Pavel Pyrih
Normal spaces and the Lusin-Menchoff property

Persistent URL: http://dml.cz/dmlcz/126145
NORMAL SPACES AND THE LUSIN-MENCHOFF PROPERTY

PAVEL PYRIH, Praha 1

(Received March 14, 1996)

Summary. We study the relation between the Lusin-Menchoff property and the F_a-"semiseparation" property of a fine topology in normal spaces. Three examples of normal topological spaces having the F_a-"semiseparation" property without the Lusin-Menchoff property are given. A positive result is obtained in the countable compact space.

Keywords: fine topology, finely separated sets, Lusin-Menchoff property, normal space

MSC 1991: 54A10, 26A03, 31C40

1. INTRODUCTION

All topological spaces considered should be Hausdorff. Let (X, ϱ) be a topological space. Any topology τ finer than ϱ is called a fine topology. We use the terms finely open, finely closed, ... with respect to a fine topology (similarly for another topology). We say that $A, B \subseteq X$ are finely separated if there are disjoint finely open sets G_A and G_B such that $A \subseteq G_A, B \subseteq G_B$.

An important tool in the study of fine topologies is the Lusin-Menchoff property. We say that a fine topology τ on (X, ϱ) has the Lusin-Menchoff property (with respect to ϱ) if for each pair of disjoint subsets F and G of X, F closed, G finely closed, there are disjoint subsets F and G of X, F open, G finely open, such that $F \subseteq G, F \subseteq G$ ([2], p. 85).

In [5] we proved the following

Theorem 1.1. Let a fine topology have the Lusin-Menchoff property. Suppose a and b are finely closed sets. Suppose A and B are sets of type F_a with $a \subseteq A,

1 Research supported by the grant No. GAUK 186/96 of the Charles University.
\[b \subset B, A \text{ disjoint with } b, \text{ and } B \text{ disjoint with } a. \text{ Then there are disjoint finely open sets } a \text{ and } \beta \text{ such that } a \subset a \text{ and } b \subset \beta. \]

Let \(a \subset A \subset X \) and \(b \subset B \subset X \) where \(A \) and \(B \) are of type \(F_\alpha \). \(A \) is disjoint with \(b \), and \(B \) is disjoint with \(a \). In this situation we say that \(a \) and \(b \) are \(F_\alpha \)-"semiseparated". Theorem 1.1 says (assuming the Lusin-Menchoff property) that \(F_\alpha \) "semiseparated" finely closed sets are finely separated.

We can formulate a simple corollary.

Corollary 1.2. Let a fine topology have the Lusin-Menchoff property and the \(F_\alpha \)-"semiseparation" property (it means that any two finely closed sets can be \(F_\alpha \)-"semiseparated"). Then the fine topology is normal.

A natural question arises:

Question 1.3. Let a fine topology be normal and have the \(E_\alpha \)-"separation" property. Does this imply that the fine topology has the Lusin-Menchoff property?

In the following examples we show that the answer is no, even with stronger assumptions (see Propositions 2.3, 3.4 and 4.3). A positive result is obtained in the countable compact space (see Proposition 5.1).

2. The train topology

Definition 2.1. Let \(X = \mathbb{R}^2 \). We define the train topology by the neighbourhood basis of any point. The origin has the neighbourhood basis consisting of sets of the kind

\[
U = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < \varepsilon^2\} \cup \{(x, y) \in \mathbb{R}^2 : |y| < 1, x > K\}
\]

(the second set is the "long train") for any \(\varepsilon, K > 0 \). Other points have the neighbourhood basis of Euclidean open sets.

We can easily see the following

Observation 2.2. The properties of the train topology:

(i) the Euclidean topology is strongly finer than the train topology;
(ii) the family of \(G_\delta \) sets in the train topology contains all Euclidean open sets;
(iii) the train topology is not normal (the origin and \(\{(x, y) \in \mathbb{R}^2 : y = 1\} \) are train closed sets which are not train separated).
Proposition 2.3. There exists a fine topology which is normal, has the \(F_a \)-"semiseparation" property and has not the Lusin-Menchoff property.

Proof. Let the original topology on \(\mathbb{R}^2 \) be the train topology and let the fine topology be the Euclidean one. Then the \(F_a \)-"semiseparation" property of the fine topology follows from Observation 2.2 (ii). The set \(F = \{(x, y) \in \mathbb{R}^2 : y = 1\} \) is closed in the train topology, \(F = \{(0,0)\} \) is a Euclidean closed set and any train open cover of \(F \) meets any Euclidean open cover of \(F \). The train topology has not the Lusin-Menchoff property with respect to the Euclidean topology on \(\mathbb{R}^2 \). \(\square \)

3. THE CUCKOO TOPOLOGY

Definition 3.1. Let \(e_n \rightarrow 0, c_n \rightarrow \infty \) be disjoint non zero points, \(X = \mathbb{R} \setminus \{e_n\} \). We define the cuckoo topology by the neighbourhood basis of any point. The origin has the neighbourhood basis consisting of sets of the kind \(\{x \in X : |x| < \varepsilon\} \cup \{x \in X : |x| > K\} \) for any \(\varepsilon, K > 0 \). The points \(c_n \) (the cuckoos) have the neighbourhood basis of the form \(\{x \in X : |x - c_n| < \varepsilon\} \cup \{x \in X : |x - e_n| < \varepsilon\} \) (the "home" united with the punctured "egg" given near the origin = "bird") for \(\varepsilon > 0 \). Other points of \(X \) have the neighbourhood basis of all Euclidean open sets.

