Zbigniew Jerzy Jakubowski; Piotr Liczberski; Łucja Żywień
Applications of the Hadamard product in geometric function theory

Persistent URL: http://dml.cz/dmlcz/126141

Terms of use:

© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
APPLICATIONS OF THE HADAMARD PRODUCT IN GEOMETRIC FUNCTION THEORY

ZBIGNIEW JERZY JAKUBOWSKI, PIOTR LICZBERSKI, ŁUCJA ŻYWIŃ, ŁÓDŹ

(Received October 31, 1988)

Summary. Let \(\mathcal{A} \) denote the set of functions \(F \) holomorphic in the unit disc, normalized classically: \(F(0) = 0, F'(0) = 1 \), whereas \(A \subset \mathcal{A} \) is an arbitrarily fixed subset. In this paper various properties of the classes \(A_\alpha, \alpha \in C \setminus \{-1, -\frac{1}{2}, \ldots\} \), of functions of the form \(f = F \ast k_\alpha \) are studied, where

\[
F \in A, \quad k_\alpha(z) = k(z, \alpha) = z + \frac{1}{1 + \alpha} z^2 + \ldots + \frac{1}{1 + (n - 1) \alpha} z^n + ..., \]

and \(F \ast k_\alpha \) denotes the Hadamard product of the functions \(F \) and \(k_\alpha \). Some special cases of the set \(A \) were considered by other authors (see, for example, [15], [6], [3]).

Keywords: Hadamard product, class of type \(A_\alpha \), typically real functions.

1. Let \(\mathcal{A} \) denote the set of functions \(F \) of the form

\[
F(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\]

holomorphic in the unit disc \(\mathcal{A} = \{ z \in C : |z| < 1 \} \), whereas \(T \) is a subset of \(\mathcal{A} \) consisting of typically-real functions in \(\mathcal{A} \) (see [12]).

In paper [6], for an arbitrarily fixed \(\alpha \in \mathbb{R} \setminus \{-1, -\frac{1}{2}, \ldots\} \), the class

\[
T_\alpha = \{ f \in \mathcal{A} : f = F \ast k_\alpha, F \in T \}
\]

was considered, where

\[
k_\alpha(z) = k(z, \alpha) = \sum_{n=1}^{\infty} \frac{1}{1 + (n - 1) \alpha} z^n, \quad z \in \mathcal{A},
\]

and \(F \ast k_\alpha \) denotes the Hadamard product of the functions \(F \) and \(k_\alpha \) (see, for example, [14], p. 27; [13]).

For nonnegative values of \(\alpha \), the family \(T_\alpha \) was introduced earlier by K. Skalska ([15]) in another way.

The aim of this paper is to study various properties of the class

\[
A_\alpha = \{ f \in \mathcal{A} : f = F \ast k_\alpha, F \in A \}
\]

where \(A \neq \emptyset \) is an arbitrarily fixed subset of the set \(\mathcal{A} \), and \(\alpha \in C \setminus \{-1, -\frac{1}{2}, \ldots\} \).
In the subsequent considerations we shall always assume, if not stated otherwise, that \(\alpha \) is an arbitrarily fixed complex number different from the numbers \(-1, -\frac{1}{2}, \ldots\).

2. It follows directly from the definitions of the family \(A_\alpha \) and the Hadamard product that the function \(f \) of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_{n,f} z^n, \quad z \in \Delta,
\]

belongs to the family \(A_\alpha \) if and only if there exists \(F \in A \) of the form (1) such that

\[
a_{n,f} = \frac{a_{n,F}}{1 + (n - 1) \alpha}, \quad n = 2, 3, \ldots.
\]

So, if the exact estimate \(|a_{n,F}| \leq d_n \) takes place in the class \(A \) \((F \in A)\), then (3) yields the exact estimate \(|a_{n,f}| \leq d_n/|1 + (n - 1) \alpha|, \quad f \in A_\alpha \).

Moreover, from formula (3) we obtain that \(A_0 = A \).

Also, in a simple way, from (2) we obtain the following properties of the classes \(A_\alpha \).

