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Summary. In the present paper integral cbntinuity theorems for solutions ‘of stochastic evolu-
tion equations of parabolic type on unbounded time intervals are ‘established. For this purpose,
the asymptotic stability of stochastic ‘partial differential equations is investigated, the results
obtained being of independent interest. Stochastic evolution equations are treated as equations
in Hilbert spaces within the framework of the semigroup approach.
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INTRODUCTION

The present paper is intended as an immediate, but in principle self-contained,
continuation of our paper [10].

First, let us recall some notation. For Banach spaces V, Z we denote. by .S,P(V, Z)
the space of all bounded linear operators from V to Z; I?(Q; V) (p € [1, )) denotes
the space of all V-valued Bochner measurable functions on a probability space
(@, #,P), for which E|f|} = [qo |f|§ dP < 0. We set |f],» = (E[f]?)"?; we
will omit the subscript V if there is no danger of confusion. The norm of the space
I?(Q) will be denoted by |-|,. €(I; V) stands for the space of all -valued -continuous
functions on the interval I. If I is compact, we endow this space with the norm H f "g, =
= sup {||f(?)||> t € I}; the same norm is considered in the space %,(I; V) of bounded
functions from €(I; V).

Given a Hilbert space V, then J,(V) will denote the space of all Hilbert-Schmidt
operators in ¥, endowed with the norm |4 [ys = (tr(4*A4))*/2.

In the sequel we will adopt the following assumption (the assumptions are denoted
in accordance with [10]):

(I) H, Y are real separable Hilbert spaces; (2, #, (#,),P) is a stochastlc basis,
w(t) an (#,)-adapted Wiener process in Y with a nuclear covariance operator W, B(t)
an (#,)-adapted cylindrical Wiener process in Y; p 2 2.
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In [10] we established integral continuity theorems for mild solutions of stochatic
differential equations in H with a small parameter a = O:

1 dx,(f) = (A x,(t) + a,(t, x,(1))) dt + b,(t, x,(£)) dw(t), x,0) = ¢

The operator A is assumed to be an infinitesimal generator of a (C,)-semigroup
S(t) on H. Let the coefficients a,, b, be Lipschitzian. Under some assumptions
we have shown that x, — x, in 4([0, T]; I’(2; H)) for all T > 0. In the finite-
dimensional case it is known that

sup {[x.() = x(®),, t20} -0
holds provided the solution x, is asymptotically stable (in a sense which will be made
precise later), cf. [11], Th. 3.
Our aim is to derive analogous results on an infinite time interval for some classes
of stochastic evolution equations. The main result reads as follows: Assume the

coefficients of the equation (1) to be uniformly integral continuous in «, i.e. suppose
thatif 0 < ¢t; < t,, then

lim (32 S(t, — s) [a(s + to, X) — ao(s + 1o, x)]ds =0,
a=+0+

lim 32 (tr {B,(s + to, X) W(b(s + t,, x))*})”?ds = 0
a=0+

uniformly in t, € R, and x € H; we have set b,(r, x) = b,(r, x) — by(r, x). Then we
have:

Theorem. Let S(t) be continuous in the norm topology of £(H) for t > 0. Then
X, = Xo in €([to, ©); IX(2; H)), o«— 0+

provided x,(to) — Xo(ts) in IP(Q; H), and the limit solution is bounded and
asymptotically stable in I?(Q; H). (Here t, 2 O is arbitrary and x, denotes the
mild solution to (1).)

We cannot apply directly the method adopted in [11], since the results obtained
in [10] do not imply that x, — x, in €([t,, t, + T]; I?(R; H)) uniformly with respect
to t, = 0 and to the initial condition, which is needed in the above mentioned
method. The difficulties appear when we try to estimate uniformly the term

) ‘ Z fi_y [xo(s) = xo(ti=1)], ds

where {t,}/_, is a partition of the interval [to, 2, + T]. If dim H < oo then this

problem is solved easily, because (see [5], Th. 5.2.3) [xo(s) — xo(ti=1)|, <

< C(s — t;-4)""* (1 + [xo(to)[ ), and the constant C depends only on p, T and on

the constant in the estimate of linear growth of the coefficients of the equation (1).
The paper is organized as follows. In Section 1 the desired uniform estimate of

the term (2) is obtained for a wide class of equations; this estimate is then used to
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prove a theorem on partial averaging. Section 2 is devoted to the investigation of the
asymptotic stability of the equation (1). The results of the first two sections are used
in Section 3 to prove theorems on integral continuity on unbounded intervals; to
illustrate the theory, three examples are given. In Appendix an example of a snmple
hyperbollc equation to which our theory is inapplicable is discussed.

Theorems, lemmas and formulae are numbered independently in each section,
the sections number is omitted when reference is made to theorems, lemmas or
formulae of the same section.

1. UNIFORM AVERAGING ON BOUNDED TIME INTERVALS

Let us cons1der equatxons

O o) = (A0) + oo o) dt + ot o) dw(),
(2) dy(t) = (A y(t) + a1, ¥(2))) dt + o(t, (1)) dB()
in the space H, assuming: , ‘
(Ul) : Ry x H-> H, ¢:R, x H— #(Y, H) are measurable functions such
that there exist constants K, K, satisfying: for every t€ R., x, y € H we have
Jatt, 9] + oo, 0] < K1+ ),
et x) = a(t, Y] + [o(t, x) = o(t, )] < Ks]x — »f .
(U2) A: D(4) — H generates a (C,)-semigroup .S{f) on H such that S(-)e
€ 6((0, +o0); L(H)) (i.e. S() is contmuous in the umform operator topology for

t>0).
(U3) 4: D(A) - H generates a (C,)-semigroup S(t) on H such that

5 [S(®)]isds < +o0 forall T20.
Remark 1. (i) The assumption (U2) is satisfied if S(¢) is a semigroup such tha_t
Rng S(t)  D(4) for each t > 0 (i.e. if the function S(+) x is differentiable on (0, + o)

for every x € H), cf. [2], Prop. 1.1.10. In particular, (U2) holds for holomorphic
semigroups. Let us note that the hypothesis (U2) implies

3 lim jg [S(s + v) — S(s)| %, ds = O

for every T > 0, f > 0, by the dominated convergence theorem
(i) The assumption (U3) implies (U2), see e.g. [1], Th. 4.4.1. Moreover, we can
show that S(-) e €((0, + o0); J,(H)) and

) Tim [7 (s + o) ~ S(s)[lis ds = 0

for every T > 0.
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Indeed, let us choose ¢ > O arbitrarily, let {;};%, be an orthonormal basis of H,
0<6=5s,t< T Then

I ~ SO = 3 106) - S6 el = S50 - s6) el +

1

[

* i=§+ 1"[S(t - 6) - S(S - 5)] S(&) eiﬂz =

< SISO - s6 el + € 3 156)el?,

where we have set Q = 2 sup {[|S(r)|?; 0 < r < T}. The second term on the right-
hand side of the inequality tends to 0 as J — + . For every J € N, using the strong
continuity of the semigroup S(t), we can find # > 0 such that |t — 5| < n implies
I[S(2) — S(s)] es)®* = (2J) e, i=1,...,J. This shows that for arbitrary 9,
0 < & < T, we have S(-) e 4([6, T]; J.,(H)).

The proof of the formula (4) is analogous, based on the estimate

T [S(s + v) — S(s)|2s ds gz [T1S() [S() — 1] el dr +

+ 5 IISE) - 1150) el ar < QTii I[SG) 1] e +

@

+(@+DfF ¥ [s)eldr.

=J+1

The fdllowing easy lemma plays a key role in the present section.

Lemma 1.( i) Let the hypotheses (I), (U1), (U2) be satisfied. Then for every T > 0,
n >0, t, > O there exists 6 > O such that for all tyeR,, s,t€ [ty + 1, to + T]
and every solution ¢(t) of the equation (1) satisfying ¢(t,) € I7(Q; H) we have:
if ]t - s| < &, then

lo() = e($)> = (1 + Jolto)]l,) 7 -
(ii) Moreover, if the assumption (U3) is fulfilled, then the same assertion holds
for the equation (2) as well.

Corollary 1. (i) Under the assumptions (I), (U1), (U2) we have: for every T > 0
and n > 0 there exists a partition {t;}}-, of the interval [0, T] such that for all
to€ R, and any solution ¢(t) of the equation (1) satisfying ¢(t,) € IP(Q2; H) the
following estimate holds:

tz;‘::ﬁ::::“ lo(t) — o(to + ), dt < (1 + [o(to)],) 7 -

194



(i) Moreover, if the assumption (U3) is fulfilled, then the same assertion holds
also for the equation (2), furthermore

S it IS = Ol ) = wlto + = d 5 (1 + Gt} -

Remark 2. It will be obvious from the proof that é depends only on T, t,, 1, p, K|,
trW and on the function S(+): [0, T] - #(H) (and on the function |S(+)[us:
(0, T] - R if the equation (2) is treated), thus it is independent of the particular
form of the coefficients «, ¢ and of the process w(t); so the derived estimates hold
simultaneously for appropriate families of equations.

