Ján Jakubík
Direct product decompositions of infinitely distributive lattices

Persistent URL: http://dml.cz/dmlcz/126128

Terms of use:

© Institute of Mathematics AS CR, 2000

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz
DIRECT PRODUCT DECOMPOSITIONS OF INFINITELY DISTRIBUTIVE LATTICES

JÁN JAKUBÍK, Košice

(Received August 17, 1998)

Abstract. Let \(\alpha \) be an infinite cardinal. Let \(\mathcal{T}_\alpha \) be the class of all lattices which are conditionally \(\alpha \)-complete and infinitely distributive. We denote by \(\mathcal{T}_\alpha' \) the class of all lattices \(X \) such that \(X \) is infinitely distributive, \(\sigma \)-complete and has the least element. In this paper we deal with direct factors of lattices belonging to \(\mathcal{T}_\alpha \). As an application, we prove a result of Cantor-Bernstein type for lattices belonging to the class \(\mathcal{T}_\alpha' \).

Keywords: direct product decomposition, infinite distributivity, conditional \(\alpha \)-completeness

MSC 1991: 06B35, 06D10

1. INTRODUCTION

Let \(L \) be a partially ordered set and \(s^0 \in L \). The notion of the internal direct product decomposition of \(L \) with the central element \(s^0 \) was investigated in [10] (the definition is recalled in Section 2 below).

We denote by \(F(L, s^0) \) the set of all internal direct factors of \(L \) with the central element \(s^0 \); this set is partially ordered by the set-theoretical inclusion. In the present paper we suppose that \(L \) is a lattice. Then \(F(L, s^0) \) is a Boolean algebra (cf. Section 3).

Let \(\alpha \) be an infinite cardinal. We denote by \(\mathcal{T}_\alpha \) the class of all lattices which are conditionally \(\alpha \)-complete and infinitely distributive. We prove

Theorem 1. Let \(L \in \mathcal{T}_\alpha \) and \(s^0 \in L \). Then the Boolean algebra \(F(L, s^0) \) is \(\alpha \)-complete.

In the particular case when the lattice \(L \) is bounded we denote by \(\text{Cen} \, L \) the center of \(L \). For each \(s^0 \in L \), \(F(L, s^0) \) is \(\alpha \)-complete and if \(\text{Cen} \, L \) is a closed sublattice of
L, then $\text{Cen} L$ is α-complete and thus $F(L, s^0)$ is α-complete as well. Some sufficient conditions under which the center of a complete lattice is closed were found in [2], [11], [12], [13], [14]; these results were generalized in [4]. For related results cf. also [3].

We denote by \mathcal{T}_C the class of all lattices L belonging to \mathcal{T}_0, which have the least element and are σ-complete.

As an application of Theorem 1 we prove the following result of Cantor-Bernstein type:

Theorem 2. Let L_1 and L_2 be lattices belonging to \mathcal{T}_C. Suppose that

(i) L_1 is isomorphic to a direct factor of L_2;

(ii) L_2 is isomorphic to a direct factor of L_1.

Then L_1 is isomorphic to L_2.

This generalizes a theorem of Sikorski [15] on σ-complete Boolean algebras (proven independently also by Tarski [17]).

Some results of Cantor-Bernstein type for lattice ordered groups and for MV-algebras were proved in [5], [6], [7], [8].

2. Internal Direct Factors

Assume that L and L_i ($i \in I$) are lattices and that φ is an isomorphism of L onto the direct product of lattices L_i; then we say that

$$\varphi: L \rightarrow \prod_{i \in I} L_i$$

is a direct product decomposition of L; the lattices L_i are called direct factors of L.

