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ONE CONFIGURATIONAL CHARACTERIZATION OF OSTROM NETS 

JAROMÍR BAŠTINEC, Brno 

(Received June 9, 1988) 

Summary. By the quadrileteral condition in a given net there is meant the following implica­
tion: If At, A2, A3, A^ are arbitrary poits, no three of them lie on the same line, with coll (At4j) 
(collinearity) for any five from six couples {/,/} then there follows the collinearity coll (AKAt) 
for the remaining couple {k, / } . 

In the article there is proven the every net satisfying the preceding configuration condition 
is necessarity the Ostrom net (i.e., the net over a field). Conversely, every Ostrom net satisfies 
the above configuration condition. 

Keywords: Net, Ostrom net, quadrilateral closure condition. 

AMS classification: 51A20. 

In the present article we will prove that a net of an arbitrary degree is an Ostrom 
net if and only if it satisfies the quadrilateral condition. Various characterizations 
of Ostrom nets by several closure conditions together have been discovered recently 
by many authors (cf. V. D. Belousov [labc]1), V. Havel [2a] and J. Kadlecek [3], 
H. Thiele [4]). Besides, V. D. Belousov proved in [la] that every net of finite degree 
satisfying the quadrilateral condition is an Ostrom net over a Galois field. Let us 
mention that the problem of characterization of general Ostrom nets (over skew-
fields) by the quadrilateral condition was suggested to me by Professor V. Havel 
who recommended to use direct methods instead of the special methods of V. D. 
Belousov (from [le]). 

Part I is devoted to fundamental geometric notions concerning nets and algebraic 
descriptions of nets whereas in Part II we first deduce all requested algebraic proper­
ties of nets satisfying the quadrilateral condition and then verify the validity of the 
quadrilateral condition in a given Ostrom net. 

PART I 

1. By an incidence structure we understand a couple (^, S£) of non-void sets 
9, Se such that 

*) The article [lc] was written together with G. B. Beljavskaja. 
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and 

A, Be a, be&=>(A = Bva = b). 

0> is the set of points, S£ the set of lines of the incidence structure. 
Under a net Jf we shall mean an incidence structure (0>, S£) such that at least 

three lines pass through each of its points, and for every (A, b) e & x S£ there is 
just one line a through A for which either a = b or a n b = 0. The relation of being 
parallel (on S£) is then defined as follows: a || b for a, b e S£ if and only if either 
a = b or anb = 0. The equivalence classes can be termed pencils (of parallel lines) 
of Jf. If a, b are non-parallel lines then there exists their unique common point 
(denoted by a VI b). If A, B are points on the same line then we shall denote this 
line by A U B. If all points of the set &' c g> He on the same line then they are 
said to be collinear. We shall designate this property by coll(«^'). If all lines of the 
set S£' £ S£ go through the same common point then they will be said to be con­
current and we shall write conc(j£"). If necessary we view the set of all pencils as 
an indexed collection (S£L) i e J so that the net can be then designated by Jf = 
= (0>, S£, J). If A e 0> and b e SB\ for some t e «/" then [A, 6] or only [A, i] will 
designate the line a such that A e a e S£i. The number # / is independent of / e S£, 
equal to $S£i for every i e J, and we will call it the order of Jf. The number #«/ 
is called the degree of Jf. 

2. In the sequel we make use of one general coordinatizing concept due to V. Havel 
(see [2b]): 

Let Jf = (0>, S£, J) be a net. Let coA- £ x S£L (cartesian product of an indexed 

collection (S£t), i e J be defined by (Z4)4&, € co^ :o cone ((h)les). This relation co^ 
satisfies the following condition: lfa,peJ with a * P and a e S£a, b e S£fi then there 
is a unique (ct)teJ e cojr such that ca = a, cfi = b. This leads to the following defini­
tion: Let (St)les, # - / = 3 be an indexed collection of at least two-point sets. We say 
that the relation a £ x St is admissible if it satisfies the condition of unique sol-

vability: If a, ft e J are distinct indexes and a e Sa, beSfi then there is a unique 
collection (cL)lBtf such that ca = a, c0 = b. 

We see that for every net Jf = (0>, S£,J) the relation cojf is admissible in x S£L. 