Remark 3. In Appendix we show that Lemma 1 is no longer valid if the semigroup
S(t) is assumed to be only strongly continuous.

Remark 4. Let us notice that, in the situation of Lemma 1, there exists a constant C*
depending only on K, T, p, trW and on M = sup {|S(r)[; 0 < r < T} and such
that for all t, € R, and any solution ¢ of the equation (1) satisfying ¢(t,) € I?(Q; H)
we have

© s o(9), < €1 + Jo(t)l,)

toSt<to+

The estimate (5) holds also for the solutions of the equation (2) if (U3) is fulfilled;
in this case the constant C* depends on K, p, T, M and on the function I[S()” HS*

Proof of Lemma 1. Choose T > 0, 7, €(0, T), t, € R, arbitrarily. Let n > 0,
to<t =7+t Ss=t=ty+ T Let us first consider the equation (1). By the
definition of the mild solution we obtain

(1) — o(s) = [S(t = to) — S(s — )] @(to) +

+ fio [S(t = 7) = S(s = )] alr, #(r)) dr +

+ 2, [S(t = r) = S(s = r)] o(r, o(r)) dw(r) +

+ [1S(t — r)a(r, o(r)) dr + i S(t — 1) o(r, @(r)) dw(r) =
=l +...+1s.

Using the uniform continuity of S(+) on [t, T] in the uniform operator topology
and the formula (3) we find § > 0 such that for s, te [t;, to + T, s<t<s+3$é
we have

(6) IS (t - to) -8 (5 - tO)"s’(u) =1,
) IS+t =) - SOl d s
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Let [t —s| <, then

1], = [S(t = t6) = S(s = )] [le(to)]l, < [@(to)], 15
ils S 52 180 = 7) = S(s =~ ] ol @), dr <
SK oS+ 1 —5) = SE)| (1 + [ols — v)],)dv <
| S K,(l + Y (1 + [lo(to)],) (s — to)® 117,
S IIS(U +t —s) = ()| dv)'’” <
S K1+ e+ olto)],) T V7 n,
[Ealls = 2 ISC = r) alr, ()], dr <
< MKI(I +C*(1 + [[(p(to)[],) (t—y5).
Using Prop 1.9.in [7] we obtain
sl s ©(p) (W) (s — 1)1
(JL I[SC = 1) = S(s = )] a(r, (M)} dr)”" =
= Cp) (W) 2 T2 1P K(1 + C*) (1 + [olto)],) -
L(Je S + 1 = 5) — S()|Pdv)t’r < '
S ) (L4 COK T W) 2 (1 + [olto)])n
Itsl, 5 €) (e e = sy,
LIS = DI ol o)l a0
< C(p) (trw)> MK, (1 + C*) (1 + [e(to)],) (t — s)”2 '

Combining all the estimates we see that |o(t) — ¢(s)], £ Q(n + 6 + §'/%).

.(1 + |l@(t)|,), where Q depends only an K, T, p, M, trW. Hence it is obvious how
to find 6 with the desired properties.

Now, let us consider the equation (2). Notice that the estimates of the terms
I,,1,,1, do not depend on the type of the Wiener process, thus we have again
[y + I, + L], < Q(n + 8) (1 + [W(t,)],)- Further, acording to (4) we choose
d > 0so that |t — s| < § implies not only (6), (7) but also

® - FISe+ =5 - SEksdo s 0.

Relying on Prop. 1.3 in [6] we can estimate
251, < €(6) (1 1(e = ) o, W) clyz )2
< C() (5 150 = )i Jotr ()] &' <
<K, C(p)(1 + C*) (1 + |W(to)],) (3 |S(2)])3s do)*’ 5
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using (8) and the proposition quoted above we obtain
I, = <o) (5%, | H[S(t — 1) = 5(s = N o(r, ¥(r) fils2 dr)ir® <
< C(p) (J, [5G = ) = 5 = Plis (. Q) H dr)2 <
S K C(p) (1 + C*) (1 + [Y(to)],) -
TS + 1 = 5) = S(v) s do)'* <
S K Clp) (1 + C) (L + [¥(to)]l) n -

The proof of Lemma is complete, we proceed to prove the statement (i) of Corollary.
Set 7o = 0 and 7, = (2(1 + C*))™' », then we have

" Jo(t) = olto)],dt < (1 + CH) (1 + o(tol,) 11 <
= 31 + o(to)] )7 -

Next we choose an arbitrary partition {r,}}-, of the interval [1;, T] with the mesh
8 > 0, where § is found by Lemma 1 so that |t — 5| < 6, s, te[1y, T], implies

lo(®) — o), = (1 + ()], (2T)™" n

The statement (ii) can be proved analogously. Q.E.D.

We use Lemma 1 to establish a uniform version of Theorems 3, 5 in [10]. Such
a result will be needed in the course of the proof of the averaging theorem on the
infinite time interval. Let us adopt the following assumptions:

(II) Let a:R, x H—H, b:R, x H— 2(Y,H), ac[0,1],

be measurable functions satisfying: there exists a constant K such that for all te R,
x,y€ H, 2 €[0, 1] we have :

la.(t, 0)] + |21, 0)] < K, L
”a,(t, x) — a,t, y)” + ||b.(2, x) = b1, ¥)| £ KHx -y

(Vu) Suppose there exists 4, > 0 such that for all ¢, t, € R, we have: if 0 < ¢, <
<t, <t + 4, then

9) lim [2 S(t; — s) [al(s + to, X) — ao(s + to, x)] ds = 0,
a0+

(10) lim (2 (tr {b,(s + to, x) W(b(s + to, x))*})">ds = 0
a0+

uniformly in ¢, € R, and x € H; we have set b,(r, x) = b,(r, x) — bo(r, x).
(Vcu) The same hypothesis as (Vu), only (10) is replaced by

lim f32 |b(s + t5, x)[Pds = 0
a0+
uniformly in ty€ R, and x€ H.
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Proposition 1. Let the assumptions (I), (IIT), (Vu), (U2) be fulfilled. Then for
every T> 0 and n > O there exists ay > 0 such that for all t,e R, we have: if
x,(), a € [0, 1], are mild solutions of the equations

(11) dx,(£) = (Ax,(t) + a,(t, x,(1))) dt + b(¢, x,(t)) dw(z)
with initial conditions x,(t,) = xo(t,) € (2, #,,, P; H) and if ae(0,a,] then
o2 xd®) = %o, = 11+ [xo(to)],)

If the hypotheses (1), (III), (Vcu) and (U3) are satisfied then the same assertion
is valid also for the mild solutions of the equations

(12) dx,(t) = (Ax,(t) + a,(t, x,(1))) dt + b,(¢t, x,(t)) dB(t) .

Proof. Under the present strengthened assumptions the proofs of Theorems 3,5
in [10] can be carried out as uniformly as we need. Let us demonstrate this fact by
estimating the term

R = [ S(t — s) [a.(s, x,(s)) = ao(s, xo(s))] ds .

Fix n > 0, T> 0, t, € R, arbitrarily. Let {r,}}-, be the partition the existence
of which is ensured by Corollary 1. Set t; = t, + 15, i =0, ..., N, (t) =
= max {i; t; £ t}, o(t) = max {t;; t;, < t}. In the same way as in [10] we split

R =[50 S(t — 5) [a.(s, x.(5)) — aofs, xo(s))] ds +
+ 5 8(t — 5) [au(s, x,(s)) — aas, xo(s))] ds +

+ :Egﬂi-, S(t = s) [au(s, %0(5)) — @u(s, xo(t:-1))] ds +
+:th .‘.::-x S(t - s) [aa(s, xO(ti~1)) - ao(s, xO(ti—l))] ds +

+:§ﬁi-, S(t — ) [ao(s, xo(ti=1)) — ao(s, xo(s))] ds = Iy + ... + I5.

The estimate of the terms I, I, requires no change; further,

I3[, é:Z)l Jei, 182 = s)]| [laa(s, xo(s)) — auls, xo(ti-1))], ds <

< MK Y1, o) = 5ol = MK(L + [sa(i)]) 7

The same estimate holds for [Is],. By the assumption (Vu) we can find a; > 0 such
that for a€ (0, %], i = 1,..., N and for every xe H

".ﬂ:-: S(ti - s) [aa(s5 x) - ao(s, x)] ds” =
= [|f3i_, S(ri = ) [au(s + to, x) — ao(s + to, x)] ds| < n/N,
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SO

If5i-, S(t: = s) [au(s, Xo(ti-1)) = ao(s, xo(t:-1))] ds] < n/N

almost surely, thus |I,], < M.
The estimates of the stochastic integrals can be modified in an analogous way.
QED.
To assume the convergence in (9), (10) to be uniform with respect to x e H is
rather restrictive. Let us try to use instead of (Vu) only the assumption
(Vlu) There exists 4, > 0 such that for all #,,t,€ R, and every L > 0 we have:
if0<1t <t, <t + 4, then (9), (10) hold uniformly in t,€ R, and in xe &, =
= {deH; |d|| £ L}.
In the same way we derive an assumption (Vlcu) from (Vcu).