For $x \in L$ and $i \in I$ we denote by $x(L_i, \varphi)$ the component of x in L_i, i.e.,

$$x(L_i, \varphi) = \varphi(x)_i.$$

Let $s^0 \in L$ and $i \in I$. Put

$$L_i^{s^0} = \{y \in L: y(L_i, \varphi) = s^0(L_j, \varphi) \text{ for each } j \in I \setminus \{i\}\}.$$

Then for each $x \in L$ and each $i \in I$ there exists a uniquely determined element y_i in $L_i^{s^0}$ such that

$$x(L_i, \varphi) = y_i(L_i, \varphi).$$

The mapping

$$\varphi^{s^0}: L \rightarrow \prod_{i \in I} L_i^{s^0}$$
defined by

\[\varphi^{s^0}(x) = \left(\ldots, y_i, \ldots \right)_{i \in I} \]

is also a direct product decomposition of \(L \). Moreover, the following conditions are valid:

(i) For each \(i \in I \), \(L^s_i \) is a closed convex sublattice of \(L \) and \(s^0 \in L^s_i \).

(ii) For each \(i \in I \), \(L^s_i \) is isomorphic to \(L_i \).

(iii) \(H \in I \) and \(x \in L \), then \(\varphi(L^{s^0}, \varphi^s) = x \).

(iv) If \(i \in I \), \(j \in I \setminus \{i\} \) and \(x \in L^s_j \), then \(\varphi(L^s_i, \varphi^s) = s^0 \).

We say that (2) is an internal direct product decomposition of \(L \) with the central element \(s^0 \); the sublattices \(L^s_i \) are called internal direct factors of \(L \) with the central element \(s^0 \).

The condition (ii) yields that if we are interested only in considerations “up to isomorphisms”, then we need not distinguish between (1) and (2).

We denote by \(F(L, s^0) \) the collection of all internal direct factors of \(L \) with the central element \(s^0 \). Then in view of (i), \(F(L, s^0) \) is a set. On the other hand, it is obvious that the collection of all direct factors of \(L \) is a proper class.

3. Auxiliary Results

Assume that the relation (2) is valid. Let \(I_1 \) and \(I_2 \) be nonempty subsets of \(I \) such that \(I_1 \cap I_2 = \emptyset \) and \(I_1 \cup I_2 = I \). Denote

\[L(I_1) = \{ x \in L : x(L^s_i, \varphi^s) = s^0 \text{ for each } i \in I_2 \} \]

\[L(I_2) = \{ x \in L : x(L^s_i, \varphi^s) = s^0 \text{ for each } i \in I_1 \} \]

Consider the mapping

\[\psi : L \rightarrow L(I_1) \times L(I_2) \]

defined by \(\psi(x) = (x_1, x_2) \), where

\[x_1 = (\ldots, x(L^s_i, \varphi^s), \ldots)_{i \in I_1}, \quad x_2 = (\ldots, x(L^s_i, \varphi^s), \ldots)_{i \in I_2} \]

Then (3) is also an internal direct product decomposition of \(L \) with the central element \(s^0 \).

Further suppose that we have another internal direct product decomposition of \(L \) with the central element \(s^0 \),

\[\psi^{s^0} : L \rightarrow \prod_{j \in J} P_j^{s^0} \]
3.1. Proposition. Let (2) and (4) be valid. Suppose that there are \(i(l) \in I \) and \(j(l) \in J \) such that \(L_f(i(l)) = P^\varphi_{j(l)} \). Then for each \(x \in L \) the components of \(x \) in \(L_f(i(l)) \) and \(P^\varphi_{j(l)} \) are equal, i.e.,

\[
x(L_f(i(l)), \varphi^\varphi) = x(P^\varphi_{j(l)}, \psi^\varphi).
\]

Proof. This is a consequence of Theorem (A) in [10]. \(\square \)

We denote by \(\text{Con} L \) the set of all congruence relations on \(L \); this set is partially ordered in the usual way. \(R_{\min} \) and \(R_{\max} \) denote the least element of \(\text{Con} L \) or the greatest element of \(\text{Con} L \), respectively. For \(x \in L \) and \(R \in \text{Con} L \) we put \(x_R = \{ y \in L : yRx \} \).