Theorem 1. Let \(r \in (0, 1) \). If, for each function \(F \in A \), the function

\[
F_r(z) = \frac{1}{r} F(r z), \quad z \in \Delta,
\]

belongs to the family \(A \), then, for each function \(f \in A_\alpha \), the function

\[
f_r(z) = \frac{1}{r} f(r z), \quad z \in \Delta,
\]

belongs to the family \(A_\alpha \).

Theorem 2. Let \(\theta \in (0, 2\pi) \). If, for each function \(F \in A \), the function

\[
F_\theta(z) = e^{-i\theta} F(ze^{i\theta}), \quad z \in \Delta,
\]

belongs to the family \(A \), then, for each function \(f \in A_\alpha \), the function

\[
f_\theta(z) = e^{-i\theta} f(ze^{i\theta}), \quad z \in \Delta,
\]

belongs to the family \(A_\alpha \).

Theorem 3. Let \(\alpha \in \mathbb{R} \setminus \{-1, -\frac{1}{2}, \ldots\} \). If, for each function \(F \in A \), the function

\[
G(z) = \overline{F(\bar{z})} = \sum_{n=1}^{\infty} \bar{a}_{n,f} z^n, \quad z \in \Delta,
\]

belongs to the family \(A \), then, for each function \(f \in A_\alpha \), the function

\[
g(z) = \overline{f(\bar{z})} = \sum_{n=1}^{\infty} \bar{a}_{n,f} z^n, \quad z \in \Delta,
\]

belongs to the family \(A_\alpha \).
Similarly as in the case $A = T$ (see [15], [6]), the following properties of the families A_α may be proved.

Theorem 4. A function f belongs to A_α if and only if f is a solution of the differential equation

$$az f'(z) + (1 - \alpha) f(z) = F(z)$$

where $F \in A$.

Theorem 5. If $f \in A_\alpha$, then

$$f(z) = \frac{1}{2\pi i} \oint_{|\zeta| = \rho < 1} k\left(\frac{z}{\zeta}, \alpha\right) F(\zeta) \frac{d\zeta}{\zeta}, \quad |z| < \rho < 1,$$

where $F \in A$, and vice versa.

Theorem 6. If $f \in A_\alpha$, $\Re \alpha > 0$, then

$$f(z) = \frac{1}{\alpha} \int_0^1 t^{1/\alpha - 2} F(zt) \, dt, \quad z \in A,$$

where $F \in A$, and vice versa.

Theorem 7. Let A and B be two fixed subsets of \mathcal{A}. If, for any functions $F \in A$, $G \in B$, the function $F \ast G \in A$, then, for each $f \in A_\alpha$, the function $f \ast G \in A_\alpha$.

The above theorems can be used in various problems concerning classes of type A_α. In particular, the properties of solutions of equations of the form (4) were considered in several cases of the classes $A \subset \mathcal{A}$ (for example, in [15], [6], [8], [2]). From Theorems 5 and 6 one often gets structure formulae for the classes A_α (for example, in [15], [6]; see also [10], [2]). On the other hand the properties of the Hadamard product of functions of the form (1) of the classes frequently considered are well-known: CV (the class of convex functions), $ST(1/2)$ (the class of starlike functions of order 1/2), CC (the class of close-to-convex functions) (see [4], vol. 1, p. 115; vol. 2, p. 2). So, from Theorem 7 and the results of the paper [13] we obtain:

1) for any functions $f \in (CV)_\alpha$, $G \in CV$, the Hadamard product $f \ast G$ belongs to $(CV)_\alpha$;

2) for any functions $f \in (ST(1/2))_\alpha$, $G \in ST(1/2)$, the Hadamard product $f \ast G$ belongs to $(ST(1/2))_\alpha$;

3) for any functions $f \in (CC)_\alpha$, $G \in CV$, the Hadamard product $f \ast G$ belongs to $(CC)_\alpha$.

3. Let H denote the family of all functions holomorphic in the unit disc A. The set H with the topology of almost uniform convergence is, of course, a linear topological space.
As is known, certain problems of the geometric theory of analytic functions consist in determining the set Q of values of a complex continuous functional defined on a given family $A \subset H$. If the set Q is bounded, closed, and connected, then we determine it effectively by characterizing its boundary. To ensure that the set Q has the above properties, the family A considered should be compact and connected.

In other extremal problems, support points and extreme points of the families play an essential part (see, for example, [14], pp. 3, 99; [1]).