Proposition 2. (i) Let the assumptions (I), (IIT), (U2), (V1u) be fulfilled. Suppose
K g I?(2; H) is such that the set M = {[lop(t)]|%; t = to 2 0, (¢(t))e2s, is @ mild
solution of the problem

(13) do(t) = (A o(2) + ao(t, (t))) dt + bo(t, ¢(t)) dw(t)

with ¢(t,) € K}
is uniformly integrable.

Then for all T > 0, n > O there exists ay > O such that for any t,€ R, and for
every mild solution x,(t), 2 € [0, 1], of the problem (11) we have: if x € (0, a,] and
if x,(to) = Xo(to) €K then

sup [x,(t) = xo(t)]|, < n.
te[to,to+ T] .

(ii) Let the hypotheses (I), (III), (U3), (Vlcu) be satisfied. Suppose K < I?(Q; H)

is such that the set M = {Y()|?; t =t 20, (Y(t))as is a mild solution of

the problem

aw(t) = (AW(0) + aolt, w(r))) dt + balt, ¥(t)) 4B()

with Y(t,) € K}
is uniformly integrable. Then the same assertion as in (1) holds for the mild solu-
tions of the equation (12).

Proof. First, let us notice that every &, -measurable function f€ K is an initial
condition of some solution of (13), thus [|f[|? € M. M is a bounded subset of L'(Q),
so there exists a constant F such that for all t,€ R, and every &, -measurable
feK we have ||f]|5 < F. ~

We can easily see that the only step to be modified in the above proof is the estimate
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of the term I,. Setting d,(s, X) = a,(s, x) — aq(s, x) and denoting by Aj the set
{we D [xo(te + - 1) (a))[] < L} we obtain . ‘

llhllp =M 2 [ii-. S(ri = s) als + to, xo(to + 1:-1)) as], =
EN: ”x(AL) In 1o ds"p "X(Q\AL) L‘ L sup} =

= Mi{J‘ .+ J,}

where M = sup {l S(t) |;ste [0, T]} and x(B) = x5 denotes the characteristic function
of a set B. Now, .
J; < 2MK|x QNAY) [, (U + [xo(to + Ti—y)]) ds],
< 2PMKT(Ex({[xo(to + iz )| > L} (1 + [xolto + i 1)[?)"/? .
By virtue of the uniform integrability of the set M we can find L > 0 such that for
every toe R, and all i = 1,...,N we have J; < (2N)™" 5. Let us fix this L. Then

by (Vlu) there exists @, > 0 such that for every t,eR, and i = 1,...,N and for
almost all w € {||xo(to + 7;-4)|| < L} the inequality

IS5, S(zi = 5) @(s + to, Xo(to + 7i-1) ()) dsf| < n/2N
holds, hence also Ji < (2N) 4. QE.D.

Remark 5. If the semigroup S(t) is holomorphic then the assumption (Vu) can be
weakened in accordance with the finite dimensional case. Proceeding as in the proof
of Lemma 3 in [10] we can derive the following result:

, Leta,: Ry x H— H, ae [0, 1], be measurable functions such that

(i) sup sup sup [|a (1, x)|| < +o0,
a xeH t20
(ii) forevery 0<t, <t, < + wehave
(14) lim [} [a,(t + to, x) — ao(t + to, x)]dt = 0
a=0+

uniformly in ¢, = 0 and in x € H. Let the semigroup S(t) be holomorphic. Then (9)
holds uniformly in t, = 0 and in x € H. If we assume (instead of (1)) that for every
L = 0 the estimate

sup sup sup [ad(t, x)" < 4o

« xedgp t
holds and that for every L2 O the limit passage in (14) is uniform with respect
to to 2 0 and x € &, then (9) holds uniformly in t, € R, and x € #,. (Recall that
we have denoted #, = {d € H; ||d| < L}.)
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As the last topic in'this section we consider the method: of partial averaging..As in
the case of ordinary differential equations (cf. [4]) many schemes of partial averaging,
with proofs only slightly different, can be formulated We content ourselves with
one of the simplest cases.

Let H;, i = 1, 2, be separable real Hilbert spaces, then the space ¢ = H; ® H,
endowed with the norm [(f, g)|» = (|f]Z, + “g”,,z)”2 is also Hllbert Let us
consider a system of equations (o > 0)

(15) dx;(1) = (A x3(t) + ai(t, xi(t), x2(1))) dt + bi(t, x3(1), x,f(t)) dw(t),
dx2(t) = (A, x2(1) + a2(t, xi(t), x2(t))) dt + b2(t, x1(1), x2(2)) dw(z),
%2(0) = @ ‘
xz(0) = @5 .

We assume that A;: D(4,) > H;, i = 1,2, are inﬁnitesirﬁal generators of (C,)-

semigroups S(f) on H;; ai: R, x # — H,, b,: R, x # — Z(Y, H,), are measur-

able and satisfy the usual Lipschitz type conditions: there exists. K > 0 such that
forallte Ry, (x, y), (u,v)e #, ac(0,1], i = 1,2 we have A
(1) Jailexy) - el o) + [bilex,3) - bl w )] <

K|y - (@),

Jai(z, 0,0)] + [bi(t,0,0)] =K.
As before, w(t) is a Wiener process with the nuclear covariance operator W in the
Hilbert space Y.

(A4;, A,): D(4,) ® D(A4,) » # generates a (C,)-semigroup on #, so if we treat

(15) as an equation in J#, then for every initial condition ¢, = (pg, @3) € I(Q; 5#)

there exists (by Ichikawa’s theorem, [7], Th. 2.1) a unique mild solution x,€
€ €([0, 0); I7(Q; #)).

Proposition 3. Let S, € ((0, ©); £(H,)). Suppose that there exists 44 > 0 such
that for all t;,t, € R, we have: if 0 < t, £t, £ t; + A, then

(17 hm In Si(t; — s) [as(s, x, y) — ao(s, x)]ds = 0,
(18) hm _[ (tr {[ba(s, x, ¥) = by(s, x)] .

. W[ba(s, x, y) — bo(s, x)]*})?*ds = 0

uniformly for (x,y)e #, where as: R, x Hy » H;, by: R, x H; - Z(Y, H,)
are measurable functions satisfying

lao(t, x) — ao(t, w)] + [Bolt, ) — bolt, u)] < K||x — u],
lao(t, O)f + [Bo(t, 0)] = K
forall t 20; x,ue H,.
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Let x, = (x}, x2) be mild solutions of the equation (15) with an initial condition
@0 = (9o, 93) € IP(Q; ), p = 2. Let y(t) be the mild solution of the equation

dy(t) = (4, ¥(t) + ao(t, (1)) dt + bo(t, (1)) dw(t),
¥(0) =a5.
Then for all T > 0 we have

lim sup "x‘(t) -y, =
a0+ 1e[0,T]

Proof. We will sketch the proof very briefly, because it differs only in technical
details from the considerations we have done before.

First, proceeding as in the proof of Lemma 1, we find a partition {1,-}’,7’=0 of the
interval [0, T] such that for all a € (0, 1] we have .

fai-s ""2(") - xz (- 1)”,, mdr = (1+ ”‘P0”p )1

The partition {r} can be chosen fine enough to ensure also

;N fi 1 ”y(r) - y(t: 1)”? H, dr =

(T,n > 0 are arbitrary but fixed a priori.) By the definition of a mild solution it
follows that

%a(8) = y()) = Jo Su(t = 7) [aa(r, x:(r), x2(r)) — ao(r, y(r))] dr +
+ §6 Sy(t = 7) [ba(r, x5(r), x2(r)) = bo(r, ¥(r))] dw(r) = Ry + R;.

Let us split R, into the sum

Ry = fo Su(t = ) [aa(r, x4(r), x2(r)) — ao(r, y(r))] dr +
+ [5© Sy(t — r) [as(r, xz(r), x2(r)) — ai(r, y(r), x2(r))] dr +

+ Z [, Su(t = ) [ai(r, y(r), x2(r)) — al(r, yi=1, x25-4)] dr +
+ Z In 1 l(t - r) [a:(r’ Yi-15 x:,i-l) - ao(r, yi_l)] dr +

+ an  Si(t = 1) [ao(r, yicy) = ao(r y(")]dr =1, + ... + .

Here 1(t), o(t) have the same meaning as in the proof of Proposition 1 and we have
set X7 -1 = X;(vi= 1), Yieg = ¥(7i=1)-
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Using the inequalities (16) we may derive in a well-known way the estimates

"Ilﬂp < C(t - o(t),

Il = € f6 [x(r) - ¥(")], dr,

I S €35 J00), %0) = Giets 51l dr 3

(1)
= C‘ZII::-I (I¥() = yizillpm, + [%2(r) = %2 1= 1] p.m,) dr < 2Cn,
”I 5 ”p sCn.
(We have denoted by C some constant depending only on K, T, trW, [ ¢,], and on
the function S,: [0, T] - £(H,).)