From the well-known theorem concerning direct products and congruence relations of universal algebras and from the definition of the internal direct product decomposition of a lattice we immediately obtain:

3.2. Proposition. Let \(R(1) \) and \(R(2) \) be elements of \(\text{Con} L \) such that they are permutable, \(R(1) \land R(2) = R_{\min} \), \(R(1) \lor R(2) = R_{\max} \). Then the mapping

\[
\varphi : L \rightarrow s^\varphi_{R(1)} \times s^\varphi_{R(2)}
\]

defined by

\[
\varphi(x) = (x^1, x^2), \quad \text{where} \quad \{ x^1 \} = x_{R(2)} \cap s^\varphi_{R(1)}, \{ x^2 \} = x_{R(1)} \cap s^\varphi_{R(2)}
\]

is an internal direct product decomposition of \(L \) with the central element \(s^\varphi \).

3.3. Definition. Congruence relations \(R(1) \) and \(R(2) \) on \(L \) are called interval permutable if, whenever \([a, b] \) is an interval in \(L \), then there are \(x_1, x_2 \in [a, b] \) such that \(aR(1)x_1 \land R(2)b \) and \(aR(2)x_2 \land R(1)b \).

The following assertion is easy to verify (cf. also [1], p. 15, Exercise 13).

3.4. Lemma. Let \(R(1) \) and \(R(2) \) be interval permutable congruence relations on \(L \). Then

(i) \(R(1) \lor R(2) = R_{\max} \);
(ii) \(R(1) \) and \(R(2) \) are permutable.

If the relation (2) from Section 2 above is valid, then in view of 2.1, it suffices to express this fact by writing

\[
L = (s^\varphi) \prod_{i \in I} L_i,
\]

where \(L_i \) has the same meaning as \(L_f(i) \) in (2) of Section 2.
Also, if $x \in L$, then instead of $x(L^+, s^A)$ we write simply $x(L_i)$.

If A, B are elements of $F(L, s^0)$ and $x \in L$, then the symbol $x(A)(B)$ means $(x(A))(B)$.

Let the system (F, L, s^0) be partially ordered by the set-theoretical inclusion.

3.5. Lemma. $F(L, s^0)$ is a Boolean algebra.

Proof. This is a consequence of Proposition 3.14 in [9].

It is obvious that if L is bounded, then $F(L, s^0)$ is isomorphic to the center of L.

Further, it is easy to verify that if $A, B \in F(L, s^0)$ and $L = (s^0)A \times B$, then B is the complement of A in the Boolean algebra $F(L, s^0)$; we denote $B = A'$.

4. α-COMPLETENESS AND INFINITE DISTRIBUTIVITY

Let α be an infinite cardinal. In this section we suppose that L is a lattice belonging to τ_α and that s^0 is an element of L.

Let I be a set with card $I = \alpha$ and for each $i \in I$ let L_i be an element of $F(L, s^0)$. Thus for each $i \in I$ we have

$$L = (s^0)L_i \times L'_i.$$

For each $x \in L$ and each $i \in L$ we denote

$$x_i = x(L_i), \quad x'_i = x(L'_i).$$

Let $x, y \in L$ and $i \in I$. We put xR_ia if $x_i = y_i$, similarly we set xR_iy if $x_i = y_i$. Then R_i and R'_i belong to $\text{Con} L$, $R_i \land R'_i = R_{\text{min}}$ and $R_i \lor R'_i = R_{\text{max}}$. Moreover, R_i and R'_i are permutable.

4.1. Lemma. Let $a, b \in L$, $a \leq b$. There exist elements x, y, x^i $(i \in I)$ in $[a, b]$ such that

(i) x^iR_ia for each $i \in I$;
(ii) yR'_ia for each $i \in I$;
(iii) $x = \bigvee_{i \in I} x^i$, $x \land y = a$ and $x \lor y = b$.