Let us recall: a function $F \in A$ is called a support point of a compact subset A of H if and only if there exists a continuous linear functional x^* on H such that, $\Re x^*$ is non-constant on A and for each function $G \in A$,

$$\Re x^*(G) \leq \Re x^*(F).$$

So, the problem of characterizing the set of the support points of the class $A_a \subset A \subset H$ seems to be interesting when the characterization of the support points of the family $A \subset A \subset H$ is known.

In the proof of the theorem solving this problem we shall use the following well-known result of Toeplitz ([16]).

Lemma. A functional x^* defined on H is linear and continuous if and only if there exists a sequence of complex numbers $\{b_n\}$ such that, for each function $g \in H$,

$$x^*(g) = \sum_{n=0}^{\infty} a_n g b_n,$$

$$\limsup_{n \to \infty} |b_n|^{1/n} < 1.$$

Theorem 8. A function f_0 is a support point of the set A_a if and only if $f_0 = f_0 \ast k^a$ where F_0 is a support point of the set A.

Proof. Let F_0 be a support point of the set A. Then there exists a linear and continuous functional x^* on H such that, for each function $F \in A$,

$$\Re x^*(F) \leq \Re x^*(F_0).$$

The above lemma and formula (1) imply that this inequality can be written in the following equivalent form:

$$\Re \left(\sum_{n=2}^{\infty} a_n x b_n \right) \leq \Re \left(\sum_{n=2}^{\infty} a_n F_0 b_n \right), \quad F \in A, \quad (5)$$

where $\{b_n\}$ is a sequence determining the functional x^*.

As $\limsup_{n \to \infty} |b_n[1 + (n - 1) \alpha]|^{1/n} < 1$, the sequence $\{b_n[1 + (n - 1) \alpha]\}$ also determines a linear and continuous functional on H. Let us denote it by x^*_a. Let f
be an arbitrarily fixed function of the family A_a, whereas $f_0 = F_0 \ast k_a$. Then there exists exactly one function $F \in A$ such that $f = F \ast k_a$. Hence, taking formula (3) and inequality (5) into consideration, we obtain

$$
\Re x_a^*(f) - \Re x_a^*(f_0) = \Re x_a^*(F \ast k_a) - \Re x_a^*(F_0 \ast k_a) =
$$

$$
= \Re \left(\sum_{n=2}^{\infty} \frac{a_n}{1 + (n - 1) \alpha} b_n [1 + (n - 1) \alpha] \right)
$$

which proves that the function $f_0 = F_0 \ast k_a$ is a support point of the set A_a. We also note that if $\Re x^*$ is non-constant on A then $\Re x_a^*$ is non-constant on A_a.

The proof of the converse theorem proceeds analogously.

From the linearity and the injectivity of the Hadamard product $F \ast k_a$ in the space H the following properties of the classes A_a follow.

Theorem 9. A set A_a is convex in the space H if and only if A is convex in this space.

Theorem 10. If a set A is a convex set in space H, then $f \in A_a$ is an extreme point of the set A_a if and only if $f = F \ast k_a$ where F is extreme point of the set A.

Next, let us recall that a topological space X is called arcwise connected if, for any two points $x_1, x_2 \in X$, there exists a continuous mapping $\gamma(t)$ of an interval $\langle a, b \rangle$ into the space X such that $\gamma(a) = x_1, \gamma(b) = x_2$. Such a mapping will be called a path joining the points x_1 and x_2.

We shall prove the following property of the class A_a.

Theorem 11. If a set A is arcwise connected, then the set A_a is arcwise connected.

Proof. Let $f_1, f_2 \in A_a$. Then there exist functions $F_1, F_2 \in A$ such that $f_1 = F_1 \ast k_a$, $f_2 = F_2 \ast k_a$, and a path $\Gamma(t) = F(z, t), t \in \langle a, b \rangle$, joining F_1 and F_2. Using the formula given in Theorem 5, we prove in the elementary way that $\gamma(t) = f(z, t) = F(z, t) \ast k_a(z)$ is a path joining f_1 and f_2, which completes the proof.

Since the arcwise connectedness implies the topological connectedness, Theorem 11 yields that, for the arcwise connected family A, the families A_a are connected.

Similarly, the following property of the families A_a may easily be proved.

Theorem 12. If A is a compact family, then the families A_a are also compact.