By (17) we may find «, > 0 such that for all a € (0, &], i = 1, ..., N and almost
all w € Q we have

(19) ”J.:;_x S1(Ti - ") [a:(r, Yi-1» xa,i-l) - ao(", yi—l)] d"”m = 71/N s

hence also ||[I,], < Cn. The estimate of the term R, can be obtained analogously.
QE.D.

Remark 6. We may establish the above results under the assumption that the
convergence in (17), (18) is uniform only in y € H,, if we suppose that

lag (£, %, Y)I + lIbg (& x, )| < K (1+]xllg,)

for t 2 0, (x, y) e #, ae(0, 1]. In this case we handle the integrals in terms like
(19) using the Lebesgue dominated convergence theorem with the majorant
const. [|y;-,[|” independent of «.

2. ASYMPTOTICAL STABILITY

In this section we will study the asymptotic behaviour of the equation

(1) do(t) = A o(t) dt + a(t, o(1)) dt + b(t, ¢(t)) dw(z),

where A stands for an infinitesimal generator of a strongly continuous semigroup
S(t) on H, a: R, x H—H, b:R, x H - (Y, H) satisfy the inequalities from
the assumption (U1), and w(¢) is a Y-valued Wiener process with a nuclear covariance
operator W. We will denote by ¢ the solution to the equation (1) with the initial
condition ¢**(s) = x. We give some sufficient conditions for the stability properties
(in the terms of Liapunov functionals) required in the next section to justify the
averaging on an infinite time interval.

Throughout the section we assume

? {Ax,x) < B||x|*, xeD(4),
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for some f e R. Note that (2) is. satisfied for a large class. of equations (including,
e.g., parabolic and hyperbolic problems). It also implies a.s. continuity of trajectories
of solutions of (1) (cf. [8], Prop. 3.8). Let €!*(R, x H) = %? be_the class of
real valued continuous functions on R; "X H with the fo]lowmg properties:

(3) o(t, y) is differentiable in ¢ for each y e D(4), and v,(t, y) is continuous
on R, x D(4) provided D(A) is equipped with the graph norm;

@ v(t, y) is twice Fréchet differentiable in y for each ¢, v),(t y) and v,(t, y) h
are continuous on R, x H for any he H. .

For ve %) we define
[Lv] (t, x) = (vx(t x), Ax + a(t, x)) +
+ 3 tr {b*(s, x) v(t, x) b(t, x) W},
X e)D(A) t > 0. We will use the followmg useful result by Ichikawa ([8], Corollary
34

Lemma 1. Let ve $.°? satisfy

Q)] [o(t, )] + [o,(8& Y)]| + lon(t »)] < Ka(1 + [|¥]]%)

for some Ky > 0,q > 0and all te[0,T], T> 0, ye H. Assume

(6) [(—g— + L)v] (t,x) S u(t,x), xeD(4), t>0

) t

for a function u continuous on R, x H such that |u(t, x)| £ Ko(1 + |x[|9). Then
o(t, 9*(1)) — v(s, x) < [:u(r, ¢**(r))dr +

+ [t (oy(r, 9°%(r)), b(r, **(r)) dw(r)> .

In particular, if u = 0, then v(t, ¢**(t)) is a supermartingale.
For ve 5% set

[Lav] (1, %, ») = Lo (t, x — ), Ax — Ay + a(t, x) — a(t, y)) +
+ 3 e {[b(t, x) — b(t, y)]* vt x — y) [B(t, x) — b(t, y)] W},
t>0, x,yeD(4).

Lemma 2. Let {: R, x R, — R be a measurable function satisfying
(7 |&(t, u) — &(t,v)| < Kiu — 0], u,veR,, te[0,T], T20
for some K1 > 0, &(,0) = 0, and let &(t, +) be éoncavefor all t. Assume
(8) [(8/ot + Ly v] (1, x,y) S &(t, o(t, x — y)), t>0, x,yeD(A)
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for some nonnegative v € 6, satisfying (5). Then
9 Eo(t, o (1) — o™(1) £ () | o
holds for all 0 <ss<tx, Y€ H, where Y stands for the solutwn of the equation
= &(t, ¥), y*(s) = v.
Proof. By (5), (7) we have
ol x — )] S Rell + [ofe + 1), myett, te[o)
for s&fnef(‘r > 0. Hence we may apply Lemma 1 to the functions v(t,x — y)e@s"2
(R x H x H),u(t, x,y) = &1, v(tx — y)) and to the H x H-valued process (¢**(t),
¢**(t)). We obtain ‘
(10) ) = Eolt () - *r(r)) S Eu(o, 0%0) — 0°(0) +
+ E L E(r o, 0*5(r) — 0V())) dr
for 0 £ s £ ¢ < t. By Jensen’s 1nequality it follows that
(11 W(t) < k(o) + 7 &(r, H(r)) dr .
Assume that (9) is false, i.e. h(t;) > Y*"*®*~(1,) for some t; > s. Since @™, g% €
e4([s, T); L'(2 H)), s < T, (see [7], [8]), we obtain’(using (5)) the continuity of
h(t) on [s, +o0). Hence we can find t*e[s,t,) such that h(r*) = y*Cx=n(1*)
and h(r) > Y= N(r) for t* < r S ty. It follows that '
) h(r) = 4@ 0(r) < fie |6 h(D) = & Yoo (D)) de <
S KL Jo (h(9) — 9o @) de, PSS,
and thus by Gronwall’s lemma h(t;) < ¢**®*~?(t,), which is a contradiction.

In Liapunov type statements on stability it is sometimes useful to relax the con-
dition on diﬁ‘ercntiability of v at zero. Set

iy = tf,"‘ = inf {t 2 s, ”(p’ "(t) ”'(t)ﬂ < 8}, s20,
x,yeH. '

Lemma 3. Let ¢ be the same as in Lemma 2, let v = 0 be a continuous function
on' R, x H satisfying the differentiability condltlons (3) (4) on R, x (D(A) {0}),
R, x (HN {0}) respectively, and let .

(12) ot )] + [t )] + ol )] Kr ,(1 + IMI“)
Uy]]gs,OgtgT,e>0,forsomeKT',>0andq>0
...Assume (8) for x, y e D(4), x + y, and

(13) T - +00 ‘almost surely for 6 -0+, x+y.
Then (9) is valid.
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Proof. Let n,: R, = [0, 1], § > 0, be nondecreasing functions with continuous
derivatives 7}, 3, ns(r) = 0 for r < 5[2, ny(r) = 1 for r = 6. Set v,(t, x) =
= ns([x[|?) (¢, x)- Obviously v,e €}**(R, x H) and the estimate (5) is fulfilled
with some K > 0, g > 0. Furthermore, by (2) and (8)

(14) [(5"— + L) v,,] (tx,9) Sw(t,x ~y), teRy, xyeD),

t

where u’ is continuous and such that [u’(t, x)| < Ry 5(1 + |x[?) for some K74 > 0,
p >0, u(t,x) = &t v(t, x)) for [x]| > 8. Consequently, applying Lemma 1
similarly as in the proof of Lemma 2, we obtain

Evs(t A T3 @0°5(t A 15) — 9(t A 1)) £

< Evy(0 A 73 9770 A T5) — 070 A 1)) +

+ E [25% ui(r, o>*(r) — ¢*(r)) dr
for0 < s g.a' £t 1 =1, [x — y| > 6, and hence

Ev(t A 5 07%(t A 15) — @™t A T5)) £

S Ev(a A 15 0™ (0 A 15) — 0"¥(0 A 1)) +

+ E (25 & o 0°70) - 0
Taking & — 0+ we obtain (11) by the dominated convergence theorem. Further
we can proceed identically as in the proof of Lemma 2 provided we show that the
function h(f) is continuous. For arbitrary R > 0 set Q,r = {we Q; [¢™*(t) -
—o(t)| 2R}, Qg =2\ Let s< T, A, te[s, T], e (0, R) be arbitrary.
Then for some K, > 0 we have

|n(f) - h(3)] <

< Ry (1 + RY){EJe**(t) — ¢**(W)] + E[o™(t) — o> (D[} +

+ E((u(t, (1) — 97(1)) + v(4, 9™(2) — ¢™(2))) -

(g0 2,0 QL ).
The first summand on the right-hand side tends to 0 whenever A — ¢ forany R, ¢ fixed

because ¢**, 9> € €([s, T]; L'(2; H)). So it is sufficient to prove that R, & can be
chosen such that the second summand may be arbitrarily small. But we have

lim P(2¢,) =0, limP(Q,z) =0
R— o0

=0+

by (13) and (1.5), respectively, the limit being uniform for t € [s, T] in both cases.
Furthermore, the continuity of v at (t, 0) together with (12) implies

o(t,x) £ C(1 + [x]9), xeH, te[0,T]
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for some C; > 0. Our assertion follows, as the second summand may be now
majorized by the term

{E(C2(2 + [o™(1) — 9™ ()" + [0™*(2) — o™ (D))} .
-{P(Qr,0) + P(2u,0) + P(2,) + P(27)}' |
and (1.5) may be used. Q.E.D.