We can easily see the following:

Observation 3.2. The properties of the cuckoo topology:

(i) the Euclidean topology is strongly finer than the cuckoo topology;
(ii) the family of \(G \) sets in the cuckoo topology contains all Euclidean open sets;
(iii) the cuckoo topology is compact (near infinity and near "eggs" \(e_n \), the situation is simple, due to the definition of the cuckoo topology);
(iv) the Euclidean topology on \(X \) is normal.

Proposition 3.3. The cuckoo topology on \(X \) is normal.

Proof. Let \(F, G \) be disjoint cuckoo closed sets. Then
(i) near the origin and finitely many \(e_n \) the cuckoo topology is topologically like the Euclidean topology near infinity;
(ii) if \(c_n \in F \), then some neighbourhood of \(c_n \) (containing an "egg" near \(e_n \)) is disjoint with \(G \);
(iii) if \(0 \in F \), then some cuckoo neighbourhood of the origin is disjoint with \(G \).
In all situations we can easily find the cuckoo open sets separating \(F \) and \(G \). \(\square \)
Proposition 3.4. There exists a normal fine topology having the F_σ-"semiseparation" property with respect to a normal and compact original topology such that the fine topology has not the Lusin-Menchoff property with respect to the original topology.

Proof. Let the fine and the original topologies be the Euclidean and the cuckoo topology on X (Definition 3.1), respectively. Then due to Observation 3.2 and Proposition 3.3 it is enough to show that the Lusin-Menchoff property does not hold. We take a cuckoo closed set $F = \{0\}$ and a Euclidean closed set $F = \{e_n\}_{n=1}^\infty$. Any Euclidean open cover of F meets some "egg" in any cuckoo cover of F. The Lusin-Menchoff property does not hold.

4. The Jump Topology

Definition 4.1. Let $a_n \to 0$ be nonzero points of $X = [0,1]$. We define the jump topology on X by the jump metric $d_{\text{jump}}(x,y) = d(\varphi(x),\varphi(y))$, where $\varphi: X \to \mathbb{R}^2$, $\varphi(a_n) = (a_n,1)$, $\varphi(x) = (x,0)$ elsewhere (at a_n the function φ "jumps" to 1) and d is the Euclidean metric in \mathbb{R}^2.

We can easily see the following

Observation 4.2. The properties of the jump topology:

(i) the jump topology is finer than the Euclidean topology;
(ii) the jump topology is metric;
(iii) the jump closed sets are F_σ sets in the Euclidean topology;
(iv) the jump topology has the F_σ-"semiseparation" property.

Proposition 4.3. There exists a metric fine topology having the F_σ-"semiseparation" property with respect to a compact metric original topology such that the fine topology has not the Lusin-Menchoff property with respect to the original topology.

Proof. Let the fine and the original topologies be the jump and the Euclidean topology on X (Definition 4.1), respectively. Then due to Observation 4.2 it is enough to show that the Lusin-Menchoff property does not hold. We take a jump closed set $F = \{a_n\}_{n=1}^\infty$ and a Euclidean closed set $F = \{0\}$. Any Euclidean open cover of F meets any jump cover of F. The Lusin-Menchoff property does not hold.
5. THE COUNTABLE COMPACT TOPOLOGY

We see that for a compact fine topology both topologies coincide. Hence we weaken the compactness to the following notion. We say that a topological space is countable compact if from any countable open cover we can select a finite subcover. We can easily prove

Proposition 5.1. Let a fine topology be countable compact and have the F_σ-"semiseparation" property with respect to a normal original topology. Then the fine topology has the Lusin-Menchoff property.

Proof. Let F be a closed set disjoint with a finely closed F. Due to the F_σ-"semiseparation" property we find $\{F_n\}$ such that $F \subseteq \bigcup F_n$, F_n disjoint with F. Due to normality of the original topology, for any couple F, F_n we find a disjoint couple of open sets G_n and H_n such that $F_n \subseteq G_n$ and $F \subseteq H_n$. Due to the countable compactness of the fine topology we find m such that $F \subseteq G = \bigcup_{n=1}^m F_n$.

The set $G = \bigcap_{n=1}^m H_n$ is an open cover of F, the set G is an open cover of F. The sets G and G show that the Lusin-Menchoff property holds. □

Remark 5.2. Other material on this subject can be found in [1], [2], [3], [4], [5], [6].

References

Author’s address: Pavel Pyrih, Department of Mathematical Analysis, Charles University, Sokolovska 83, 186 00 Prague 8, Czech Republic, e-mail: pyrihkarlin.mff.cuni.cz.