Conversely, every admissible relation a c x Sl9 where #«/ ^ 3, #S4 ^ 2 (for 

all leJ), uniquely determines a net Jfa = (&, S£, J) such that co^ = a. In fact, 
put 0> = a and for all a e / and all seSa construct successively ls = {(sL)lej e 
ea\sa = s},S£a ={ls\seSa}, S£ = \]S£a. 

An admissible relation a £ x St can be understood as a set of 3-basicquasigroup 

operations \Py: Sa x Sfi -> Sy with mutually distinct indexes oc, 0, y from «/. Here 
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for all (x, y)e Sa x Sfi there is a unique collection (Zt)les e or such that za = x 
zfi = y, x -^y y = zr 

This general concept yields some known algebraic descriptions of a given net, 
namely (i) the coordinatizing admissible algebra of Havel (cf. [2b]), (ii) the ternary 
partial groupoid of Thiele (cf. [5]) and (iii) the orthogonal system of quasigroups 
("OCK") of Bdousov (cf. [la]). 

Ad (i): Let Jf = (&, Se, J) be a given net. We call every quadruple (O, I, II, III) 
formed by a point O and by mutually distinct indexes I, II, III e J a frame. Choose 
a frame (O, I, II, III) and denote by S the point set [O, I]. Further, choose bijections 
xi> *\u *III

 s u ch that (Fi%- 1) 
I 

Fig 1 
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x-: S-+JS?,, xh^ [ ( [x , I I ]n [0 ,HI ] ) , I ] , 
xu: S -* ĉ f„ x h-> [x, II] and 
xux: S -* JSP,,-, x h-> [x, III]. 

We change the operation -, „ HI: <£x x Sem -» $eu isotopically onto the opera­
tion + : S x S -> S such that (Fig. 2) (x, z) h-> x^x^x) -, „ m xm{z))\ (5, +) is 

I ' 1 y ^ 

0 I 

Fig. 2 

a loop with neutral element 0. Further, let us distinguish 3-basic operations - ^ j - : 
S£x x JS?̂  -> J2?H for all { e / \ { I , II, III} and change them isotopically into the 
operations • $ : 5 x S -> 5 (x, z) h-» .^VW*) '^n ^(z)) where x£ S -> J^, x h-» 
h-> [x, £] (Fig. 3). With help of permutations <p%: S -» 5, x h-> ^ ( ^ ( x ) VI *$(0)) 
(Fig. 4) we obtain xD^z = ^(x) + $ z where +£ S x 5 -> 5 is an induced opera­
tion on S such that (5, +^) is a loop with neutral element 0. Altogether, we get the 
coordinatizing admissible algebra (5, O, {<p4) { eJ\{l, II, III}, +, (+,*) £eJ\ 
\ {I, II, III}) of Havel. It has one 0-ary operation and a collection of unary operations. 

Ad (ii): We start again from a frame (0,1, II, III) of a given net Jf = (^, jSf, </) 
and in addition choose another point Ee [O, III]. Let S,<pg,+t (ieS\(I, II, III}) 
have the same meaning as above. Further, put <pu: S -* {0} and <pm: S -> 5, x h-> x 
(i.e. <pul = ids). Now we can define a partial ternary operation T: J\{I} x 5 x 
x S -> 5; (*, x, z) h-> <pt(x) +. z, obtaining the algebraic structure (S, T) of Thiele. 
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Fig. 4 
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We see that Thiele obtain a ternary structure which is directly subordinated to the 
Hall ternary ring of an affine plane whereas Havel prefers the decomposition into 
nets of degree (0, Sex u Sen u SeL, (Sex, Sen, SfL), t e / \ { { I , II}). 

Ad(iii): Let Jf = (0, Se, J) be a given net and I, II distinct indexes. Take an 
arbitrary set S such that # S = # / (/ e Se), and bijections Xt: S -» JSft, t e«/. Further, 
change every 3-basic operation 'm,*, E)eJ>\{l, II} isotopically into 0 n i { : S x 
x S -+ S, (x, y) t-> AiX(x) Oi H $ îVOO- *n ^ s w ay w e Set ^ e des1red quasigroup 
system ((S, 0 H I ^ e / \ {I, II}). It results that (S, ©- „ a), (S, ©-. „ fi) are ortho­
gonal quasigroups whenever a,/? are distinct indexes from . / \ { I , II}. Note that 
Belousov complements the above quasigroup operations by "projections" (or 
''selectors") E and F such that 

E:SxS-+S, (x, y)±-*y; F:S x S -> S, (x, }>).-»x. 