Remark 1. If dim H < o, then (13) holds automatically (see [9], Lemma 2.2).
This, in general, is not true for infinite dimensional H; as an example we can take
the equation X = Ax, where A4 is the infinitesimal generator of the semigroup
S(t) x(e) = x(t + @), t = 0, ¢ > 0, in the space H = I*((0, + )). '

If the equation (1) is linear, i.e. a(t, x) = a(f), b(t, x) = b(f), then (13) is equi-
valent to

(15) S(t)x £0 forall x+0, t20.

The condition (15) is obviously satisfied for A self-adjoint with a compact resolvent,
in which case

S(t) x = Y exp (o) <x, &) e,

where {e;} is an orthonormal basis in H, o are reals. Furthermore, (15) clearly holds
if S(¢) is a group (¢ € R). These two cases cover the most usual stochastic (self-adjoint)
linear parabolic and hyperbolic equations. In the example below we establish (13}
for more general hyperbolic equations.

Example 1. Consider the second order stochastic equation
(16) 2y + az, + Aoz = f(t, 2) + g(t, z) W(t),

where & = 0 and A, is a positive self-adjoint operator on a real Hilbert space H,
with domain D(4,), such that

4oz 2)m, Z K|z, » 2 € D(4o)

for some k > 0. We rewrite (16) in the form (1) in an obvious way, putting H =
= D(A(I)IZ) X Hz,

<x5 ,V> = <(XI) s (y1>> = (A(l)/le, A(l)l/zyl>H2 + <x2, _}’2);12 s

X2 Y2

a(2) = (L5 L) (2)- o0n = otag  orar.

Note that

(17) <(;) , A(’;>> = —afyZ,, (x»)eD(A).
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‘Assuming Lipschitz continuity of f and g we get by (17) -
Ld("x - y[’ ) s cux -y! 3 %yeE D(4), x=#*y
for some ¢ > 0, and hence _; : -

((%u‘,) (e=<]x - y”_I') <o.

Similarly as in the proof of Lemma 3 we obtain

E(exp (=e(t A ) [0**(t A ) — ot At )|| 1 < e-cs”x - y” 1,
0<sSt [[x—-y" > 6, 15.= 1™, Thus

o™t a %)~ 0"(e A )71 Ix =]t

consequently

LRl s =6 S Al ) - o] S

é ec(t s)”x — y"—l s
and
hmP[t”"St]—O . N . ¢
90+ L : ot
Definition 1. A solution ¢ of the equation (1) is said to be
(i) p-stable (p > 0), if for any &€ > 0 we find 5 > O such that for every t, = 0
and for all solutions ¢ of the equation (1) we have: if |o(to) — @(to)|, < & then
s o)~ 701, 5 ¢

(ii), asymptotically p-stable, lf it is p-stable and. there exists IT > 0_such that
foralle> 0,6 € (0, IT] there exists T(e, 8) > O such that for all t, € R; and any
solution ¢ of the equation (1) satisfying ”(p(to) - (p(to)]]p < 6 we have

sup |lo(t) - 6(1)], <

- t2to+F(e,8)

(m) stable in probability, if for every ¢ > Q there exists 6 > 0 such that for
every to 2 0 and any solution ¢ of (1) satisfying P["(p(to) qp(to)ﬂ 29d]=<9
we have P[ sup fo(t) — ()] 2 €] < e

Definition 2. (1) The equation (1) is said to. be p-stable (asymptotically p-stable,
stable in probability), if each of its solutions is p-stable (asymptotically p-stable,
stable in probability).

(i) We say that the equation (1) is asymptotically stable in probability provided
it is stable in probability and for all ¢ > 0, R > 0 there exists T(g, R) > 0 such
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that for all t, 2 0, x, ye H, |[x — y|| £ R, we have
wp Pl — (] 2] 5 ¢

t=to+ T(e,R)

The notions of stability introduced above are in fact rather strong; uniformity
with respect to initial conditions is required. However, this kind of stability is exactly
what we need to prove the averaging properties below.

Recall that a trivial solution x = 0 of an ordinary differential equation X = &(t, x)
is said to be uniformly asymptotically stable (in the Liapunov sense) if it is uniformly
(Liapunov) stable (this means that for every ¢ > 0 there exists § > 0 such that
[%(to)] < 8, to = O implies |x(f)] < & for t = t,) and there exists D € (0, o] such
that for ¢ > 0, D > § > 0 we can find T(¢, §) > O such that |x(t,)| < 6, t, 2 0
implies |x(t)| < & for ¢t = t; + T(s, 8). If D = oo then the solution x = 0 is called
globally uniformly asymptotically stable.

Proposition 1. Suppose that the assumptions of either Lemma 2 or Lemma 3
are fulfilled with some v, . Let the trivial solution x, = 0 to the equation % =
= ¢(t, x) be uniformly Liapunov stable.

(«) Assume

ci[x[? S v(t,x) S eof|x||?, t20, xeH

for some cy, ¢;, p > 0. Then the equation (1) is p-stable. Moreover, if x, is uni-
formly asymptotically stable then (1) is asymptotically p-stable.
(B) Assume & <0 and

(18) lim sup v(t, x) = 0,
(19) b(r) = inf {v(t, x), (t, x) e R, x {|x] 2 r}} >0, r>0.

Then the equation (1) is stable in probability. Moreover, if x, is globally uniformly
asymptotically stable, then (1) is asymptotically stable in probability.

Proof. («) If E[@(t5) — ¢(to)]|? < & for some t, 2 0, § > 0, then Ev(to, ¢(to) —
— ¢(to)) < c,6. On the other hand, Eu(t, ¢(t) — o(t)) Se, €>0, 121,20
implies E|3(f) — ¢()]? < ci'e. Thus (x) follows from Lemma 2 (or Lemma 3).

(B) Lete >0, [x — y| Se t, 20,

1, =" =inf{t 2 to, [ (1) — @"(t)] > ¢} .
By Lemma 2 (or Lemma 3) (o(f, 0"*(t) = 0™”(t)));»,, is a supermartingale and
hence by the optional sampling theorem

Ev(t A T Pt AT) — 0t AT)) S (e, x —y), t21,.
Setting © = {w; sup | @**(s) - ¢*”(s)] > ¢}, we obtain the inequality

se[to,t]
otor ¥ = ¥) Z EX(O) o(t A 7, 9™t A 7) = 9*(t A 7)) 2
> Ex(8) v(z, 9°*(z) — 0°7(=.)) 2 b(e) P(6),
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and hence

P[ sup " 9" %(s) — "(s)]| > €] < b(e)™" v(to, x — )

JE to,t

fordny ¢t = t,, so that we have
PLsup o) — 9] > €] < b oltor  — 3),
s2to

which together with (18), (19) implies stability in probability, since for arbitrary
solutions ¢(t), @(?) of the equation (1) the identity
- PLsup fols) — #(s)] > &] =

= fnxn P[ sup “(p‘° "(s) °(s)| > €] P[(p(to) edx, @(to) e dy]

S—O

holds. Asymptotical stability in probability easily follows since we have

PLI™() - 92(0] > o] < () Eolt, 0°() = (1)) . QED.

3. AVERAGING ON INFINITE TIME INTERVALS

In the previous sections we have prepared all tools needed for treating the averaging
problem on unbounded time intervals for the equations (1.11), (1.12). So, let us’
consider the equations :

1) dx,(t) = (A x,(t) + a,(t, x,(t))) dt + by(t, x,(t)) dw(¢),
(2) dx,(t) = (A x,(t) + a,(t, x,(1))) dt + b(t, x,(t)) dB(r).
First,»we will prove the theorem announced in Introduction.

Theorem 1. (i) Let the assumptions (I), (III), (Vu) (U2) be fulﬁlled Let xo(t)
be a mild solution to the equation .

(3) i dxo(t) = (A xO(t) + ao(t, xo(t))) dl + bo(i, xo(t)) dW(t) N
which is bounded in I?(Q; H) (i.e. sup ||xo(t)], = I' < ) and ‘asymptotically
20

p-stable. Then for every n > 0 we can find ayg > 0, 6 > 0 such that for all t,e R,
and any mild solution x,(t) to (1) we have: if o € (0, oco] and [|x,(t5) — xo(to)||, < 6
then ) ) M A

sup [x(8) = xo(2)]|, <

(ii) Let the assumptions (1), (III), (ch) and (U3) be fulﬁlled Let x, be a mild
solution to the equation

) dxoft) = (A xalt) + aolts x0) dt + bolt, 5(0)) 4B,
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which is bounded in I’(Q; H) and asymptotically p-stable. Then the assertion in (i)
is valid also for mild solutions to (2).

