г2(ť) - г i ( ť ) ) + г i ( ť ) , 
»Є(0,«] 

if ť > 0 and гx(ť) ^ г 2(ť), 

řг(ť)- 1 sup (jй(s) - ( ra)( S )) (гi(ť) - г2(ť)) + г2(ť), 
»є[o,«] 

if t > Oand ^ 1 ( i) > z2(t). 

Since rj/,- = j/,-, i = 1,2, condition 1 holds true. It is easy to verify that conditions 

2 and 3 are also satisfied. Condition 4 holds true because 

(3) 

for t Є (0,o], and 

O^ЦtГ1 sup {Уi(s) - (rx)(s)) < 1 
»Є[0,t] 

m i n ^ i ( « ) ^ 2 ( * ) } ^ g(t,x) ^ max{^l(i),^ 2(«)} 

for t e I, x e C 

We prove that the function g is continuous. For t € (0,a], x,y € C we get 

| sup (y{(s) - (rx)(s)) - sup (y{(s) - (rj/)(s))| 
«6[0,«] «6[0,t] 

< sup \(rx)(s) - (ry)(s)\ ^ sup \x(s) - y(s)\ ^ \\x - y\\, 
«e[o,t] «e[o,t] 

where || • || denotes the norm of the uniform convergence. Hence 

|v(*',*)-fl(t,v)|<.(i)||*-v«, 

where l(t) = max{/i(t)_ 1 , /2(<)_ 1}|zi(<) — ^2(i) | . It means that g is a continuous 

function on (0,o] x C, since g(-,x) is a continuous function on (0,o] for each x e C. 

Let us verify the continuity of g at any point of {0} x C. Suppose that (tn,xn) -> 

(0,x0), n -> oo, for some xo £ C. Then we get from (3) 

| » ( * « , a ; n ) - » l ( * n ) K h ( t » ) - Z l ( * n ) | . 

Since £i(0) = z2(0) we obtain lim g(tn,xn) = 2i(0) = g(0,xo). We conclude that 

the function g is continuous o n / x C and the proof is complete. D 
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The main result is presented in 

T h e o r e m . There exists a continuous function g satisfying conditions 2-i of 

Lemma, such that for any a > 0 the problem (2) has at ieast two different solutions 

on [0,a]. 

P r o o f . Suppose that j/i and t/2 satisfy the assumptions of Lemma and are 

continuously differentiable on / , and 3/1(0) = j/2(0) (we can take, for instance, yi{t) = 

%o, J/2(t) = Xo + ts s i n f - 1 ) . Assume that g is a function satisfying the assertion of 

Lemma for zt = y\, i = 1,2. It follows from condition 1 that the Cauchy problem 

(2) has two different solutions 2/1 and j/2 • • 

R e m a r k . It follows from the above proof that the graphs of two different so­

lutions of the problem (2) may have infinitely many common points on any finite 

interval (0,6), 6 > 0 and need not be tangent at any point. 
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