Proof. Let $i \in I$. There exist uniquely determined elements x^i and y^i in L such that

$$x^i \in aR_i \cap bR'_i, \quad y^i \in aR'_i \cap bR_i.$$
Hence
\[(x')_i = a_i, \quad (x')_i = b_i,\]
\[(y')_i = b_i, \quad (y')_i = a_i.\]

Then clearly
\[(2) \quad x^i \land y^i = a,\]
\[(3) \quad x^i \lor y^i = b.\]

Denote
\[x = \bigvee_{i \in I} x^i, \quad y = \bigwedge_{i \in I} y^i;\]
these elements exist in \(L\) since \(L\) is \(\alpha\)-complete. By applying the infinite distributivity of \(L\) we get
\[y \land x = y \land \left(\bigvee_{i \in I} x^i \right) = \bigvee_{i \in I} (y \land x^i) = \bigwedge_{i \in I} (y^i \land x^i).\]

For \(j = i\) we have \(y^i \land x^i = a\) (cf. (2)). Hence for each \(i \in I\) the relation
\[\bigwedge_{j \in I} (y^j \land x^j) = a\]
is valid. Thus
\[(4) \quad y \land x = a.\]

Further we obtain
\[x \lor y = x \lor \left(\bigwedge_{i \in I} y^i \right) = \bigwedge_{i \in I} (x \lor y^i) = \bigvee_{i \in I} (x^i \lor y^i).\]

For \(j = i\) we have \(x^i \lor y^i = b\) (cf. (3)). Hence
\[\bigvee_{j \in I} (x^j \lor y^j) = b\]
for each \(i \in I\). Therefore
\[(5) \quad x \lor y = b.\]

The definition of \(x\) and the relations (4), (5) yield that (iii) is valid. Now, in view of the definition of \(x^i\), the condition (i) is satisfied. Let \(i \in I\); then \(y^i \land a\). Since \(y \in [a, y']\), we obtain \(y^i \land a\). Thus (ii) holds. \(\square\)
By an argument dual to that applied in the proof of 4.1 we obtain:

4.2. Lemma. Let \(a, b \in L, a \leq b \). There exist elements \(z, t, z' \ (i \in I) \) in \([a,b]\) such that

(i) \(z'R_i b \) for each \(i \in I \);
(ii) \(tR_i' b \) for each \(i \in I \);
(iii) \(z = \bigwedge_{i \in I} z', z \vee t = b \) and \(z \wedge t = a \).

4.3. Lemma. Let \(a, b, x \) and \(x', i \in I \) be as in 4.1. Suppose that \(u, v \in \[a,x]\), \(u \leq v \) and \(uR_i'v \) for each \(i \in I \). Then \(u = v \).

Proof. By way of contradiction, assume that \(u < v \). From the definition of \(x \) we conclude that

\[
u = u \vee (v \wedge x) = u \vee \left(\bigvee_{i \in I} x' \right) = \bigvee_{i \in I} (u \vee (v \wedge x')).\]

Hence there exists \(i \in I \) such that \(u < u \vee (v \wedge x') \). From \(aR_i x' \) we obtain

\[
u = u \vee (v \wedge x') = uR_i (u \vee (v \wedge x')).\]

whence \(uR_i (u \vee (v \wedge x')) \). At the same time, since \(u \vee (v \wedge x') \) belongs to the interval \([u,v]\) and \(uR_i'v \), we get \(R'_i (u \vee (v \wedge x')) \). Therefore \(u = u \vee (v \wedge x') \), which is a contradiction. \(\Box\)

Analogously, by applying 4.2 we obtain

4.4. Lemma. Let \(a, b \) and \(z \) be as in 4.2. Suppose that \(u, v \in [z,b], u \leq v \) and \(uR_i'v \) for each \(i \in I \). Then \(u = v \).