(iii) Let the assumptions (1), (IIT), (Vlu), (U2) be fulfilled. Suppose K < IP(Q; H)
is such that the set

M = {lo(®)]? t = t, 2 0, ¢ is a mild solution to (3), ¢(t,) € K}

is uniformly integrable. Let there exist & > 0 and R < K such that for any mild
solution x,(t) of (1) we have: if w e (0, &] and x,(t,) € K then x,(t) e K for allt 2 t,.
Let xo(t) be a solution of (3) which is asymptotically p-stable. Then for every
n > 0 there exist ay > 0, & > 0 such that for every mild solution x,(t) of (1) and
for any to € R, we have: if a € (0, %), X,(to) €K, and [|x,(to) — xo(to)], < & then

sup [x(2) — x(,(t)”p

(iv) Let the assumptions (1), (III) (Vlcu), (U3) be fulfilled. SupposeK c I7(Q; H)
is such that the set

= {Je(®)]? t 2 to 2 0, ¢ is a mild solution to (4) ¢(to)eK} :

is uniformly integrable. Let & > 0 and K have the same properties as in (111) but
with respect to mild solutions of the problem (2). Let x, be a solution to (4) which is
asymptotically p-stable. Then the concluszon in (iii) holds also for mild solutions
of the equation (2). '

Remark 1. The statements (iii), (iv) look rather sophisticated, but, unlike (i) and
(ii), they can be used for linear problems, in which case we take for K, K appropriate
balls in I{Q; H), g > p; see also Example 2 below. Note that in (iii), (iv) we need
not assume the boundedness of x, (which, of course, follows from the assertion).

Proof. The idea of the proof closely resembles that of the proof of Th. 3 in [11]
where the case dim H < oo and x, = 0 is investigated. For the sake of completeness
we repeat here all necessary arguments.

We shall prove the statement (i). Let us choose n > 0, t, € R, arbitrarily. By
the p-stability of x0 we find & > 0 such that [o(to) — xo(to)], < & implies

sup [x0(2) — ()], < n[4 for any solution ¢ of (3). Without loss of generality we

may choose & € (0, min (n, IT)), where IT is the constant from the definition of the
asymptotic p-stability. According to Prop. 1.1 there exists , > 0 such that for
a € (0, @] and for any mild solution ¢ to (3) satisfying ¢(t,) = x,(to) and [e(t,)]
=T + 6 we have

sup{”x,(t)'—fp(t)[],,, to St <ty + T(6[2,0)} < 6/2.

Let us prove that these a,, é are the desired quantities. Let x,, « § oo bea solution
to (1) such that [|x,(t,) — Xo(to)[, < 6. Let X, be a solution of the problem (3)

<
p_
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satisfying %,(,) = X(fo). Then [Xo(t0) — Xo(to)], < &, hence

sup {|%o(8) = %o()]l,» to <t = to + T(5/2,8)} S nf4:
further |%5(20)], < [%o(to)]s + [Xo(to) — Xo(to)], < ' + 8, thus

sup {{|%o(t) — x(t)]|,» to St S 1o + T(5)2,6)} < 62 < /2.
Combining all these estimates we obtain

sup {[xo(t) = %) to S 1 S 1o + T(2, )} < 1.
Moreover, by the asymptotical p-stability

[%o(to + T(5/2, 8)) — xo(to + T(6/2,6))], < 3/2,
hence

[xu{to + T(8]2,8)) — xo(to + T(8[2,8))[, < 5

We see that all the above considerations can be repeated on the interval
[to + T(8/2, 8), to + 2T(8/2, 6)] with an auxiliary solution %(t), %o(to + T(8/2, 8)) =
= x,(to + T(8/2, 5)), and we complete the proof by induction.

The statement (iii) can be proved similarly, if Prop. 1.2 is used instead of Prop. 1.1;
the proofs of (ii), (iv) are analogous to those of (i), (iii), respectively. Q.E.D.

To assume the asymptotic p-stability of the process x, is quite restrictive. In the
sequel we content ourselves with the supposition that the equation (3) is asymptotical-
ly stable in probability, and we will prove that x, = x, in probability. Insucha case
we will not need Prop. 1.1 in its full strength, so we leave out some of the hypotheses
of that proposition and rely on the following assumption, which is weaker than the
assertion of Prop. 1.1:

(P) Suppose that for every n > 0, T> 0, R > 0 there exists , > 0 such that for
allae(0,a,], toe Ry, xe H, ||x] < R we have
sup Pl () = ()] 2 ) <,
te(to,to+ T
where x;>* denotes the mild solution to (1) with the initial condition x{*™(t,) = x.

Recall that a family {X,} of random variables is said to be equibounded in proba-

bility if for any ¢ > 0 there exists R 2 0 such that sup P[|X,| 2 R] < e.
A

Proposition 1. Let the hypotheses (I), (III), (P) be satisfied, let the equation (3)
be asymptotically stable in probability. Let the set
K = {|x2*@)], 0 L « L o, x| £ 0, t 2 1o = 0}

be equibounded in probability for some a, > 0 and any 6, > 0. Then for every
n >0, xeH there exist a; >0, 5 > 0 such that for all yeH, |x — y| £ 6,
a€(0, 2] and any t,€ R, we have

sup PlIxe”(5) — x| 2] < 7.
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Proof. Take ne(0,1), xe H. The stability in probability implies that there
exists 6 > 0 (we can take 6 < min (1, #/2)) such that

(5) PLlxe*(1) = x* ()] z nf2) < mf2, tz 1o

for all t, > 0 and any random initial conditions X, Y such that P[|X — Y| 2 ] <
< §. By the equiboundedness in probability of & (with d, = [x|| + 1) we find

R = 0 (take R = &) such that
(6) sup {P[|x2>?(1)] + |x2"(®)] =2 R); t 2 4 2 0, & < a,
[x — »] =6} <9/4.

Furthermore, by the asymptotical stability in probability we find T = T(5/4, R)
such that for all t, e R,, y,z€ H, ﬂy - zl] < R we have

) sup LI () - x(0)] 2 476] 5 47

tZto+
Finally, by (P) we find «; € (0, a,) such that

(8) sup P[Hx" (1) = x| 2 9/2] = 92

te[ty,t1+ T
forallt;eR,, yeH, |[y| SR+ 1, a < a,.
Take y€ H, ||y — x| £ 6. By (5) it follows that

sup PIIxe(1) — xe~()] Z n/2] = n/2.

By (5) and (8) we obtain (note that § < 7/2)
©) sup P () = <70 2 7] <

tefto,to+ T

for « < a,. Similarly, by (7) and (8) we get

(10) P[u 2(tg + T) — x(to + T)" 23] =30
for o < a,. Set Y; = x2(to + T), X; = x§*(t, + T). By (5) and (10) we have
(11) sup PL[xg* (1) = xg* T (0] 2 nf2] = nf2.

Since P[||Y;| = R] < 6/4, we get from (8), (11)

sup  P[|x6*(1) — x2(1)] 2 ] =

te[to+T,to+2T]

- s PR st TR 2] S

te[to+ T,to+ 2T]

Sa2+82+084sy.
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Furthermore, since P[|X,| + |¥i] = R] = 6/4, we get

P|x&* "X (to + 2T) — x2* (1o + 2T)] 2 3] <
< P([x+ TVt + 2T) — x2*T1(1, + 2T)| 2 8)2] U
v [[x5 CFON (1 + 2T) — xP* 05ty +-2T) 2°5/4]) < 6,
and we can proceed similarly on [t, + 2T, t, + 3T]. The proof can be easily

completed by induction. Q.E.D.
The rest of the section is devoted to the averaging problem

CIRRCE <Ax 0+ ( x (:))) dt + 0'( x (t)) an(s),

where 4: D(A) - H is an infinitesimal generator of a strongly continuous semigroup
S(t) on H satisfying (U2) and the coefficients a, o satisfy the estimates of (U1).
Assume further that there exist Lipschitz functions & H — H, 6: H - Z(Y, H)
such that for some 4, > 0 we have: if t;, 1, € R, 0= ¢t; S t, £t + Ao then

3
lim j S, - 3) (a (S th, x) - o'c(x)) ds =0
e=0+ J 4y &

uniformly for t, e R,, and

- T = 5 *1\p/2 =
tim - f e {Lo(o0) = T Wl ) — ST s =0

T-©

uniformly for g = 0.

If the convergence in the above formulae is uniform also for x € H then it is obvious
how to apply Theorem 1; however, if we assume the convergence to be only locally
uniform in x then in order to obtain effective results on averaging in I?(Q; H) and
in probability for the equation (12) we need verifiable conditions guaranteeing
boundedness of the g-th moment of the solution to the limit equation

(13) d5(f) = (A 7(t) + &(%()) dt + 6(x(7) dw(z),
or the equiboundedness in probability of the set & defined in Proposition 1.