3. Let ./V = (0, Se, J) be a given net. Let us an ordered quadruple (Ax, A2, A3, 
A4) of points a quadrilateral if (i) coll AtA2, col A2, A3, coll A3A4, coll A^^) and 
no three of the points Al9 A2, A3, A4 are collinear. We will use the notation A1A2A3A4 

instead of (Al9 A2, A3, A4) for i + j ; A{ |J Ap if it exists, will be called an edge, the 
edges A1 U A2, A2 U A3, A3 U A4, A4 U At are sides and Ax U A3, A2 U A4, if 
they exist, the first and second diagonal. A quadrilateral with the first diagonal or 
with both diagonals will be called admissible or full, respectively. If for an index 
quintuple^, t2, t3, t4, t5) there exists at least one admissible quadrilateral X1X2X3X4 

such that X1\JX2eSeLl, X1UX3eSet2, X1\JX4eS?l3, X2\JX3eSeLA and 
X3 U X4 € SeL5 then X1X2X3X4 is said to be well situated. 

The quadrilateral closure condition Q in a net Jf = (0, Se, J). For every index 
quintuple (tl912, t3, t4, ts) admitting at least one well situated quadrilateral there 
exists a unique index t6 such that every well situated quadrilateral is full and its second 
diagonal belongs to SeLe. A net satisfying the condition Q will be called a Q-net. 
Now we choose again a frame (O, I, II, III) put S : = [0, II] and define the coordinate 
map S x S -> 0, (a, b) »-> xt(a) f~l Xn(b) (Fig- 5) where xY and xn are bijections 
from § 2. The maps ^ , £e*f\ {I, II, III} also defined in § 2, can be complemented 
by maps <pm = id5, and <pu: S -> {0} and we have then the set 0 : = {<pt f«e -/ \ {I}}. 
It will be useful for us to abbreviate J A = */ \ {I, II}. For every t e / A define a bina­
ry operation + 4: S x S ~> S by <pt(a) + , b = KiV^a) fl Xt(b)), (where xL has 
been defined in § 2). Every groupoid (S, +1), t e / A is a loop with neutral element 0 
and all lines of Jf are described as follows: [(0, a), t] = {(x, y) \ y = <pL(x) +L a} 
for all a e S and t e - / \ [(0, a), II] = {(*, y)\y = a} for all a e S and [(a, 0), I] = 
= {(x, y) | x = a} for all a e S. 

4. Let Jf = (^, J2>, J) and -yV' = (^', J2",./') be nets. A map TT: ^ -> ^ ' is 
called an isomorphism of -yT onto Jf' if 7i is a bijection with coll AB o coll n(A) n(B) 
for all A, B e 0 and {7c(X) | K e /} G .£?' for all / e Se. An isomorphism of ->T onto ^T 

*) coll AB is an abbreviation for coll (A, B). 
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Fig. 5 

is called an automorphism of JT% An automorphism of Jf is called an ^-translation 
if every point X together with its image lies on some line from j£?t and if either all 
points are fixed or no point is fixed under the given automorphism. An Ostrom net 
over a skew-field F (cf. [4], [5]) is defined using a non-trivial left vector space 'V 
over F Points are ordered couples ( V 1 , V 2 ) G I ^ X TT and lines are of the form 
lc = {(c, y) | y e r) for all c e f , /a>v = {(x, ax + v) | x e f ) for all (a,v) e F x f 
(a is the slope and vthe intercept of a "non-vertical" line /av whereas "oo" can be 
viewed as the common slope of all "vertical" lines lc, thus we can take slopes as 
indexes of line pencils of the Ostrom net). 