4.5. Lemma. Let \(a, b, x, y, z \) and \(t \) be as in 4.1 and 4.2. Then \(t = x \) and \(z = y \).

Proof. a) We have

\[
t = t \wedge b = t \wedge (x \vee y) = (t \wedge x) \vee (t \wedge y).
\]

The interval \([t \wedge x,x]\) is projectable to the interval \([t,t \vee x]\) and \([t,t \vee x] \subseteq [t,b]\).

Hence in view of 4.2, \((t \wedge x)R'_i x \) for each \(i \in I \). Thus according to 4.3, \(t \wedge x = x \) and therefore \(t \geq x \).

b) Analogously,

\[
y = y \vee a = y \vee (t \wedge z) = (y \vee t) \wedge (y \vee z).
\]
The interval \([y \land z, y]\) is protectable to the interval \([z, z \lor y]\) and \(y \land z, y \subseteq [a, y]\). Hence in view of 4.1, \(z \in R_i(z \lor y)\) for each \(i \in I\). Then by applying 4.4 we get \(y = z \lor y\). whence \(z \geq y\).

\(c)\) Since \(L\) is distributive, if either \(t > x\) or \(z > y\) then \(t \land z > a\), which is impossible in view of 4.2 (iii). Thus \(t = z\) and \(x = y\). \(\square\)

5. THE RELATIONS \(R\) AND \(R'\)

We apply the same assumptions and the same notation as in the previous section. If \(a, b \in L\), \(a \leq b\) and if \(x, y\) are as in 4.1, then we write:

\[x = x(a, b), \quad y = y(a, b)\]

Let \(p, q \in L\). We put \(p \in R q\) if

\[x(p \land q, p \lor q) = p \lor q\]

Further we put \(p \in R' q\) if

\[y(p \land q, p \lor q) = p \lor q\]

Thus \(p \in R q\) if and only if \(p \in R_i q\) for each \(i \in I\). Hence we have

5.1. Lemma. \(R'\) is a congruence relation on \(L\).

In view of the definition, the relation \(R\) is reflexive and symmetric.

5.2. Lemma. Let \(p, q \in L\). Then the following conditions are equivalent:

(i) \(p \in R q\).

(ii) There exists no interval \([u, v]\) \(\subseteq L\) such that \([u, v] \subseteq [p, \land q, p \lor q]\), \(u < v\) and \(u \in R_i v\) for each \(i \in I\).

Proof. Denote \(p \land q = a\), \(p \lor q = b\). Let (i) be valid. Then in view of 4.2, the condition (ii) is satisfied. Conversely, assume that (ii) holds. Put \(x(a, b) = x\), \(y(a, b) = y\). If \(y > a\), then by putting \([u, v] = [a, y]\) we arrive at a contradiction with the condition (ii). Hence \(y = a\). Then 4.1 yields that \(x = b\), whence (i) is valid. \(\square\)

5.2.1. Corollary. Let \(a_1, a_2, b_1, b_2 \in L\), \(a_1 \leq b_1 \leq b_2 \leq a_2\), \(a_1 \in R a_2\). Then \(b_1 \in R b_2\).

5.3. Lemma. Let \(a_1, a_2, a_3 \in L\), \(a_1 \leq a_2 \leq a_3\), \(a_1 \in R a_2\), \(a_2 \in R a_3\). Then \(a_1 \in R a_3\).
Proof. Suppose that \([u, v] \subseteq [a_1, a_2]\) and \(uR'v\). Denote

\[
\begin{align*}
 &u_1 = u \land a_2, &v_1 = v \land a_2, &u_2 = u \lor a_2, &v_2 = v \lor a_2, \\
 &s = v_1 \lor u.
\end{align*}
\]

Thus \(u \leq s \leq v\). Hence if \(u < v\), then either \(u < s\) or \(s < v\).