If v e €*(H) (the set of twice continuously differentiable functions on H) then we
set

[Zv] (x) = <Ax + &(x), v(x)> + % tr (7*(x) v.x(x) G(x) W), xe D(A4),
[£6] (1) = CAx + altfe ), 0.0 +

+ 4 tr (6*(tfe, x) vou(x) o(t]e, x) W), xeD(4),

[Lav] (%, y) = <Ax = Ay + &(x) — &(y), v,(x = y)> +

+ 3tr([6(x) — GO)]* vux(> = ¥) [3(x) = G())] W), x, yeD(4).
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Proposition 2. Let ve ¢*(H) be a nonnegative function satisfying (2.5) and
(14) dif[x[? + ¢; S v(x) S do|[x[? + ¢, x€H
for some p >0, di,d, >0, ¢y, c, € R. Assume Lv(x) < £(v(x)), x € D(A), where
¢: R, — R is a concave Lipschitz function such that all solutions of the equation
¥(t) = E((®), t=ty, ¥(to) = Yo,

are bounded on their domains uniformly with respect to tye R, and to y, from
compact intervals. Then for every K > 0 there exists M > 0 such that E|X()[? <
S M, t 2 t,, provided E||%(t,)|? < K, where X stands for a mild solution to the
problem (13). If moreover [L'v] (t, x) < &(v(x)), x € D(A), then also E||x,(1)||” < M,
t 2 to, £€(0, 1], provided E|x,(1,)|? £ K, where x, denotes a mild solution to (12)
and M = M(K) does not depend on ¢€ (0, 1], to € R,.

Proof. Lemma 2.1 applied to the equation (13) yields
Ev(x(1)) < Ev(X(to)) + E [;, &(%(s)) ds .
By the same procedure as in the proof of Lemma 2.2 we obtain
Ev(x(t)) < sup {y(t); t = t,, 0 < y(t,) < d1K + 3},
if the solution %(¢) of (13) satisfies Ev(X(t,)) < d,K + c,. By (14) it follows that
E[%(t)]* < sup {d7 " y(t) — cps t = 15, 0 < y(t)) S doK + ¢} = M
The assertion on x,(f) can be proved Janalogously (note [that |[L] (¢, x) <
[L;] - (tfs, x)). QE.D.

Lemma 1. Let ¢£: R, x R, — R satisfy the assumptions of Lemma 2.2. Denogg
by z, the solution to the equation 2,(t) = &(tle, z,()), z,(0) = 2,2 > 0,0 < e S |,
Let y(t) be the solution to y = &(t, ), y(0) = z. Then

" sup z,(f) < sup ¥(1).
t20 t20
Proof. With no loss of generality we can assume y(t) > 0 for ¢ = 0. Set h,(t) «
= z,(et), M = sup y(t). Assume that h,(tf) > M for some e€(0,1), ¢t > 0. Lyt
t20

to < t be such that hy(to) = y(t,) and hy(s) > y(s) for se (o, t]. Concavity of
&(1, ) and the identity £(t, 0) = 0 yield

hy(s) _ e&(s, hi(s))  €&(s, ¥(s)) _ 25(s) .y

WO B 2 0

It follows that

o8 (9 ({,‘5’3] < 1og (Y(9)




and hence

mwéMwG%Y§MwmowﬁMu

which is a contradiction. Q.E.D.

Proposition 3. Let ve ¢*(H), v 2 0, satisfy (2.5) and [L'0] (1, x) < &,(t, v(x)),

[Lv] (%) S &(v(x)), x € D(A), where both functions £, &, fulfil the assuMptions
(on &) of Lemma 2.2. Assume further that

(15) llm b(R) =lim info(x)= +o0.
R-+o |x||ZR

Then the set

8 = (s @] + [0, ee@1) 12 102 0, [x] + o] £ 55},

where x[°”, X" denote mild solutions to (12), (13), respectively, is equibounded in
probability for all 6, > O provided the solutions to the equations z = (1, z),
2(to) = zo, and h = &;(h), h(ty) = ho, are bounded on [to, +0) uniformly with
respect to t, € R, and to zy, hy in compact intervals.

Proof. We have [L°] (1, x) = [L'v] (1fe, x) < &,(t/e, v(x)), x € D(A), and hence
by Lemma 2.1 and Jensen’s inequality

Eo(207(1)) S Eofxio(5)) + [ &,(r/e, Eo(x(r) dr

forall0 < t, < s £ t,e€(0, 1]. By the same argument as in the proof of Lemma 2.2
we get

Eo(x(1)) S u(t), t=t,,

where 1,(t) = &(tfe, u(t)), u(t;) = v(x). Hence by Lemma 1 for every 5, > 0
there exists a constant ¢ > 0 such that Eo(x;°*(t)) < ¢ for all e€ (0, 1), |x] < &,
0 < t5 < t. It follows that

P[|xe*] > R] < b(R)"'¢, R>0,

and thus the family {|x/°”(¢)]], e€(0,1], t = #t, 2 0, ||y]| < 8o} is equibounded in
probability. For the process X'°* we can proceed similarly. Q.E.D.

Example 1. Let the coefficients «, ¢ of the equation (12) be bounded on R, x H
and assume

(Ax, x) £ —2o|x|?, xeD(4),

for some A, > 0. Then the conclusion of Proposition 3 is valid, i.e. & is equibounded
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in probability. Furthermore, the p-th moment of X*** is bounded on [to, + ) for
any t,€ R,, xe H, p Z 2. Indeed, we have

(<) = = polsl” + plxlr sup Ja] +
+3p(p — 1) x|~ 2 tr sti;;lu of? = —x|x]? + M,

X e D(A), for some » > 0, M > 0; similarly
L(|x]?) = —x|x|” + M,

x € D(A), and we may apply Propositions 2 and 3.

Example 2. Let D = R" be a bounded region with a #2-boundary. Let us consider
the stochastic parabolic equation
0

. u ri(8) u(t, x) x)
(16) e du(t, x) + ro(t) u(t, x) + L+ (s, x)]

ra(2) u(t, x)
+ (1 + [u(t, ) + g(t, x))w(t x), (t,x)eR, x D,
u(0, x) = uo(x), u(t,x)|sp =0,

where r, 7, r, and g are bounded measurable functions, Ww(¢, x) stands symbolically
for a space dependent white noise. In order to give a precise meaning to (16) we
consider its infinite dimensional version

d¢(t) = (A Lr) + (1, £(2)) dt + &(z, (1)) dw()
in the space H = I*(D), where w(t) is a Y = H¥(D)-valued Wiener process with
a nuclear covariance operator W, 2k > n, and

fiR, x Ho H, f(t,x)(9) = ro(f) x (9)+L@l—"%l 9eD,

&:R, x H> Z(Y,H), [#(t x)h] (9) = (rz(t)lx((;;‘)))I

+g(t,9))h(9), 9eD, hey,

A4 = A]Hoi(b)nﬂzw) .

Recall that H¥(D) denotes the usual Sobolev space of functions in I*(D) the distribu-
tive derivatives of which up to the k-th order lie in I*(D), H§(D) is the subspace of
functions with zero trace on the boundary. It is easy to see that the estimates of the
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assumption (U1) are fulfilled with some K;, K, > 0. Also, 4 gives rise to a holo-

morphic semigroup S(¢) (cf. e.g. [3], Th. XIV. 8.1). We will consider the averaging
problem ,

() L) = (ALG) + 7l L)t + B(1f L) aw(r)

assuming that

. 1 uT+T 1 uT+T
lim -7—1‘[ ro(t)dt = rg, ;im }J rt)dt =ry,

uT uT

1 uT+T 1 uT+T
lim _j Ira(t) = rafPdt = 0, lim X J’ 19(t, <) = 3By dt = 0
T T uT T-o T, uT )

hold uniformly in g > 0 for some 7y, ry, 7, € R, g€ L”(D), and p = 2. Then the
conditions (1.9), (1.10) are fulfilled uniformly for f,€ R, and for x € H, |x| < L,
for any L> 0 (cf. Remark 1.5) provided we set a (t x) = f(tfa, x), byt x)
= ®(tfa, x), « > 0, and a, = f, by = &, where f, & are the limit coefficients

x =reX i x(8)
H9@ =rox® + 720 sen,
|8(x) H] (5) = ( ’i’l‘(‘g)‘ +g(9‘)) W), SeD, hey.

It is-well known that
(A%, xy £ =4 |*]*, xeD(4)

for some A, > 0. Hence
Ly|x - y|") =
< plx — y[P{—40 + ro + max(0,r) + ¥(p — ) K3 tr W},
L([x]9) = q]x[*{—%0 + ro + max (0,7} +
+ | B(x)]? a(qg = D]x[* 2t W=
< gf[x]* {=4o + To + max (0, r;) + K3(q — D) tr W} +
+a(g = 1) [x]** [~ e W

for any q 2 2, x, y € D(4). Similarly
L(||x]9) = q|x[*{~20 + ro(t) + max (0, r,(£)) + K3(q — 1) tr W} +
+q(g — 1) [x]*? [a(t, Vietew.

Assume L
—=Ao + 1o(t) + m8X(0, ~,(f)) + K3(¢' — Dtr W< 0, teR,.
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for some g’ > p. Then Ly(|x — y[?) £ —a,]x — y[?, x, » € D(A), for some a; > 0
and hence the limit equation . o a
(18) di(r) = (A L(r) + JC()) dt + B((e)) dw(t) |
is asymptotically p-stable (Prop. 2.1 («)). Take any g € (p, g'). We have

L(x[9) < —oafx]* + M2, L}([x]) = —aa[x]* + M,
for some a,, M, > 0. Thus by Proposition 2 we get for arbitrary R > 0

R=sup{Jt(t)]s 0<e=<1t21420, [L{)], SR} <o
and .