PART II 

5. In what follows let Jf = (^, $£, J) be a Q-net with a selected frame (0,1, II, 
III) and with the coordinatizing admissible algebra (5, 0, (<pt) t e / A , ( + t) ie JA) 
from § 3. First, some preliminary remarks: The operation + m will be briefly denoted 
by +. The sixth (concluding) join line in condition Q will be drawn in figures by 
a dashed line. For every a e S \ {0} the quadrilateral (0, 0), (a, 0), (a, a), (0, a) is 
well situated with respect to the index quintuple (II, III, I, I, II) so that by condition Q 
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the concluding line (0, a) U (a, 0) must exist and belongs to some pencil &ly where 
the index IV depends only on I, II, III (and not on the element a). If ABCD is an 
admissible quadrilateral with A \J B, CU De &„ A U D, B\J Ce &fi and 
A U C e S£y for some indexes a, /?, y then by condition Q used for the index quintuple 
(a, 7- P> HVa) the concluding line B\J D exists and belongs to some pencil^ where d 
depends only on a, />, y. In the sequel we will not mention explicitly the corresponding 
index quintuples when applying condition Q as they will be clear from the context. 

6. Let aeS\{0}. We investigate an admissible quadrilateral (0, 0) (a, 0) (a, a) 
(0, a) and apply condition Q (Fig. 6). The concluding line (0, a) U (a, 0) = k mus 

Fig. 6 
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belong to some JSfIv. Put [(a, 0), III] VI [(0, 0), I] = (0, b). As <pm = ids we obtain 
^III(^) + ft=-a + ft==0. We can write b = a~. If (S, +) is an additive loop with 
neutral element 0 then we write b = a~ and a = — f t i f a + ft = 0. Thus we have 
an admissible quadrilateral (0, a~) (a, a~) (a, 0) (0, 0) and by applying condition Q 
we obtain the concluding line (0, 0) U (a, a~~) = /0 belonging to J£?IV. Further 
application of condition Q to admissible quadrilaterals (a~, a~) (0, a") (0, 0) (a~, 0) 
and (a, a) (a, a~) (a~, a~) (a~, a) gives the concluding lines (0, a~) U (a~, 0) and 
(a~, a) U (a, a.*~)e J£?IV, respectively. The latter concluding line is of course /0 

again. It remains to apply condition Q to the admissible quadrilateral (0, 0) (0, a) 
.(a~,a)(a~, 0). Then the concluding line (0, a) U (a", 0) belongs to 5£m and we 
have the whole configuration in Fig. 6. 

The line (0, a) U (a~, 0) has the equation y = x + a. As (a", 0) is a point of this 
line, we have (a~) + a = 0. Thus a" = —a and we obtain the additively inverse 
element of a. 

The equations of the lines [(0, a), IV], [(0, 0), IV], [(0, - a ) , IV] are y = 
= <piy(x) + i v a , y = <piy(x) and y = <pIV(x) +iV(—a), respectively. As the point 
(a, 0) lies on the first line, the point (a, —a) on the second and the point ( — a, a) 
on the second, we have 0 = <P\y(a) + i v a , —a = <Prv(a)- a = <pIV(—a) so that 
a = <Piv(<P iv(a))- From ( - a , 0) e m it follows that 0 = <p\y(-a) + IV ( - a ) . Thus 
0 = a + rv ( - a ) and - a is the additively inverse element of the element a with 
respect to + IV. 

7. Let a,be S\{0}; a 4= b. Using the already known properties of Jf we get 
the configuration in Fig. 7. The quadrilateral (0, 0) (a + b, 0) (a + b, a + b) . 
. (0, a + b) is admissible and condition Q yields the concluding line (0, a + b) U 
U (a + b, 0) a* lt e J£?IV. Successively, we investigate admissible quadrilaterals 
(0, b) (a, b) (a, a + ft) (0, a + b), (a, a) (b, a) (ft, 6) (a, b), (a, ft) (a, 0) (a + ft, 0) . 
. (a + b, b) and (0, a + b) (0, a) (6, a) (ft, a + ft). The concluding lines by condition 
Q are h e &iy, l± e <£xy, (a, 0) U (a + b, ft) e Sem and (0, a) U(b,a + b)e £„„ 
respectively. The equations of /t and of the two last lines are y = </>iV(x) +iy(a + b), 
y = x + ( - a ) and >> = x + a respectively. From (b, a + b)e [(0, a), III] it follows 
(by substituting x = b, y = a + b into the equation y = x + a) that a + fe = 
= fe + a. Thus the operation + is commutative. 

