
Mathematica Bohemica

Jarolím Bureš; Miloš Kaňka
Some conditions for a surface in Esp4 to be a part of the sphere Ssp2

Mathematica Bohemica, Vol. 119 (1994), No. 4, 367–371

Persistent URL: http://dml.cz/dmlcz/126121

Terms of use:
© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/126121
http://dml.cz


119 (1994) MATHEMATICA BOHEMICA No. 4, 367-371 

SOME CONDITIONS FOR A SURFACE IN E4 

TO BE A PART OF THE SPHERE S2 
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Summary. In this paper some properties of an immersion of two-dimensional surface 
with boundary into E are studied. The main tool is the maximal principle property of a 
solution of the elliptic system of partial differential equations. Some conditions for a surface 
to be a part of a 2-dimensional sphere in E 4 are presented. 
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1. INTRODUCTION 

In the paper isometric immersion of the two-dimensional oriented Riemannian 
manifold with boundary into E4 is studied. 

Using a maximal principle property for a solution of an elliptic system of partial 
differential equations (in [3]) some conditions for such a surface be part of a 2-
dimensional sphere in E4 are given. 

2. SURFACES IN E4 

Let M be an oriented surface in E4. Let (x;ei,e2,e3,e4) be an adapted orthonor-
mal frame field in a domain U C M (moving frame in the sense of E. Cartan). 

Then we have 

da; =u1ei +u2e2 
4 

de{=Y^uieJ 

(1) 1^ = - ^ , t , j = 1,2,3,4. 
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and 
4 

dor* = ^ o r 7 Aur? 

i=1 

(2) <k4 = t ^ A 4 
fc=i 

Moreover 
a;3 = 0, w4 = 0. 

From Cartan's lemma we obtain 

u)\ = aiu;1 + a2dJ2 

u)\ = a2u
l + a3CJ2 

u)\ = 61a;1 + b2u
2 

UJ\ = b2u>1 + b3a;2 

The Gauss curvature K and the mean curvature H on U are given by 

/C = aia3 — a2 + 6163 — b2 
(3) W = - ( a i + a 3 ) 2 + ( 6 l . . f 6 3 ) 2 

and the mean curvature vector field rj on U by 

rj = (ai + a3)ei + (61 + 63)e2 

so we have 

IMI = y/n. 
Let $ = U - 4/C. 
Then we have on U 

* = (ai - a3)2 + 4a2 + (61 - 63)2 + 462 

Further relations and descriptions can be found in ([1]). The following result is 

well-known. 

Theorem 1. M is a part of the standard sphere S 2 i f f $ = 0 o n M . 

R e m a r k 1. If H > 0 on U, and if we put e3 = jpjjr, then there is a unique e4 

such that (ei,e2,es,e4) is coherent with the orientation on M and E4. 

For such a frame we define the 1-form 

<p = (de3,de4) 

on [/, which is called the torsion form on M. 
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3. THE MAXIMUM PRINCIPLE 

For the proofs of the subsequent theorems we need one theorem on the solutions 
of the system of partial differential equations. 

Let D be a bounded domain in R2 with boundary dD, put D = D U 3D. Let a,ij, 
bij, Cij, i, j = 1,2 be C°° functions on a neighborhood of D and 

an/x + a i 2 / y + &ii0x + 6i20y = cnf + cug 

(4) a 2 i / x + a2 2 /y + b2igx + b22gy = c 2 i / + c220 

be a system of differential equations for the functions f(x,y), g(x,y). 
The system 4 is called elliptic if the quadratic form 

* = (ai 26 2 2 -a 2 26i 2 ) / i 2 + (au62i -a 2 i 6n) i / 2 ~ (an6 2 2 - a 2 i 6 i 2 + ai262i -a 2 2 6n)^i / 

is definite on D. 

Proposition 1. Let (4) be an elliptic system on D. If the functions f, g form a 
solution of (4) with f = 0, g = 0 on dD, then f = 0, g s 0 on D. 

4. FURTHER CHARACTERIZATIONS OF SURFACES IN E 4 

Using notation from the preceding parts, we get the following results: 

Theorem 2. Let D be a bounded domain in R2, 3D its boundary and let 
x: D -+ E4 be a surface satisfying 

i) * = 0 on dD, 
ii) U > 0 on D, 
iii) ip = 0 on D. 
Then there is a subspace E3 C E4 such that x(D) C E3. 

P r o o f . Take a coordinate system (w,v) in a neighborhood V of D in such a 
way that the riemannian metric g on x(D) has the expression 

£ = r2 du2 + s2 dv2 . 

and take e3, e4 as in 1. Then we obtain (from the equality </? = 0) a system of 
equations for 61, 62 (63 = 61) 

s6iu + r&2v + 262r„ + 2 6 ^ = 0, 

(5) -rblv + sb2u + 2625u - 26irv = 0, 

which is elliptic. Boundary condition 61 = 62 == 0 on dD and Proposition 1 imply 
61 =̂  62 = 63 = 0 on D, de4 = o, so that e* is constant. D 
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Using some characterization of the sphere in E3 we obtain e.g. 

Theorem 3. Let xheas in Theorem 1. Further let one of the following conditions 

be satisfied; 
(i) H is constant, 

(ii) K is constant > 0, 

(iii) there exist functions R{: D -4 R1, z = 1,2,3,4 such that 

RidM + R2dK + R3 * dU + R4 * dK, = 0 

and 

R\ + .R2 + m(RiR2 + R3R4) + 4/C(i?2 + fl2) > 0 

where * is a star operator on M. 

Then x(D) is a part of the sphere S2 in E4. 

P r o o f . Theorem 2 follows immediately from the Thm. 1 and the results from [2]. 
D 

Theorem 4. : Let x: D -4 E4 be a non-Rat surface with V. > 0 and a parallel 

second fundamental form. If $ = 0 on dD then x(D) is a part of the sphere. 

P r o o f . The second fundamental form of x has the form: 

fl = [a^u)1)2 + 2a2a>1uT2 + a3(a>2)
2]e3 

4- [61 (a;1)2 + 262u;V + 63(a;2)
2]e4 

on V. il is parallel iff a{ = 0, (3* = 0, i = 1,2,3,4. If U > 0, we have ^ = 0 and we 
get a system of differential equations 

s(ai - a3)u + 2ra2v + 2(ai - as)su + 4a2rv = 0 

(6) -r (a i - a3)t, + 2sa2u + 2(ai - as)rv + 4a2su = 0 

which is elliptic and Proposition 1 implies $ = 0 on dD. D 

Theorem 5. Let x: D -4 E4 be a non-Bat surface with H > 0 and a parallel 

mean curvature vector. If $ = 0 on 9.D then :r(.D) is a part of the sphere. 

P r o o f . The condition that t) is parallel is equivalent to the systems (5) and (6) 
of differential equations (where the torsion form </? is zero). D 
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Theorem 6. Let x: D -» E4 be a non-Sat surface with $ = 0 on dD. Ifx(D) is 
pseudoumbilical and one of the conditions i) or ii) hoick, where 

i) the torsion form (pofx is zero, and 
ii) H is constant, 
then x(D) is a part of the sphere. 

Proof . A surface is pseudoumbilical since % > 0. The second fundamental 
form with respect to e$ = -fy has the form k\ ICtO^*)2- For the coordinate system 
in the proof of Thm. 1 and Remark 1 as in Thm. 3 we now have </? = 0. Thus from 
(i) or (ii) we obtain the system of differential equations (6) and (7) on dD, which 
yields the result. D 
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