It is easy to verify that \([u, s]\) is projectable to a subinterval of \([a_1, a_2]\) (namely, to the interval \([v_1 \land u, v_1]\)). Hence \((v_1 \land u)R'v_1\) and thus \(v_1 \land u = v_1\). Therefore \(u = s\).

Analogously we obtain the relation \(s = v\). Thus \(u = v\). According to 5.2, \(a_1R_a_2\). \(\square\)

5.4. Lemma. Let \(a_1, a_2 \in L\), \(s \in L\), \(a_1Ra_2\). Then \((a_1 \lor s)R(a_2 \lor s)\) and \((a_1 \land s)R(a_2 \land s)\).

Proof. If \([u, v]\) is a subinterval of \([a_1 \lor s, a_2 \lor s]\), then \([u, v]\) is projectable to the interval \([a_2 \land u, a_2 \land v]\) and this is a subinterval of \([a_1, a_2]\). Hence in view of 5.2, if \(uR'v\), then \(u = v\). Therefore \((a_1 \lor s)R(a_2 \lor s)\). Similarly we verify that \((a_1 \land s)R(a_2 \land s)\). \(\square\)

5.5. Lemma. The relation \(R\) is transitive.

Proof. Let \(p_1, p_2, p_3 \in L\), \(p_1Rp_2, p_2Rp_3\). Denote

\[
\begin{align*}
 &p_1 \land p_2 = u_1, &p_2 \land p_3 = u_2, &u_1 \land u_2 = u_3, \\
 &p_1 \lor p_2 = v_1, &p_2 \lor p_3 = v_2, &v_1 \lor v_2 = v_3.
\end{align*}
\]

In view of 5.4 we have \(p_1R_p_1 \land p_2\), thus \(p_1Ru_1\). Analogously we obtain \(p_2Ru_2\). The interval \([u_3, u_1]\) is projectable to some subinterval of \([u_2, p_2]\), hence \(u_3Ru_1\). Similarly we verify that \(p_1Ru_1\) and \(v_3Ru_1\). Thus \(u_3Ru_3\) by 5.2.1. Since \([p_1 \land p_2, p_1 \lor p_2] \subseteq [u_3, v_3]\), 5.2 yields that \(p_1Rp_3\). \(\square\)

From 5.4 and 5.5 we infer

5.6. Lemma. \(R\) is a congruence relation on \(L\).

5.7. Lemma. \(R \land R' = R_{\min}\), \(R \lor R' = R_{\max}\) and \(R, R'\) are permutable.

Proof. In view of 5.2 we have \(R \land R' = R_{\min}\). Let \(a, b \in L\), \(a \leq b\). Let \(x\) and \(y\) be as in 4.1. Then we have

\[
\begin{align*}
 &aRx, &aR'y, \\
 &x \land y = a \land x \lor y = b. &Thus in view of the projectability we obtain
\end{align*}
\]

\[
\begin{align*}
 &aR'b, &yRb.
\end{align*}
\]

Hence \(a(R \lor R')b\). From this we easily obtain \(R \lor R' = R_{\max}\). Further, from (1), (2) and 3.4 we conclude that \(R\) and \(R'\) are permutable. \(\square\)
Proof of Theorem 1. Let \(L \in \mathcal{L}_a \) and \(s^0 \in L \). Let \(\{L_i\}_{i \in I} \) be a subset of \(F(L, s^0) \) such that \(\text{card} I < \alpha \). First we verify that \(\bigvee_{i \in I} L_i \) exists in the Boolean algebra \(F(L, s^0) \). Let us apply the notation as above.

Consider the lattices \(s_R^0 \) and \(s_R^1 \). According to 5.1, 5.6, 5.7 and 3.2 we have

\[
L = (s^0)_R \times s_R^1.
\]

According to the definition of \(R' \) we obviously have

\[
s_R^0 = \bigcap_{i \in I} L_i;
\]

Then (3) and (4) yield

\[
s_R^1 = \bigwedge_{i \in I} L_i;
\]

Further, in view of the definition of \(R \), \(L_i \subseteq s_R^0 \) for each \(i \in I \). Let \(X \in F(L, s^0) \) and suppose that \(L_i \subseteq X \) for each \(i \in I \). Put \(Y = X \cap s_R^0 \). Then \(Y \in F(L, s^0) \) and \(L_i \subseteq Y \) for each \(i \in I \). Moreover, \(Y \) is a closed sublattice of \(L \).