Since (a, b), (b, a)e lx we obtain analogously (Ia>fe) b = <piy(a) + IV(a + b). 
Now take (l9iv(a)f&) and use <p\y = ids so that (Ha,fr) 6 = a +\y(<piy(a) + b). We 
will investigate the equation </>iV(fl) + (a + Iv fc) = c. Add (by + IV) the element a 
from the left. One obtains a +\y(<Pi\(a) + (a +iyb)) = a +xyc, where the left 
hand side is equal to a + IV b by (lla,a+lvb)- As (S, + IV) is a loop, a + I V 6 = a + I v c 
implies b = c. Thus 6 = <pIV(a) + (a + IV ft). From (a + b, 6) e [(0, a), III] it 
follows that b = (a + b) + (-a). By - a = <pIV(a) and by commutativity of + we 
get b = <pIV(a) + (a + 6). From fe = <piy(a) + (a + l v fe) = 9 ]V(a) + (a + ft) w e 

deduce a + IV ft = a + ft. Hence + = +1V. 
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Fig. 7 

Now take (I«+*f«,IV(fl)), 1-e. <Piv(a) = <P\v(a + b) + ((piy(a) + (a + b)). The second 
term on the right hand side is equal to b. By adding (piy(b) we obtain <piy(b) + 
+ <piy(a) = (pw(b) + (<piy(a + b) + b). Here the right hand side is equal to 
<P\y(a + b) so that by commutativity of + we obtain <piy(a) + <piy(b) = q>iy(a + b). 

8, Let a, ft, c e S. Set A = (q>iy(b)9 a), B = ((piy((a + b) + c)9 a), C = 
= {(<P\v(a + b) + c), <piy(c)), D = (<piy(b)9 <PiY(c)). As A U B9 CUD exist and 
belong to J£?n, A U D9 B U C exist and belong to S£ x and AU C exists and belongs 
to JS?ni, ABCD is an admissible quadrilateral and condition Q applied to ABCD 
gives the concluding line BU D = {(x9 (piy(x) + v)\xeS}e &xy with a con­
venient veS. Since D lies on this line we have <?iV(c) = <Piv(<Piy(b)) + v. Using 
^iv = ids and adding <piy(b) we get <piy(b) + (piy(c) = (pxy(b) + (b + v). Using 
the additivity of <piy and (lbtV) we obtain <piy(b + c) = v so that B U D = 
= {(x> <Piv(x) + <Piv{b + c)) | x 6 S}. As the point B lies on this line we can write 
a = <ply((piy((a + b) + c)) + (piy(b + c). By q>\y = ids we have a = ((a + b) + 
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+ c) + <piy(b + c). Adding b + c and using commutativity of + we obtain a + 
+ (ft + c) = (6 + c) + (<pIV(b + c) + ((a + 6) + c)). Finally by (Hfc+c,(fl+»+c) we 
conclude a + (b + c) = (a + b) + c, the associativity for +. So (5, +) is a com­
mutative group. 

9. Now we shall modify the preceding investigations by replacing the frame 
(0,1, II, III) by a new frame (O, I, II, a), a =t= III. The second coordinates rest 
without change whereas the first coordinates are now determined with help of the 
line [0, a] instead of [0, III] (cf. Fig. 8). Instead of the operation + = + HI we 

(o,^(a)) 

Fig. 8 

obtain the operation + a which is again commutative and associative. Hence (S, +a) 
is a commutative group for all a e «/A. 

10. Now we choose arbitrary elements a, b, c e S with c 4= a and arbitrary 
indexes a,peSA. Put [(a, b), II] = l0, [(a, b), I] = lu [(c, b), I] = Z2, 
[(a, b), a] = {(x, <pa(x) + a fc - a <pa(a)) \ x e S} = Z3, [(c, b), 0] = 
= {(*, 9?(x) +fib -p <Pt(c)) | x e S} = U, /3 n 12 = (c> <P*(c) +« b - a g>a(a)) = -4, 
/4 n /i = (a, <p̂ (a) +p b -fi <pfi(c)) = B. The quadrilateral (a, fc) B(c, b) A is admis-
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sible and condition Q applied to it gives the concluding line A U B e S£y for some 
index y =# I. We shall distinguish two cases: either y = II or y e J A. 