4. K. Skalska in her paper [15] proved that if $A = T$, then the following inclusions hold:

$$
T_\beta \subset T_a \subset T_0 = T, \quad 0 < a < \beta.
$$
In the general case, neither of the inclusions $A_{\beta} \subset A_{\alpha} \subset A$, $0 < \alpha < \beta$, need be true. Indeed, let $A = \{z; z + z^2\}$; then $A_{\alpha} = \{z; z + 1/(1 + \alpha)z^2\}$, so $A_{\alpha} \not\subset A_{\beta}$ for $0 < \alpha < \beta$. Moreover, if $A = \{z + z^2\}$, then $A_{\alpha} = \{z + 1/(1 + \alpha)z^2\}$, thus the above inclusions are not true, either, and furthermore, for $\alpha = 0$, even $A_{\alpha} \cap A = \emptyset$.

Next, let $A = S$ where S is the well-known class of univalent functions F of the form (1) in A. D. M. Campbell & V. Singh ([2]) proved that then the classes $S_{\alpha} = A_{\alpha}$, even for $\alpha = \frac{1}{2}$, include infinite-valent functions. So, $S_{\alpha} \not\subset S$ for $\alpha = \frac{1}{2}$. Of course, it is also known that $S_{1} \not\subset S$ (see [7]). On the other hand Z. Lewandowski, S. Miller, E. Ziotkiewicz in their paper [8] proved that if $A = ST$, then $(ST)_{\alpha} \subset ST$ for all $\alpha \in C$ from the disc $|\alpha - \frac{1}{2}| \leq \frac{1}{2}$. Another non-trivial example of a family A for which the inclusion $A_{\alpha} \subset A$ is true for a complex α is the family $B_{1}(M)$, $M > 1$, (see [4], vol. 2, p. 36) of functions of the form (1) satisfying the inequality

$$|F(z)| < M, \quad z \in A.$$

Namely, we have the following theorem.

Theorem 13. If $M > 1$ and Re $\alpha > 0$, then

$$(B_{1}(M))_{\alpha} \subset B_{1}(M).$$

Proof. Let $f \in (B_{1}(M))_{\alpha}$ and suppose that, at the same time, $f \notin B_{1}(M)$. It is easy to verify then that there exists a point $z_0 \in A$ such that

$$\max_{|z| \leq r} |f(z)| = |f(z_0)| = M, \quad r = |z_0|.$$

Hence, in view of Jack's lemma ([5]), we obtain that there exists a number $m \geq 1$ such that

$$z_0 f'(z_0) = m f(z_0).$$

Consequently, in view of Theorem 4 we obtain

$$|\alpha z_0 f'(z_0) + (1 - \alpha) f(z_0)| = |f(z_0)| |\alpha(m - 1) + 1| \geq |f(z_0)| = M$$

in spite of the assumption that $f \in (B_{1}(M))_{\alpha}$, which completes the proof.

Now, we shall give a construction of the families A for which both the inclusion relations above will be true. For this purpose, let us consider the operator $D: H \to H$ defined by the formula

$$D F(z) = z F'(z), \quad z \in A,$$

and the set $\mathcal{A}' = \{F \in H, F(0) = 1\}$. Let \mathcal{J} denote the class of operators $J: \mathcal{A} \to \mathcal{A}'$ satisfying for all $F \in \mathcal{A}$ the condition

(i) \hspace{1cm} $J(\alpha DF + (1 - \alpha) F) = J(F) + \alpha D J(F), \quad \alpha \in C.$
Let us observe that, for example, the operators $J_k: \mathcal{A} \rightarrow \mathcal{A}'$, $k = 1, 2, 3, 4$, defined by the formulas

\begin{align*}
J_1(F)(z) &= F'(0) = 1, \quad z \in \Delta, \\
J_2(F)(z) &= F'(z), \quad z \in \Delta, \\
J_3(F)(z) &= F(z)/(z), \quad z \in \Delta, \\
J_4(F)(z) &= \frac{1}{z \int_0^1 F(\theta)} d\theta, \quad z \in \Delta,
\end{align*}

belong to the class \mathcal{J}.

Let

\begin{equation}(6)\end{equation}

$A = \{ F \in \mathcal{A}, \ Re J(F)(z) > 0, \ z \in \Delta \}$

where J denotes an arbitrarily fixed operator of the class \mathcal{J}.

