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SOME CONDITIONS FOR A SURFACE IN E*
TO BE A PART OF THE SPHERE §?
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Summary. In this 4pa,per some properties of an immersion of two-dimensional surface
with boundary into E* are studied. The main tool is the maximal principle property of a
solution of the elliptic system of partial differential equations. Some conditions for a surface
to be a part of a 2-dimensional sphere in E* are presented.
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1. INTRODUCTION

In the paper isometric immersion of the two-dimensional oriented Riemannian
manifold with boundary into E* is studied.

Using a maximal principle property for a solution of an elliptic system of partial
differential equations (in [3]) some conditions for such a surface be part of a 2-
dimensional sphere in E* are given.

2. SURFACES IN E¢

Let M be an oriented surface in E*. Let (z;e;, ez, e3,e4) be an adapted orthonor-
mal frame field in a domain U C M (moving frame in the sense of E. Cartan).
Then we have

dz =w'e; +w?es

4
de; = :}: wle;

i=1
(1) wi =-wi, i,j=1,234
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and

4
dw* = E w AW}
=1

4
(2 dw! = wa Awl.
k=1

Moreover
wd=0, w=0.
From Cartan’s lemma we obtain

wf = a]_(‘u'1 + aw

wg = aw! + agw

2

2
w:f = biw! + bow?
w? = bow! + byw?
The Gauss curvature K and the mean curvature H on U are given by
K =a;a3 — a% + bybs — b%
3) H = (a1 +a3)? + (b + b3)?
and the mean curvature vector field n on U by
n = (a1 + az)e; + (by + bs)e2

so we have

linll = V.
Let ® = H —4K.
Then we have on U
® = (a1 — a3)® + 4aj + (by — bs)* + 4b3
Further relations and descriptions can be found in ([1]). The following result is
well-known.
Theorem 1. M is a part of the standard sphere S? iff ® =0 on M.

Remark 1. IfH >O0on U, and if we put eg = ﬂ%ﬂ’ then there is a unique e4
such that (e;, ez, e3,€4) is coherent with the orientation on M and E*.
For such a frame we define the 1-form

¢ = (des, dey)
on U, which is called the torsion form on M.
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3. THE MAXIMUM PRINCIPLE

For the proofs of the subsequent theorems we need one theorem on the solutions
of the system of partial differential equations.
Let D be a bounded domain in R? with boundary 8D, put D = DUAD. Let a;j,
bi;, cij, i,j = 1,2 be C* functions on a neighborhood of D and
a11 fz + a1a fy + b119: + b12gy = ci1 f + c129
(4) a21 fz + a22 fy + b219: + bazgy = ca1 f + ca29

be a system of differential equations for the functions f(z,y), g(z,y).
The system 4 is called elliptic if the quadratic form

¥ = (a12b2 — azab12) 1 + (a11b21 — a21b11)v? — (11692 — a21b12 + a12ba1 — a22b11)pv

is definite on D.

Proposition 1. Let (4) be an elliptic system on D. If the functions f, g form a
solution of (4) with f =0, g =0 on D, then f =0,g=0on D.

4. FURTHER CHARACTERIZATIONS OF SURFACES IN E*
Using notation from the preceding parts, we get the following results:

Theorem 2. Let D be a bounded domain in R2?, 8D its boundary and let
a: D — E* be a surface satisfying

iy #=00ndD,

ii) H>0onD,

iii) ¢ =0on D.

Then there is a subspace E3 C E* such that z(D) C E3.

Proof. Take a coordinate system (u,v) in a neighborhood V of D in such a
way that the riemannian metric g on z(D) has the expression

g =ridu?® +s%dv?.

and take e3, e4 as in 1. Then we obtain (from the equality ¢ = 0) a system of
equations for by, by (b3 =b)

sbyy + rbay + 2bg1y + 2018, = 0,
(5) —rbyy + 8bay + 2bys, — 2017, =0,

which is elliptic. Boundary condition b; = b, = 0 on 8D and Proposition 1 imply
b1 =< by = b3 =0 on D, deg = o, so that e4 is constant. a
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Using some characterization of the sphere in E® we obtain e.g.

Theorem 3. Let z be as in Theorem 1. Further let one of the following conditions
be satisfied:

(i) H is constant,

(ii) K is constant > 0,

(iii) there exist functions R;: D — R!, i = 1,2,3,4 such that

RidH + R2dK + R3 xdH + Ry xdK =0
and
R? + R? + 4H(R1Ry + R3Ry) +4K(RZ + R2) > 0

where * is a star operator on M.
Then z(D) is a part of the sphere S? in E*.

Proof. Theorem 2 follows immediately from the Thm. 1 and the results from [2].
O
Theorem 4. : Let 2: D — E* be a non-flat surface with H > 0 and a parallel
second fundamental form. If ® = 0 on 8D then z(D) is a part of the sphere.
Proof. The second fundamental form of = has the form:

Q = [a1(w?)? + 2020 wW? + a3(w2)?]es

+ [b1(w')? + 2baw'w? + b3(w2)?Jes

on V. Qis parallel iff of =0, 8 = 0,4 =1,2,3,4. If H > 0, we have ¢ = 0 and we
get a system of differential equations

s(a1 — a3)y + 2rag, + 2(a; — a3z)sy, +4axr, =0
6) —r(a1 — a3)y + 2302, + 2(a1 — a3)ry + 4azs, =0

which is elliptic and Proposition 1 implies ® = 0 on 8D. O

Theorem 5. Let z: D — E* be a non-flat surface with H > 0 and a parallel _
mean curvature vector. If ® = 0 on 8D then z(D) is a part of the sphere.

Proof. The condition that 7 is parallel is equivalent to the systems (5) and (6)
of differential equations (where the torsion form ¢ is zero). O
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Theorem 6. Let z: D — E* be a non-flat surface with ® = 0 on 8D. If (D) is
pseudoumbilical and one of the conditions i) or ii) holds, where

i) the torsion form o of z is zero, and

ii) H is constant,

then z(D) is a part of the sphere.

Proof. A surface is pseudoumbilica.l since # > 0. The second fundamental
form with respect to e3 = — has the form k; 3;(w')?. For the coordinate system
in the proof of Thm. 1 and Remark 1 as in Thm. 3 we now have ¢ = 0. Thus from
(i) or (ii) we obtain the system of differential equations (6) and (7) on D, which
yields the result. ]
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