The case y = II: As A U B = {(x, y) \ y = const.}, we have <pa(c) +a b - a <pa(a) = 
= <pp(a) + pb -p<pp(c). For b := 0 we obtain <pa(c) -a<pa(a) = <pp(a) -p <pp(c) : = 
:= d. If a, c run over 5 then also d runs over S and using the commutativity of +a 

and + pwe get d +ab = d + pb (identically for d, b e S). 
The case yeJA: As A\JB = {(x, <py(x) + y(<pp(a) + p b -p <pp(c)) -y <py(a)) \ 

| x e S} and A is one point of this line, it follows that 
(i) <pa(c) +a b.-« <p*(a) = <py(c) +y (<pp(a) + pb -p <pp(c)) -y<Py(a). As a con­

sequence we obtain the following assertion. 

Voc,peJfA 3yeJA Va, b, ceS: 

(ii) (<pa(c) + a b - a <Pa(a)) +y<py(a) = <py(c) + y(q>p(a) + p b -p <pp(c)). 
For c : = 0 and b : = <pa(a) we get 

(iii) Va, /SeJA 3yeSA Va e S: <pa(a) +p<pfi(a) = <py(a). By setting b := <pp(c) 
we deduce from (ii) 

(<pXc)+«<Pp(c) -a<px(a)) +y<py(a) = <py(c) +y(<pp(a) +p<pp(c) -p<Pfi(c)). 

Consequently (<py(c) -a<pa(a)) +y <py(a) = <py(c) +y <pp(a) (we have used the equa­
tion (iii) with changed indexes a, /?). As a and c are arbitrary, we can suppose that 
(py(c) = <pa(a) which yields. 

(iv) Va, 0eJA 3yeSA Va e S: <pa(a) +y <pp(a) = <py(a). 
Substituting b : = <Pp(c) in (i) and arranging the left hand side by means of (iii) 
(with changed a, p) we get 

(<py(c) - « <pa(a)) +y <py(a) = <py(c) +y <pp(a) . 

From this identity we successively obtain by (iv) and by the properties of +y: 

(<r\(<0 ' a <P*(aj) +y <pa(
a) +y<Pfi(a) = <Py(C) +y <Pfi(a) ' 

(<py(c) - , <pa(a)) +y <pa(a) = <py(c) ; <py(c) -a <pa(a) = <py(c) -y <pa(a) . 

Putting <py(c) := u, <pa(a) := v We get u — av = u — yv. Analogously we obtain 
u — p v = u — y v so that u — a v = u — p v (identically for u,ve S). For u := 0 we 
have —av= — p v so that x +a y = x +p y (it suffices to set u := x, v := —ay = 
= — p y). Thus also here the operations a, p are the same. 

Both cases yield the result that all operations + t , ieJA coincide (and can be 
denoted by the same symbol +) . Then the new formulation of assertion (iii) reads 
as follows: 

(iii) Va, p e JA 3y e JA Va e S: <pa(a) + <pp(a) = <py(a). x) 
So we can define an addition + on 0 (the set of all <pL as introduced in § 3) such that 

l) As follows from the properties of the coordinatizing algebra y is uniquely determined 
by a, p. 
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<P* + <Pfi = <?V for all a,pefA by (iii') and <pH + ^t := <p„ <pt + <p„ = <pL for all 
* e J \ {1} (we know that <pn(x) :« 0 for all xeS). 

11. Now we shall verify that (#, +) is a commutative group. From the definition 
of cpn and the operation + it is clear that <pn is the neutral element ofthegroupoid 
($, +). The associativity or commutativity for + follows at once from the definition 
of + and from the associativity or commutativity of +, respectively. It remains 
to prove that for every <p e 0 there exists a unique <p' e <P such that <p + <p' = <pn. 
If cp = <pn then <p' = <pn, too Let I G / A and a e 5 \ { 0 } . We will consider the 
quadrilateral (0, 0) (a, 0) (a, <p<(a)) (0, <pt(a)) (Fig. 9). It is admissible and we can 

Fig. 9 

apply condition Q to it obtaining the concluding line (a, 0) U (0, (pL(a))e $£t> for 
some index i' e J. This line has the equation y = <pt>(x) + <pt(a). As (a, 0) is one 
point of the line we have 0 = <pt>(a) + <pt(a), i.e. (<pt> + <pt){a) = 0 = ^n(a). 
As a is arbitrary (the case a = 0 is trivial) and + is commutative we have obtained 
the requested assertion. 