In the sequel, family (6) will be called a family of type J.

Let us observe that the identity function belongs to each family A of type J, $(J(I)(z) = 1, z \in \Delta, J \in \mathcal{J})$; moreover, the class A of type J_1 coincides with the whole family \mathcal{A}. The well-known families (see [4], vol. 1, p. 101; vol. 2, p. 97)

\begin{align*}
(7) & \quad \{ F \in \mathcal{A}: \ Re F'(z) > 0, \ z \in \Delta \}, \\
(8) & \quad \left\{ F \in \mathcal{A}: \ Re \frac{F(z)}{z} > 0, \ z \in \Delta \right\}
\end{align*}

are classes of type J_2, J_3, respectively. The family A of type J_4, as far as we know, has not been investigated yet.

The families A_α associated with the classes A of type J have the following properties.

Theorem 14. If A is a family of type J, then for each $\alpha \in C$, $Re \alpha \geq 0$, the inclusion $A_\alpha \subset A$ is true.

Proof. Let $f \in A_\alpha$. Then from (6) and (4) we have

$$Re J(\alpha Df + (1 - \alpha)f)(z) > 0, \quad z \in \Delta.$$

This inequality, in view of property (i) of the operator J, is equivalent to

\begin{equation}(9)\end{equation}

$$Re (p + \alpha Dp)(z) > 0, \quad z \in \Delta,$$

where $p = J(f)$. Using S. Miller's result ([9], Corollary) we get $Re p(z) > 0, z \in \Delta$. Therefore, $Re J(f)(z) > 0, z \in \Delta$, and, consequently, $f \in A$, which completes the proof.

Theorem 15. If A is a family of type J and $0 \leq \alpha \leq \beta$, then $A_\beta \subset A_\alpha \subset A_0 = A$.

154
Proof. Of course, it is sufficient to consider the case $0 < \alpha < \beta$. So, let $0 < \alpha < \beta$, $f \in A_\beta$ and $f \notin A_\alpha$. Then, in view of (4), (6) and property (i), there exists $z_0 \in A$ such that

$$\text{Re } J(f)(z_0) + \beta \text{Re } D J(f)(z_0) > 0,$$
$$\text{Re } J(f)(z_0) + \alpha \text{Re } D J(f)(z_0) \leq 0.$$

Multiplying the first inequality by $\alpha > 0$ and the second inequality by $(-\beta) < 0$ and adding them, we get

$$(\alpha - \beta) \text{Re } J(f)(z_0) > 0.$$

Since $\alpha - \beta < 0$, therefore $\text{Re } J(f)(z_0) < 0$ and, consequently, $f \notin A_\alpha$, which contradicts the relation $A_\beta \subset A$ proved in Theorem 14.

In particular cases, if the family A is of the form (7) or (8), Theorems 14 and 15 give some results from paper [3], (see Sections 4 and 5).

5. Let A be a family of type $J = J_k$, $k = 2, 3, 4$. Then there exists a function $F = F_k$, $k = 2, 3, 4$, of this class, such that

$$(10) \quad J(F)(z) = \frac{1 + z}{1 - z}, \quad z \in A.$$

From property (i) of the operator J we get

$$\text{Re } J(\alpha DF + (1 - \alpha) F)(z) = \text{Re } (1 + 2\alpha z - z^2)/(1 - z)^2 \rightarrow -\frac{1}{2} \text{Re } \alpha \leq 0,$$

as $z \rightarrow -1$, $z \in A$, for each $\text{Re } \alpha \geq 0$. So, F_k does not belong to the respective class A_α if $\text{Re } \alpha > 0$. Consequently, the classes A_α associated with the families A of type $J = J_k$, $k = 2, 3, 4$, are essential subclasses of the families A.

From the course of the argument carried out we infer that A_α will be an essential subclass of the family A of type J if, for example, we assume in addition that the solution F of equation (10) belongs to A. Then the family A will be called a family of type \bar{J}. So: if A is a family of type \bar{J}, then $A \notin A_\alpha$ for $\text{Re } \alpha > 0$.

A family A of type J_1 is not a family of type J_1, whereas families A of type J_k, $k = 2, 3, 4$, are families of type \bar{J}_k.