Let \(p \in s_R^0 \). Put \(a = p \wedge s^0 \) and \(b = p \vee s^0 \). Thus \(a, b \in s_R^0 \). Hence \(s_R^0 \subseteq R \). In view of the definition of \(R \) there exist \(x^i \in [s^0, b] \) (\(i \in I \)) such that \(x^i \in L_i \) and \(\bigvee_{i \in I} x^i = b \).

Then all \(x^i \) belong to \(Y \); since \(Y \) is closed, we get \(b \in Y \). By a dual argument (using Lemma 4.2) we obtain the relation \(a \in Y \). Hence, by the convexity of \(Y \), the element \(p \) belongs to \(Y \). Therefore, \(s_R^0 \subseteq Y \). Thus

\[
s_R^0 = \bigvee_{i \in I} L_i.
\]

Further, we have to verify that each subset of \(F(L, s^0) \) having the cardinality \(\leq \alpha \) possesses the infimum. But this is a consequence of the just proved result concerning the existence of suprema and of the fact that each Boolean algebra is self-dual. \(\square \)

5.8. Corollary. Under the assumptions as in Theorem 1 and under the notation as above we have

\[
L = (s^0) \left(\bigvee_{i \in I} L_i \right) \times \left(\bigwedge_{i \in I} L_i \right).
\]

Proof. This is a consequence of (3)—(6). \(\square \)
are elements of the element A in the set $F(L,i)$. We denote $\text{fac} \, C$ is a relative round sum of the element A in the set $F(L,i)$. To use Theorem 1 and apply the method which is analogous to the W"{o}rl of the proof of Cantor-Bernstein Theorem, we denote A in $F(L,i)$. Then A is isomorphic to L. TSiene exists a homomorphism ϕ onto D. Put $1 = i$, by we define

$$\Delta H \equiv \phi(1)$$

each $n \in \mathbb{N}$. Hence,

$$A_{n-1} \equiv l \quad \text{for each } l \in \mathbb{N},$$
e: \leq is the relation of isomorphism between lattices. By induction, we can verify that $A_n \in F(L,i)$ and

$$l_{n+1} \equiv A_{n+1} \quad \text{for each } n \in \mathbb{N}.$$}

Then (2) yields

$$L_{n-2} \equiv l_{n-2} \quad \text{for each } n \in \mathbb{N}$$

$1 \leq i \leq m \neq 2$ are distinct positive integers. Then

$$L_{n-2} \equiv \{s^i\}.$$
If \(L \) is a Boolean algebra, then each interval of \(L \) is isomorphic to a direct factor of \(L \). Further, each Boolean algebra is infinitely distributive and contains the least element. Hence Theorem 2 yields as a corollary the following result:

6.5. Theorem. (Sikorski [13]; cf. also Sikorski [14] and Tarski [15].) Let \(L_1 \) and \(L_2 \) be \(\sigma \)-complete Boolean algebras. Suppose that
(i) there exists \(a_2 \in L_2 \) such that \(L_1 \) is isomorphic to the interval \([0, a_2]\) of \(L_2 \);
(ii) there exists \(a_1 \in L_1 \) such that \(L_2 \) is isomorphic to the interval \([0, a_1]\) of \(L_1 \).

Then \(L_1 \) and \(L_2 \) are isomorphic.

References

Author’s address: Ján Jakubík, Matematický ústav SAV, Grešíkova 6, 040 01 Košice, Slovakia, e-mail: musavke@mai1.saske.sk.