12. Choose a, p e JA and a € S \ {0}. The quadrilateral (0, 0) (0, <pa(a)) (a, <pa(a)) • 
. (a, 0) (Fig. 10) is admissible. Using condition Q for a convenient index quintuple 
we get the concluding line (a, 0) U (0, <pa(a)). 
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Fig. 10 

Thus successively get further admissible quadrilaterals (0, 0) ((pa(a), 0) . 
. ((pa(a), (pfi((px(a))) (0, (pp((pa(a))) (condition Q yields the concluding line (<pa(a), 0) U 
U(0,(pfi((pa(a)))), (0,^ (condition Q yields the 
concluding line (a, 0) U (0, <pfi(<pa(a)))) and (a, 0) (0,0) (0, (pfi((pa(a))) (a, (pp((pa(a))) 
(condition Q yields the concluding line (0, 0) U (a, < (̂<pa(tf))) = {(x, (py(x) f x e 5} e 
G £?y for some y e </A). Substituting the coordinates of the point (a, (pfi((pa(a))) into 
y = <py(x) we obtain <Pp(<pa(aj) = <py(a). This means that (pao(pp = (py (o is the map 
composition). Thus (<i>, o) is an associative groupoid with neutral element <pln = id5 

i.e. a monoid. , 
Let a J j e / A . Then ((<pa + <p0) o <py) (x) = <py((<pa + ^ ) (x)) = 

= <Py(<P*(*) + <r>(x)) = (py(<Pa(x)) + <Py(<rV(x)) = (<pa o <?y) (x) + (<?/, o <?y) (x) = 
= (((pa o cpy) + (<pfi o (py))(x) for all x e S. Thus the distributivity ((pa + <?/*) o <py = 
= (cpa o <py) + ( ^ o <py) is valid. Analogously for the distributivity (pa o (<pp + <py) = 
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= (<P« o <Pp) + (<p9 o <py). Both distributivities hold trivially also if the index II is 
permited. Finaly, let IGJA and a e S \ { 0 } . The quadrilateral (a, 0)(0, - a ) . 
.(0, -<pia))((p~(a)90) is admissible as (a, 0) U (0, -a)9(cpt(a)90) U (0, -<p(a)) 
exist and belong to <£m and also (a, 0) U (0, -9*( f l)) exist and belong to Set. Thus 
we may apply condition Q obtaining the concluding line (0, - a ) U (<Pt(a)9 0) = 
= {(x, <pt(x) - a) f x e 5} G JSf- for some 1eSA. As the point (<r\(tf)> 0) lies on this 
line we have 0 = (p-(<pt(a)) — a and together with the trivial case a = 0 we conclude 
that <pt o <pT = ids = <pUI. We also have <pj o cpt = ids as (<p- o <pA) (<pL(a)) = 
= (<pt o (cp-t o <pt)) (a) = ((<pL o <pt-) o <pf) (a) = <p,(ids(a)) = <pt(a). Adding the trivial 
case with a = 0 we also have <p; o <pt = ids. Thus (#, o) is a group and F = (<P9 + , o) 
is a skew-field, and for all i e i / A , <p, is an additive automorphism. This means in 
other words that the given Q-net is isomorphic to an Ostrom net over F. In fact, 
the corresponding vector space *V over F is the additive group (5, + ) provided 
with the operation of scalar multiples S x <p -> 5, (a, a) H+ <pa(a). 

13. It remains to prove that every Ostrom net is necessarily a Q-net. This will be 
done in this concluding section. First we restate one known property of Ostrom nets: 
Every Ostrom net having the index set J is j-transitive1) for every i e J. Indeed, 
let JV be a given Ostrom net over a skew-field F = (F, + , •) with the full point set 
iT x f where V is a non-trivial left vector space over F. Let (x1? yx), (x2, y2) 
be points with xx #= x2 on the line {(x, wx + v) | x e f } with slope u and intercept v. 
So Y\ = uxi + Y> Yi = wx2 + v- N o w t l ie map' TT X TT -• TT X TT, (X, y) H-V 
I~* (x + M(X2 — xx), y + w(y2 — Yi)) -* the requested w-translation sending (xx, y t) 
to (x2, y2). The case of two points (c, yx), (c, y2) (i.e. points lying on a vertical line 
{(c> y) | Y e ^ } ) leads to an co-translation (the slope and simultaneously the index 
of the pencil of vertical lines) TT X TT -> f x -)T, (c, y) i—> (c, y + (y2 - yA)). 