The following property for the families of type J turns out to be true.

Theorem 16. If A is a family of type J, then

$$A \subset A[\Delta_{r(\alpha)}], \quad \text{for } r(\alpha) = \sqrt{1 + |\alpha|^2} - |\alpha| \leq 1$$

where

$$A[\Delta_\alpha] = \{f \in A: \text{Re } J(f)(z) > 0, z \in \Delta_\alpha\}; \quad \Delta_{r(\alpha)} = \{z \in C: |z| < r(\alpha)\}.$$

Moreover, the disc $\Delta_{r(\alpha)}$ for $\alpha \in R$ cannot be enlarged.
Proof. Let \(f \in A \). In view of the definitions of the families \(A_x \) and the sets \(A[A_r] \), the assertion will be proved if we determine the largest number \(r(x) \in (0, 1) \) such that
\[
\Re J(\alpha Df + (1 - \alpha)f) (z) > 0 , \quad z \in A_{r(x)} .
\]

By virtue of property (i) of the operator \(J \), it is sufficient to prove that
\[
\Re (p + \alpha Dp) (z) > 0 , \quad z \in A_{r(x)} ,
\]
where \(p = J(f) \). Since \(f \in A \), therefore \(p \) is a Carathéodory function with a positive real part, so ([11], (6.2)) \(|z p'(z)|/\Re p(z) \leq 2|z|/(1 - |z|^2) \). Hence
\[
\Re (p + \alpha Dp) (z) \geq \left(1 - \frac{2|\alpha|}{1 - r^2} \right) \Re p(z) , \quad |z| = r < 1 .
\]

But \(1 - 2|\alpha|r - r^2 > 0 \) if and only if \(0 < r < r(x) = \sqrt{(1 + |\alpha|^2) - |\alpha|} \), therefore relation (11) follows from (12), which accounts for the inclusion announced in the theorem.

As \(A \) is a family of type \(J \), the solution \(F \) of equation (10) belongs to \(A \). This function turns out to belong to the family \(A_x [A_{r(x)}]_x \) and not belong to \(A_x [A_r]_x \) for \(r > r(x), \alpha \in R \). Thus the proof is complete.

6. Let \(A \) be a family of type \(J \) and \(\alpha \geq 0 \). In view of Theorems 14 and 15 and the fact that \(A \not\subset A_x \) for \(\alpha > 0 \), the following considerations seem to be interesting.

Let \(f \in A, \alpha \geq 0 \). Let us put
\[
\alpha_f = \{ \sup \alpha : f \in A_x \} , \quad A(\alpha) = \{ f \in A : \alpha_f = \alpha \} .
\]

Theorem 17. If \(A \) is a family of type \(J \), then each class \(A(\alpha) \) is nonempty and the following relations hold:
\[
\begin{align*}
(13) & \quad f \in A(0) \text{ if and only if } f \notin A_x \text{ for each } \alpha > 0 ; \\
(14) & \quad f \in A(\infty) \text{ if and only if } f \in A_x \text{ for each } \alpha \geq 0 ; \\
(15) & \quad f \in A(\alpha), \alpha \in (0, \infty), \text{ if and only if } f \in A_\beta \text{ for any } \beta \in (0, \alpha) \\
& \quad \text{ and } f \notin A_\beta \text{ for each } \beta > \alpha .
\end{align*}
\]

Proof. As \(A \) is of type \(J \), then, as we observed earlier, \(A(0) \neq \emptyset \). Let \(\alpha > 0 \) and let \(\mathcal{F} \in A \) be a solution of equation (10). Let us put \(\mathcal{F} = \mathcal{F} * k_\alpha \). Then, by virtue of (2), \(\mathcal{F} \in A_x \), so from (4)
\[
J(\alpha D\mathcal{F} + (1 - \alpha)\mathcal{F}) (z) = J(\mathcal{F}) (z) = \frac{1 + z}{1 - z} , \quad z \in A .
\]

