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Summary. The cross-ratio in Hjelmslev planes is defined. The cross-ratio in the Hjelmsle 
plane H(R) is independent of the choice of a coordinate system on a line. 
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1. I N T R O D U C T I O N 

A special local ring is a finite commutative local ring R the ideal / of divisors of 

zero of which is principal. Suppose that R is not a field and that the characteristic 

of R is odd. Denote the factor ring R/I by the symbol R. Further denote the set of 

all regular elements of R by the symbol R*, thus R* = R - I. 

Definit ion 1 .1 . A projective Hjelmslev plane (we will denote it by H(R)) over 

R is an incidence structure H(R) = (B\V\T) defined in the following way: 

- the elements of B—the points of H(R) are classes of ordered triples (Xx\ \ Xx2\ XX3) 

where X e R*, xi,x2,x3 £ R and at least one xt is regular; 

- the elements of V—the lines of H(R) are classes of ordered triples (aa\\ aa2\ aa3) 

where a £ R*, 01,02,03 E R and at least one a; is regular. 

A point X = [2,1; x2\ x3] is incident to the line a = [a1\a2; a3] if and only if 

(1.1) 0 1 x 1 + 0 2 ^ 2 + 0 3 x 3 = 0 . 

R e m a r k 1.1. The canonical homomorphism $ : R -i R/I = R induces a 

homomorphism of H(R) onto the projective plane TI(R). 
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We will call the points X,Y € H(R) neighbouring if X~ = Y where $ ( A ) = X 

$ ( F ) = Y. Similarly we will call points X, Y e H(R) substantially different i 

X ^ Y. Two lines are neighbouring if there are points A\,A2 € B, A\ ^ A2 sucl 

tha t Aila, 6 and A2la, b. Let A' be a subset of the R-modul M and let j : X -> M 

be an insertion of the subset X into M . Then M(R) is called the free modul ovei 

X if for an arbitrary function / : X -» A into the i?-modul A there is exactly one 

linear mapping t: M(R) -+ A such tha t toj = f. 

R e m a r k 1.2. The analytic model of the Hjelmslev plane, introduced by defi­

nition 1.1 is really a free modul over R with a factorization defined in the following 

way: triples (x\;x2;x3) and (x[;x'2;x3) are identical if there is X € R* such tha t 

x\ = Xxf for i = 1,2,3 and we do not consider the zero triple. 

2. THE CONSTRUCTION AND PROOF OF THEOREM 

Defini t ion 2 .1 . A coordinate system in H(R) is an ordered quadruple of points 

E\,E2,E3,E4 such that the points E1,E2,E3,E4 generate a coordinate system in 

n(R). 

If a point X = [x\;x2;x3] is given by the vector x = (x\;x2;x3), we write X = (x). 

L e m m a 2 .1 . Let M(R) be a free modul over R and let e i , e 2 , e 3 be a basis 

of M(R). Then the points Ex = (ej), E2 = (e2), E3 = (e3), E4 = ( e i + e2 + e3) 

generate the coordinate system in the Hjelmslev plane H(R) corresponding to the 

modul M(R). 

P r o o f . It is necessary to prove that the points E\,E2,E3,E4 generate a co­

ordinate system in n(R). Obviously e"i,e2,e3 form a basis of a vector space over R 

and thus the vectors e~i,e2,e3 are linearly independent. It follows that the points 

E\ = (ei) , E2 = (e2), E3 = (e3) and E4 = (ei + e 2 + e3) are not on a unique line. • 

Conversely, we have 

L e m m a 2.2 . Let E\, E2,E3, E4 be a coordinate system in H(R). Then there is a 

basis of the modul M(R) such that (ei) = E\, (e2) = E2, (e3) = E3, (ex + e2 + e3) = 

E4. 

P r o o f . Let Ei = (6i), E2 = (b2), E3 = (b3) and E4 = (b4). Because {61,62,63} 

is a basis of M(R) the vector 64 can be expressed in the form 

64 = 0ih + P2b2 + f33b3-
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If we denote ei = /3i&i, e2 = (32b2, e3 = fi3b3 then e i , e 2 , e 3 are the vectors from the 

statement of the lemma. 