We proceed to the proof of validity of condition Q in a given Ostrom net Jf: 
Choose mutually distinct indexes a, fi9yeF and put lx = [(0, 0), a] , /2 = [(0, 0), fi]9 

h = [(0» 0), y]. Further, choose a point (a, y0) with o 4= 0. Let /4 and /5 be lines 
from S£t and J.? ,̂ respectively (e9 8 e F are further indexes), such that (a, y0) G /4, /5, /2. 
Put J3 n U = (*i. yi). ' i n /5 = (*2, y2)- W e have l2 = {(x, fix) | x G ^ } , /3 = 
= {(x, yx) | x G ir}9 U = {(x, ex + c) | x G V} for some c G Y. The relation 
(a, J?a) G /4 implies /?a = ea + c and consequently c = (/? - e) a. Thus /4 = 
= {(x, ex + (fi - e) a) \ x e t~}. From this we calculate xx and yx. yx = ex + 
+ (/J - e) a, (y - e) x = (fi - e) a, x t = (y - e)"1 (/f - e) a, y t = y(y - e)" 1 . 
.{fi - e) a. Analogously lx = {(x, ax) | x G I T } , /5 = {(x, 8x + d) | x G TT} for some 
<f G TT where jffa = 8a + d, d = (fi - <5) a. Thus /5 = {(x, <5x + (fi -5)a)\xe 
G TT}. Further we have ax = 5x + (fi - 8) a, (a - 8) x = (fi - 8) a, x2 = 
= (a — 8)'1 (fi — 8) a, y2 = a(a - o*)"1 (j8 — 8) a. Thus we have already four 
points as vertices of the quadrilateral, and five of its edges. The remaining edge 

x) ^-transitive means: for every couple A, A' of distinct collinear points with A \_J A' G -S^ 
there is a non-identical i-translation sending A to A'. 
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exists if and only if there is a X e F such that yx — Xx1 = y2 — Ax2. After substituing 
the values of x x , y t, x 2 , y2 we obtain y(y — e)"1 (/? — E) O — X(y — e ) _ 1 (/? — e) a = 
= a(a - <5)_1 (j? - S) a - A(a - <5)~1 (p - S) a and further (y(y - e)" 1 (p - e) -
- a(a - 5)" 1 (p - S)) a = A((y - e)" 1 (j3 - e) - (a - d)"1 (p - S)) a. Conse-
quently X((y - a)"1 (/* - s) - (a -, 5)" 1 (/? - 5)) = y(y - e)'1 (p - e) -
- a(a - Sy1 (p - 5). If (y - a)"1 (P - e) - (a - 5)" 1 (jff - 5) # 0 then X = 
= (y(y - e)-i (p - s) - a(a - 5 )" 1 (/? - <5))((y - a)"1 (0 _ « ) - ( « - *)-* . 
. (0 - <5))~1, whereas by (y - e)'1 (p - s) - (a - <5)"1 (0 - <5) = 0 we obtain 
(y — s)'1 (p — e) = (a — <5)_1 (/J — S) i.e. xt = x 2 and the sixth join line is 
vertical. The cases in which also the slope oo appears can be investigated similarly. 
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Souhrn 

KONFIGURAČNÍ CHARAKTERIZACE OSTROMOVÝCH TKÁNÍ 

JAROMÍR BAŠTINEC 

V práci jsou studovány tkáně splňující universální čtyřúhelníkovou podmínku: Jestliže libovolné 
čtyři různé body tkáně, z nichž žádné tři neleží na jedné přímce, jsou po dvou spojitelné pěticí 
přímek, potom existuje i jednoznačně určená šestá přímka, spojující zbývající dvojici bodů. 

Je dokázáno, že každá tkáň splňující podmínku je Ostromovou tkání (tj. tkání nad tělesem). 
Naopak, každá Ostromova tkáň splňuje uvedenou podmínku. 

Authoťs address: Katedra matematiky FE VUT, Kraví Hora, 602 00 Brno. 
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