Hence, in view of (i),
\[
\alpha D J(\mathcal{F}) (z) + J(\mathcal{F}) (z) = \frac{1 + z}{1 - z} , \quad z \in A .
\]
Let us consider $\beta > \alpha$. From (i) we get

$$J(\beta Df + (1 - \beta) f)(z) = \beta D J(f)(z) + J(f)(z) = \frac{\beta 1 + z}{\alpha 1 - z} + \frac{\alpha - \beta}{\alpha} J(f)(z) = \frac{\beta 1 + z}{\alpha 1 - z} + \frac{\alpha - \beta}{\alpha} \int_0^1 t^{1/z-1} \frac{1 + tz}{1 - tz} dt \to \frac{\alpha - \beta}{\alpha} a < 0 ,$$

as $z \to -1, z \in A$. Consequently, $f \in A_{\alpha}$, whence $A(\alpha) \neq \emptyset$. Since the identity function belongs to the family A of type J, it belongs to each class A_{α}, thus to $A(\infty)$, too. Hence it follows that $A(\infty) \neq \emptyset$.

Now, let us observe that for $\alpha \in (0, \infty)$, conditions (13), (14) and the sufficient condition in (15) follow directly from the definition of the family A_{α} and the properties of the family A_{α}. It only remains to prove the necessary condition in (15).

So, let $f \in A(\alpha), \alpha \in (0, \infty)$. Then the definition of the family $A(\alpha)$ and Theorem 15 imply that $f \notin A_{\beta}$ for each $\beta > \alpha$, and $f \in A_{\beta}$ for each $0 \leq \beta < \alpha$. In view of (4), the last fact is equivalent to

$$\text{Re} J(\beta Df + (1 - \beta) f)(z) > 0 , \quad z \in A ,$$

for $\beta \in (0, \alpha)$. Passing to the limit $\beta \to \alpha^-$ in the above inequality, we get

$$\text{Re} J(\alpha Df + (1 - \alpha) f)(z) \geq 0 , \quad z \in A ,$$

which, in view of the extremum principle for harmonic functions, gives

$$\text{Re} J(\alpha Df + (1 - \alpha) f)(z) > 0 , \quad z \in A ,$$

and, consequently, $f \in A_{\alpha}$. Thus the proof is complete.

Theorem 17 evidently yields that

$$A = \bigcup_{\alpha \geq 0} A(\alpha) .$$

Finally, let us observe that the operator $J_g : \mathcal{A} \to \mathcal{A}'$ defined by the formula

$$(J_g(F))(z) = \frac{(F \ast g)(z)}{z} , \quad z \in A ,$$

where g is an arbitrarily fixed function of the family \mathcal{A}, belongs to the class \mathcal{J}, too. Moreover, putting $g = g_k, k = 1, 2, 3, 4$, where

$$g_1(z) = z , \quad z \in A ;$$

$$g_2(z) = \frac{z}{(1 - z)^2} , \quad z \in A ;$$

157
we get $J_k = J_{g_k}$.

There arises a natural question if J_g is the most general form of the operator $J \in \mathcal{J}$.

References

APLIKACE HADAMARDOVA SOUČINU V GEOMETRICKÉ TEORII FUNKCÍ

Zbigniew Jerzy Jakubowski, Piotr Liczberski, Łucja Żywień

Nechť \(\mathcal{A} \) je množina funkcí \(F \) holomorfních v jednotkovém kruhu a normalizovaných klasickým způsobem: \(F(0) = 0, F'(0) = 1 \), a nechť \(A \in \mathcal{A} \) je její libovolná pevně zvolená podmnožina. V článku se studují různé vlastnosti tříd \(A_\alpha, \alpha \in C \setminus \{-1, -\frac{1}{2}, \ldots\} \), funkcí tvaru \(f = F \ast k_\alpha \), kde

\[
F \in A, \quad k_\alpha(z) = k(z, \alpha) = z + \frac{1}{1 + \alpha} z^2 + \ldots + \frac{1}{1 + (n - 1) \alpha} z^n + \ldots,
\]

a \(F \ast k_\alpha(z) \) znamená Hadamardův součin funkcí \(F, k_\alpha \). Některé speciální případy množiny \(A \) byly vyšetřeny dříve jinými autory (viz např. [15], [6], [3]).

Authors' addresses: Z. J. Jakubowski, Institute of Mathematics, Łódź University, ul. Stefana Banacha 22, 90-238 Łódź, Poland; P. Liczberski, Ł. Żywień, Institute of Mathematics, Łódź Technical University, ul. Żwirki 36, 90-924 Łódź, Poland.