= sup {”f(t)ﬂq’ t2 120, [{(to)], = R} < 0.
Now we can apply Theorem 1 (iii) setting R = {ue I¥Q; H); [u, < R} and
= {ue I)(Q; H); |u], < R}, & = 1. The uniform integrability of M follows from

the Hélder inequality. Indeed, for any solution L’(t) of (18) such that {(t,) € K and
for any measurable set B < Q we obtain

ElCO]” < [E012 (PB)7 < Re(P(B))—7"

By Theorem 1 (iii) we conclude that for every solution ({(t)),50 to (18) and every
7 > 0, R > 0 there exist &, > 0, > 0 such that for all t,€ R, £¢€(0, &,] and any
solution ¢, to (17) satisfying {,(t,) € R, [[{(to) — {(t0)], < 6 we have

sup [[&.() = L(®)], < 7

t=to

Example 3. Consider the averaging problem

dé(r)=(4 5,(t) + 1y &) + f(tfe, 1)) rdt + 5 &(t) dB(1)

in a Hilbert space H, where B(t) is a scalar Wiener process, ry, 1, € R, A generates
a holomorphic semigroup S(¢) satisfying (2.15) and {A4x, x) < |x|?, x € D(4), for
some y € R. The function f(t, ) is bounded and Lipschitz continuous uniformly
with respect to e R, . Assume

1 uT+T
lim — f(s;,x)ds =0
T—o0 T uT

uniformly in xe H and in g = 0. Let

(19) y+r1+supﬂf”—}r§'<0.

R+ xXH

Using Proposition 1 we show that the averaging in probability is possible, the limit
equation being

(20) d&(t) = (A&(t) + ry E(r)) dt + ry E(2) aB(2) -
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The assumption (P) is fulfilled by Remark 1.5 and Proposition 1.1 (used with any
p 2 2). Furthermore, set v(x) = n,(||x[?) [x|* for ¢ > 0, where #, is the function 7,
defined in the proof of Lemma 2.3 with § = 1. We have

[L'0](tx) < qlx|* (v + vy + sup [f]| + 43(q — 1)), xeD(4),
Ix] > 1.
and
(%] (%) S M, xeD(4), [x| 51
for some M > 0. Takin g > 0 sufficiently small we obtain by (19) that
[L15] (%) S W((x)), xeD(4),

where Y(r)=M, 0Sr<1, ¥(r)= —ar+ M +a, r21, for some a > 0.
Similarly we get [Lv] (x) < y(v(x)), x € D(4). Thus by Proposition 3 (in which we
set &; = &, = ) the set & is equibounded in probability. It remains to show the
asymptotical stability in probability of the limit equation (20). We have

gox(t) = exp {(r; — 3r3) (1 — to) + r2(B(t) — B(t))} S(t — 10) x
and hence (2.13) is fulfilled. Furthermore,

zd(ﬂx DS+ + (g - 1) q]x - y]*, x,yeD(4),

and by (19) and Proposition 2.1 (B) it follows that the equation (20) is asymptotically
stable in probability.

Note that (19) can be satisfied even in the case when the corresponding deter-
ministic limit equation (i.e. (20) with r, = 0) is unstable. This is the case when the
deterministic equation X = Ax + r;x + f(¢, x) is effectively stabilized by a noise
in the sense of averaging.

APPENDIX

Now we are going to show that Lemma 1.1 is not applicable for the stochastic wave
equation; this means that the assumption S(+) € 4((0, ©); £(H)) in the lemma cannot
be fulfilled.

Let us consider a hyperbolic equation, formally written as

?u _ u ou

1 — =—ty—w, ‘t,xeo,l x R,
() o2 ox? yat (5 x)€ (0, 1]

where y > 0 and w is a 1-dimensional white noise.

220



We will treat (1) as an equation in the Hilbert space # = g x L*(R), where E
is the completion of the space 2(R) of smooth functions with compact supports
with respect to the norm | f||g = (f*% |f’|? dx)!/2. We endow the space # withthe

2 2 + o
= "f”E +J Iglz dx.

g F 4

Let A be the closure of the operator

0, I
d*/dx?, 0

defined on 2(R) x P(R), then A generates a (C,)-semigroup S(t) on #; |S(¢)]| = 1;
and for each (f, g)* € # we have

25(:)(2) (x) = (f(x + )+ f(x =) + [11g(v) dv )

fx+)—flx—t)+g(x+1t)+g(x—1

for almost all x € R. Let w(t) be a real Wiener process. We interpret (1) as an equation
for an s#-valued process

0= (uh)

dy(i) = A y(1) + (yu?(t)) dw(r),

»(0) = (:‘:) :

ElO]2 < 202 + 2 j E:

1]

Hence

2
ds
x

IIA

(v u(j(S))

< EDOf + 27 [ el o,
thus E[y(t)|% = 2 exp (2v%) E[|y(0)[%-

We claim that there exists C > 0 such that for every partition {f:}11v=o of the interval
[0, 1] there exists an initial condition

U= (u°)e.#,
Uy

u =+ 0, such that

N;t £:+‘UY(S) — ¥(t)]| 2.0 ds 2 Cllule -
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Indeed, let us fix the partition {t,}-o arbltrarlly, let for the moment u be an
arbxtrary element in J#. Then

N-1

5 b6 sl ss =3[ u[s(s) ~ S()]u +

Js(s - r>< u(r)) dw(r) — j S(t, — 1) (Y u(,)(r))ﬁw<r)l|2ds .
i= oJ‘,i ”[S(s) S(t,)]u

2 ) s =0 ()) )= 501,y )0,

EII —'Iz.

L (Jrne) G e
< 292 exp (%) yflullr -

Now, let us specify uo(t) = [ CXia,p(X) dx, u; = 0, whef¢ [a, b) is such an interval
that b—a<2t, i=1,...N—1, b—a<min{t;,; — 1, i=0,..,N — 1}.
This choice yields

ds —

ds=

Further,

1N-—1
I, ==
! 2 i=o0 . .
el fug(x + 1) + uo(x — 1) — uo(x + t;) — uo(x — t) i >
o I\uo(x + 1) — u;,(x - t) — ug(x + 1) + ug(x — 1) =

lNi

> - z Jmﬂ Juo(x + £) + tio(x = 2) — uo(x + #:) —
- uo(x — t)]2pdt =

N—-1 pT; +
= Z j (j‘ lx[a’b)(x + ti +t) + X[a’,,)(x - t[ bt 1_') —

¢
2 i=o e
1/2
- 2f[u.lb)(" + 1) - X[a,b)(x - ti)lz dx) dr =
N—1 pTy ‘
= g Z J‘ (J. |x[n—t;—t,b—fx—t) (x) - X[a—u,b—-n)(x) +
1/2

+ Ko+ tirebrtive) (x) = XIa+ti_,b+n)(x)|2 dx) dt=J,
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where we have set T, =t;,; —t. Note that [a +t + 7, b+ t,+ 1)
n[a+t,b+1t)=0if t=b— a, in particular if t = $min{t;y, — t;, i =
=0,...,N —1}, and further {a —t; =7, b—t,—t)n[a—t, b—1t;) =0 if
t2b—a,and[a+t,b+t)n[a—t,b—1t)=0if b —a < 2t,. Hence

cN=1pT: +o0 1/2
J= - ZJ. (j I..]zdx) dr =
. 2i=0 Ti/2 )
eN-1 (T t® 1/2 c
= u (J [+ dx) dr + - (]xﬁﬂbﬁ)(x) +
2i=t Jr2\J-w 2) 2
+ Ata—r.p-1) (%) = ZX[a.bv)(x)lz dx)'/2dr 2
cN—l rT; C ty
> - (4(b — a))'?dr + =| (6(b — a))/*dr =
2i=t J12 2) 2
1/2N_1 bivg — 8 _
2 c(b—a)? Y = Huo[le = Hu|r -

i=o0 2

We have obtained the estimate

ti+y

}: 19() = ¥tz ds 2 (3 = 22%™) [ul.r ,

and fory > 0 small enough we have C = (3 — 232 exp (y%)y) > 0.
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Souhrn

METODA PRUMEROVAN{ PRO STOCHASTICKE EVOLUCN{ ROVNICE II

BoHDAN MASLOWSKI, JAN SEIDLER, Ivo VRKOC

Ve stati jsou vySetfovany v&ty o integralni spojitosti pro stochastické evolu¢ni rovnice para-
bolického typu na neomezeném &asovém intervalu. Jako pomocné vysledky nezdvislého vyznamu
jsou odvozena tvrzeni o asymptotické stabilit® stochastickych parcidlnich diferencialnich rovnic.
Stochastické evolu®ni rovnice jsou zkoumany v ramci semigroupového pristupu jako rovnice
v Hilbertov& prostoru.
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