Let E\,E2,E3,Ei and E[,E2,E'3,E'4 be coordinate systems in H(R). If e i , e 2 , e 3 

and e',, e2 , e'3 are the corresponding bases of the modul M(R) then there is a regular 

matrix A = [ay] such that 

e[ = VJ aijej, i = 1,2,3. 
3 

Let XE = [xi;x2;x3], X'E = [x[; x'2;x'3]. Then 

1 = ZJ *'e' = E a'̂  Z «««.* = Z (!C 'T^') ei = IE ^ei. 
» i i i i j 

Comparing the two identities, we get 

(2.1) xj=J2x'iaiJ-

The relation (2.1) can be written also in the form 

(2.2) XE = X'EA, X'E = XEA~l. 

Let an invertible matrix A and a coordinate system Ei,E2,E3,E4 be given, then 

points E[,E'2,E'3,E'l generate a coordinate system and the corresponding vectors of 

the point X e H(R) satisfy 

XE = X'EA. 

Let the special local ring R be given. We introduce a set U by 

(2.3) n n / ? = 0, | n | = | / | . 

Thus there is a bijective mapping u such that 

(2.4) u:I-+Q., w:i-tu>i=Lj(i), i e l 

where Wj are "inverse" elements of elements i e I, thus uit ~ \ji. fi is the set of 

"infinities" corresponding to singular elements. Define an extension of the canonical 

homomorphism $ to the set R U Q, let us put 

(2.5) $(ft) = 00. 
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Let A, B, E be three substantially different points generating a coordinate system 

on a line. Then every point X of this line can be expressed uniquely (the single-

valuedness guarantees the point E) in the form 

(2.6) X = sA + tB 

and hence the point X = [s; t] is determined by the pair (s; t). 

On the line with the coordinate system A.,B,E let us have points PI,P2,P3,PA 

where Pt=SiA + ttB thus Pi[si\ U}. D 

Def in i t ion 2.2. The cross-ratio of an ordered quadruple of points P i , P 2 , P3, P4 

on a line in H(R), of which at least three are substantially different is an element 

( P i P 2 , P 3 P 4 ) G PiU Q, which is defined by relations 

(2.7) ( P x P 2 ) P з P 4 ) = 

si U S2 Һ 

sз H SĄ Í4 

S2 Í2 Sl Һ 

sз Һ SĄ ІĄ 

if points P1P4 and P2P3 are substantially different, 

(2-8) ( P i P 2 , P 3 P 4 ) = w ( P 1 P 2 , P 3 P 4 ) 

if points P i , P i and P 2 , P 3 are neighbouring. Suppose that points P i , P 3 and P 2 , P 4 
are substantially different. 

R e m a r k . If R is a field, / = {0} then Definition 2.2 is the same as the 
definition of the cross-ratio in a projective plane. 

T h e o r e m 2.3 . Ti2e cross-ratio introduced by relations 2.7 and 2.8 is independent 

of the choice of a coordinate system on the line. 

P r o o f . Let a line p € H(R) be given and on this line let us have coordinate 

systems A, B, E and A',B',E'. Let P i , P 2 , P3, P4 be points on the given line p whose 

the cross-ratio we want to investigate. There is obviously a linear transformation 

which maps the points A, B to the points A', B' on p. We want to verify that the 

cross-ratio is independent of the choice of the coordinate points on the line. Thus 

We have 
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(PIP2,P3P4)AB = ( P i P - . P s P i W 

Ă = а\A + а2B 

P ' = òiA + ò 2 P 



11 and thus 
* Pi = s'iA' + t'iB' 

and after a substitution we get 

Pi = (s'.ai + Í ; .6I)A + ( ^ a 2 + t'j&z)^ = SiA + UB, i = 1,2,3,4. 

i By direct calculation we obtain (PIPÍ,PÍPÍ)AB = (P\P-2, P&P*)A<B' which was to be 
Í proved. O 
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